CN107464882A - A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof - Google Patents
A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN107464882A CN107464882A CN201710493641.9A CN201710493641A CN107464882A CN 107464882 A CN107464882 A CN 107464882A CN 201710493641 A CN201710493641 A CN 201710493641A CN 107464882 A CN107464882 A CN 107464882A
- Authority
- CN
- China
- Prior art keywords
- solar cell
- organic
- preparation
- perovskite solar
- hybrid inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 35
- 238000009396 hybridization Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000005507 spraying Methods 0.000 claims abstract description 17
- 230000005525 hole transport Effects 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 238000005118 spray pyrolysis Methods 0.000 claims abstract description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010931 gold Substances 0.000 claims abstract description 8
- 229910052737 gold Inorganic materials 0.000 claims abstract description 8
- 239000007921 spray Substances 0.000 claims abstract description 8
- 238000002207 thermal evaporation Methods 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims abstract description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 51
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 26
- 238000000137 annealing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000012159 carrier gas Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 4
- 230000008033 biological extinction Effects 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 claims 1
- 230000031700 light absorption Effects 0.000 claims 1
- 239000006199 nebulizer Substances 0.000 claims 1
- 239000002344 surface layer Substances 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 42
- 150000001768 cations Chemical class 0.000 abstract description 20
- 239000013078 crystal Substances 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 40
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 32
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 10
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004528 spin coating Methods 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- -1 methylamine ions Chemical class 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N monoethyl amine Natural products CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种有机‑无机杂化钙钛矿太阳能电池及其制备方法。本发明制备方法是在透明导电电极上通过喷雾热解法沉积一层半导体致密层;然后将混合阳离子有机‑无机杂化钙钛矿溶液通过热基底喷涂法喷涂于半导体致密层上,形成一层混合阳离子有机‑无机杂化钙钛矿薄膜吸光层;再在吸光层表面制备空穴传输层;最后采用热蒸发蒸镀金电极,得到有机‑无机杂化钙钛矿太阳能电池。本发明采用热基底喷涂法制备有机‑无机杂化钙钛矿太阳能电池,简化了制备工艺,可快速制备大面积钙钛矿薄膜,有利于规模化应用;且本发明优化了混合阳离子有机‑无机杂化钙钛矿溶液各组分之间的比例,所得太阳能电池晶粒尺寸超过500nm,且稳定性较好。
The invention discloses an organic-inorganic hybrid perovskite solar cell and a preparation method thereof. The preparation method of the present invention is to deposit a layer of semiconductor dense layer by spray pyrolysis on the transparent conductive electrode; then spray the mixed cation organic-inorganic hybrid perovskite solution on the semiconductor dense layer by thermal substrate spraying method to form a layer Mixed cation organic-inorganic hybrid perovskite film light-absorbing layer; then prepare a hole transport layer on the surface of the light-absorbing layer; finally use thermal evaporation to evaporate gold electrodes to obtain organic-inorganic hybrid perovskite solar cells. The invention adopts thermal substrate spraying method to prepare organic-inorganic hybrid perovskite solar cells, simplifies the preparation process, can quickly prepare large-area perovskite thin films, and is conducive to large-scale application; and the invention optimizes mixed cation organic-inorganic The ratio between the components of the hybrid perovskite solution allows the crystal grain size of the obtained solar cell to exceed 500nm, and the stability is good.
Description
技术领域technical field
本发明属太阳能利用技术领域,更具体地说,本发明涉及一种新型有机-无机杂化钙钛矿太阳能电池及其制备方法。The invention belongs to the technical field of solar energy utilization. More specifically, the invention relates to a novel organic-inorganic hybrid perovskite solar cell and a preparation method thereof.
背景技术Background technique
有机-无机杂化钙钛矿太阳电池(以下简称为钙钛矿太阳电池)在众多新型太阳电池中脱颖而出,吸引了众多科研工作者的关注,还被《Science》评选为2013年十大科学突破之一。这种电池采用的光吸收材料为有机-无机杂化物ABX3,其中A为+l价的有机阳离子,选自甲胺离子(CH3NH3 +)、乙胺离子(C2H5NH3 +)或甲醚离子(NH2CH=NH2 +),B为+2价的金属离子,选自Sn2+或Pb2+,X为卤素离子,选自Cl-、Br-或I-,是典型的钙钛矿晶体结构,因此该电池被称为钙钛矿型太阳电池。由于其采用全固态形式,既可以避免液体电解质带来的问题,又可以获得高转换效率,短短几年其光电转换效率从2009年的3.8%提高到2016年的22.1%,这种发展速度是前所未有的,钙钛矿太阳能电池有着极大的潜力与应用前景。Organic-inorganic hybrid perovskite solar cells (hereinafter referred to as perovskite solar cells) stand out among many new solar cells, attracting the attention of many scientific researchers, and were selected as one of the top ten scientific breakthroughs in 2013 by "Science" one. The light-absorbing material used in this battery is an organic-inorganic hybrid ABX 3 , where A is a +1-valent organic cation selected from methylamine ions (CH 3 NH 3 + ), ethylamine ions (C 2 H 5 NH 3 + ) or methyl ether ion (NH 2 CH=NH 2 + ), B is a +2-valent metal ion selected from Sn 2+ or Pb 2+ , X is a halogen ion selected from Cl - , Br - or I - , is a typical perovskite crystal structure, so the cell is called a perovskite solar cell. Due to its all-solid-state form, it can avoid the problems caused by liquid electrolytes and obtain high conversion efficiency. In just a few years, its photoelectric conversion efficiency has increased from 3.8% in 2009 to 22.1% in 2016. This development speed It is unprecedented, and perovskite solar cells have great potential and application prospects.
单一阳离子钙钛矿材料,如MAPbI3,由于结晶性比较差,导致其稳定性比较差,而混合阳离子钙钛矿材料体系,如FAMAPbI3,较大的FA+的离子半径与MA+相比显示出结晶动力学上的优越性,MA+的掺入可以减少晶体缺陷,提高结晶性。掺Br的混合阳离子钙钛矿体系,如(FAPbI3)x(MAPbBr3)(1-x),可以通过调节Br的含量来调节钙钛矿能隙,进一步提高钙钛矿材料的光转换效率及其稳定性。Single-cation perovskite materials, such as MAPbI 3 , have relatively poor stability due to poor crystallinity, while mixed-cation perovskite material systems, such as FAMAPbI 3 , have larger ionic radius of FA + compared with MA + Showing superiority in crystallization kinetics, the incorporation of MA + can reduce crystal defects and improve crystallinity. Br-doped mixed cation perovskite systems, such as (FAPbI 3 ) x (MAPbBr 3 ) (1-x) , can adjust the energy gap of perovskite by adjusting the content of Br, and further improve the light conversion efficiency of perovskite materials. and its stability.
目前,混合阳离子型钙钛矿吸收层的制备方法主要有旋涂法、闪蒸法,不利于大规模应用,且所制备的钙钛矿晶粒大小都不超过300nm,稳定性也较差。At present, the preparation methods of mixed cation perovskite absorbing layer mainly include spin coating method and flash evaporation method, which are not conducive to large-scale application, and the prepared perovskite crystal grain size does not exceed 300nm, and the stability is also poor.
发明内容Contents of the invention
本发明的目的在于:克服现有钙钛矿太阳能电池存在的稳定性较差且晶粒不超过300nm的缺陷,提供一种具有高稳定性、适合大规模生产、晶粒颗粒可超过500nm的有机-无机杂化钙钛矿太阳能电池及其制备方法。The object of the present invention is to: overcome the defects of existing perovskite solar cells with poor stability and grains not exceeding 300nm, and provide an organic solar cell with high stability, suitable for large-scale production, and grains exceeding 500nm. -Inorganic hybrid perovskite solar cell and its preparation method.
为了实现上述发明目的,本发明提供了一种有机-无机杂化钙钛矿太阳能电池的制备方法,其包括如下步骤:In order to achieve the above object of the invention, the present invention provides a method for preparing an organic-inorganic hybrid perovskite solar cell, which comprises the following steps:
(1)在透明导电电极上通过喷雾热解法沉积一层半导体致密层;(1) Depositing a semiconductor dense layer on the transparent conductive electrode by spray pyrolysis;
(2)将混合阳离子有机-无机杂化钙钛矿溶液通过热基底喷涂法喷涂于步骤(1)所述半导体致密层上,形成一层混合阳离子有机-无机杂化钙钛矿薄膜吸光层;(2) Spraying the mixed cation organic-inorganic hybrid perovskite solution on the semiconductor dense layer described in step (1) by thermal substrate spraying method to form a layer of mixed cation organic-inorganic hybrid perovskite film light-absorbing layer;
(3)在步骤(2)所述混合阳离子有机-无机杂化钙钛矿薄膜吸光层表面制备空穴传输层;(3) preparing a hole transport layer on the surface of the mixed cation organic-inorganic hybrid perovskite film light-absorbing layer described in step (2);
(4)采用热蒸发蒸镀金电极,得到有机-无机杂化钙钛矿太阳能电池;(4) Using thermal evaporation to evaporate gold electrodes to obtain organic-inorganic hybrid perovskite solar cells;
其中,所述有机-无机杂化钙钛矿的结构通式为(FAPbI3)x(MAPbBr3)(1-x),x为0.7~0.9。Wherein, the general structural formula of the organic-inorganic hybrid perovskite is (FAPbI 3 ) x (MAPbBr 3 ) (1-x) , and x is 0.7-0.9.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,步骤(1)中,所述透明导电电极为掺氟氧化锡或掺铝氧化锌。As a preferred technical solution of the method for preparing the organic-inorganic hybrid perovskite solar cell of the present invention, in step (1), the transparent conductive electrode is fluorine-doped tin oxide or aluminum-doped zinc oxide.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,所述基底为玻璃基底或塑料基底。As a preferred technical solution of the method for preparing the organic-inorganic hybrid perovskite solar cell of the present invention, the substrate is a glass substrate or a plastic substrate.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,步骤(1)中,所述半导体致密层是以TiO2、ZnO或SnO2为原料,通过喷雾热解法沉积得到。As a preferred technical scheme of the preparation method of the organic-inorganic hybrid perovskite solar cell of the present invention, in step (1), the semiconductor dense layer is made of TiO 2 , ZnO or SnO 2 as raw materials, and is sprayed by pyrolysis obtained by deposition.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,步骤(1)中,所述半导体致密层的厚度为30~200nm。As a preferred technical solution of the preparation method of the organic-inorganic hybrid perovskite solar cell of the present invention, in step (1), the thickness of the semiconductor dense layer is 30-200 nm.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,所述混合阳离子有机-无机杂化钙钛矿溶液的制备方法是将FAI:PbI2:MABr:PbBr2按照摩尔比0.7~0.9:0.7~0.9:0.1~0.3:0.1~0.3混合加入到N,N-二甲基甲酰胺和二甲基亚砜的混合溶液中,且N,N-二甲基甲酰胺和二甲基亚砜的质量比为7~9.5:1。As a preferred technical scheme of the preparation method of the organic-inorganic hybrid perovskite solar cell of the present invention, the preparation method of the mixed cation organic-inorganic hybrid perovskite solution is to mix FAI:PbI 2 :MABr:PbBr 2 According to the molar ratio of 0.7~0.9:0.7~0.9:0.1~0.3:0.1~0.3 mixed into the mixed solution of N,N-dimethylformamide and dimethyl sulfoxide, and N,N-dimethylformamide The mass ratio of amide and dimethyl sulfoxide is 7-9.5:1.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,步骤(2)中,所述混合阳离子有机-无机杂化钙钛矿溶液的浓度为0.1~0.5mol/L。As a preferred technical scheme of the preparation method of the organic-inorganic hybrid perovskite solar cell of the present invention, in step (2), the concentration of the mixed cation organic-inorganic hybrid perovskite solution is 0.1 to 0.5 mol/ L.
作为本发明有机-无机杂化钙钛矿太阳能电池的制备方法的一种优选技术方案,步骤(2)中,所述热基底喷涂法中,载气为氮气,载气压力为2~4个大气压,热基底温度为110~150℃,喷速为1~2g/min,喷涂时间为10~15s,退火温度为100~150℃,退火时间为8~20min。As a preferred technical scheme of the preparation method of the organic-inorganic hybrid perovskite solar cell of the present invention, in step (2), in the hot substrate spraying method, the carrier gas is nitrogen, and the carrier gas pressure is 2 to 4 Atmospheric pressure, hot substrate temperature is 110-150°C, spray rate is 1-2g/min, spraying time is 10-15s, annealing temperature is 100-150°C, annealing time is 8-20min.
为了实现上述发明目的,本发明还提供了一种有机-无机杂化钙钛矿太阳能电池,其是通过上述制备方法制备得到。In order to achieve the purpose of the above invention, the present invention also provides an organic-inorganic hybrid perovskite solar cell, which is prepared by the above preparation method.
相对于现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
现有技术中,有机-无机杂化钙钛矿薄膜大多是在惰性气氛下采用旋涂法成膜,难以制备大面积薄膜,且晶粒尺寸大多在300nm左右,稳定性较差。本发明通过热基底喷涂法制备有机-无机杂化钙钛矿薄膜,在大气环境中即可实现,不要求严苛的气体环境,降低了制备条件;制得的有机-无机杂化钙钛矿薄膜致密,晶粒尺寸可超过500nm,制得的有机-无机杂化钙钛矿太阳能电池光电转换效率超过12%,在保存80天后,光电转换效率降低不超过5%,稳定性优异。In the prior art, organic-inorganic hybrid perovskite films are mostly formed by spin-coating in an inert atmosphere, which makes it difficult to prepare large-area films, and the grain size is mostly around 300nm, resulting in poor stability. The invention prepares the organic-inorganic hybrid perovskite thin film by thermal substrate spraying method, which can be realized in the atmospheric environment, does not require a harsh gas environment, and reduces the preparation conditions; the prepared organic-inorganic hybrid perovskite The film is dense, and the grain size can exceed 500nm. The photoelectric conversion efficiency of the prepared organic-inorganic hybrid perovskite solar cell exceeds 12%. After 80 days of storage, the photoelectric conversion efficiency decreases by no more than 5%, and the stability is excellent.
附图说明Description of drawings
下面结合附图和具体实施方式,对本发明有机-无机杂化钙钛矿太阳能电池及其制备方法和有益效果进行详细说明。The organic-inorganic hybrid perovskite solar cell and its preparation method and beneficial effects of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
图1是本发明的有机-无机杂化钙钛矿太阳能电池结构,其中,1是透明导电电极(FTO),2是半导体致密层,3是钙钛矿吸光层,4是空穴传输层,5是金属电极。Fig. 1 is the organic-inorganic hybrid perovskite solar cell structure of the present invention, wherein, 1 is a transparent conductive electrode (FTO), 2 is a semiconductor dense layer, 3 is a perovskite light-absorbing layer, and 4 is a hole transport layer, 5 is a metal electrode.
图2是本发明实施例2(FAPbI3)0.85(MAPbBr3)0.15有机无机杂化钙钛矿薄膜SEM图。Fig. 2 is an SEM image of the (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 organic-inorganic hybrid perovskite film of Example 2 of the present invention.
图3是本发明实施例2(FAPbI3)0.85(MAPbBr3)0.15有机无机杂化钙钛矿太阳能电池保存0天和80天的J-V曲线。Fig. 3 is the JV curves of (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 organic-inorganic hybrid perovskite solar cells stored for 0 days and 80 days in Example 2 of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案和有益技术效果更加清晰,以下结合实施例,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本发明,并非为了限定本发明,实施例的参数、比例等可因地制宜做出选择而对结果并无实质性影响。In order to make the object, technical solution and beneficial technical effect of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the embodiments described in this specification are only for explaining the present invention, not for limiting the present invention, and the parameters and proportions of the embodiments can be selected according to local conditions and have no substantial influence on the results.
实施例1Example 1
(1)在透明导电电极上沉积TiO2致密层:将1g钛酸四异丙酯加入到1g乙酰丙酮和3g乙醇溶液中配制TiO2前驱体,在450℃条件下,通过喷雾热解法沉积50nm厚的TiO2致密层。(1) Deposit a dense layer of TiO2 on the transparent conductive electrode: add 1g of tetraisopropyl titanate to 1g of acetylacetone and 3g of ethanol to prepare a TiO2 precursor, and deposit it by spray pyrolysis at 450 °C 50 nm thick TiO2 dense layer.
(2)配制混合阳离子有机无机杂化钙钛矿溶液:将摩尔比FAI:PbI2:MABr:PbBr2=0.70:070:0.30:0.30混合物加入到DMSO和DMF的混合溶液中,DMF和DMSO的质量比为9:1,所得混合阳离子有机无机杂化钙钛矿溶液浓度为0.3mol/L。(2) Preparation of mixed cation organic-inorganic hybrid perovskite solution: the molar ratio FAI:PbI 2 :MABr:PbBr 2 =0.70:070:0.30:0.30 mixture is added to the mixed solution of DMSO and DMF, the mixture of DMF and DMSO The mass ratio is 9:1, and the concentration of the obtained mixed cation organic-inorganic hybrid perovskite solution is 0.3mol/L.
(3)在TiO2致密层上沉积钙钛矿薄膜:在大气环境下,通过热基底喷涂法制备钙钛矿薄膜,其中载气为N2,喷枪气压为3个大气压,热基底温度为130℃,控制喷涂时间,膜层厚度为200nm,然后在100℃退火15min。(3) Deposition of perovskite film on TiO 2 dense layer: In atmospheric environment, the perovskite film was prepared by hot substrate spraying method, in which the carrier gas was N 2 , the spray gun pressure was 3 atmospheres, and the temperature of the hot substrate was 130 ℃, control the spraying time, the film thickness is 200nm, and then anneal at 100℃ for 15min.
(4)将空穴传输层材料(Spiro-OMeTAD)在4000rpm转速下旋涂成膜,其中空穴传输层配制方法为:72.3mg Spiro-OMeTAD加入1ml氯苯中,搅拌至澄清,然后再加入28.8ul的TBP和17.5ul的Li-TFSI溶液搅拌1min。(4) The hole transport layer material (Spiro-OMeTAD) was spin-coated at 4000rpm to form a film. The preparation method of the hole transport layer was: 72.3mg Spiro-OMeTAD was added to 1ml chlorobenzene, stirred until clear, and then added 28.8ul of TBP and 17.5ul of Li-TFSI solution were stirred for 1min.
(5)最后采用热蒸发蒸镀50nm金电极。(5) Finally, a 50nm gold electrode is deposited by thermal evaporation.
所制备的钙钛矿薄膜晶粒尺寸为400nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.60%,在80天后,测试的光电转换效率为9.57%。The grain size of the prepared perovskite film is 400nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 10.60%. After 80 days, the tested photoelectric conversion efficiency is 9.57%.
实施例2Example 2
(1)在透明导电电极上沉积TiO2致密层:将1g钛酸四异丙酯加入到1g乙酰丙酮和3g乙醇溶液中配制TiO2前驱体,在450℃条件下,通过喷雾热解法沉积50nm厚的TiO2致密层。(1) Deposit a dense layer of TiO2 on the transparent conductive electrode: add 1g of tetraisopropyl titanate to 1g of acetylacetone and 3g of ethanol to prepare a TiO2 precursor, and deposit it by spray pyrolysis at 450 °C 50 nm thick TiO2 dense layer.
(2)配制混合阳离子有机无机杂化钙钛矿溶液:将摩尔比FAI:PbI2:MABr:PbBr2=0.85:0.85:0.15:0.15混合物加入到DMSO和DMF的混合溶液中,DMF和DMSO的质量比为9:1,所得混合阳离子有机无机杂化钙钛矿溶液浓度为0.3mol/L。(2) Preparation of mixed cation organic-inorganic hybrid perovskite solution: the molar ratio FAI:PbI 2 :MABr:PbBr 2 =0.85:0.85:0.15:0.15 mixture is added to the mixed solution of DMSO and DMF, the mixture of DMF and DMSO The mass ratio is 9:1, and the concentration of the obtained mixed cation organic-inorganic hybrid perovskite solution is 0.3 mol/L.
(3)在TiO2致密层上沉积钙钛矿薄膜:在大气环境下,通过热基底喷涂法制备钙钛矿薄膜,其中载气为N2,喷枪气压为3个大气压,热基底温度为130℃,控制喷涂时间,膜层厚度为200nm,然后在100℃退火15min。(3) Deposition of perovskite film on TiO 2 dense layer: In atmospheric environment, the perovskite film was prepared by hot substrate spraying method, in which the carrier gas was N 2 , the spray gun pressure was 3 atmospheres, and the temperature of the hot substrate was 130 ℃, control the spraying time, the film thickness is 200nm, and then anneal at 100℃ for 15min.
(4)将空穴传输层材料(Spiro-OMeTAD)在4000rpm转速下旋涂成膜,其中空穴传输层配制方法为:72.3mg Spiro-OMeTAD加入1ml氯苯中,搅拌至澄清,然后再加入28.8ul的TBP和17.5ul的Li-TFSI溶液搅拌1min。(4) The hole transport layer material (Spiro-OMeTAD) was spin-coated at 4000rpm to form a film. The preparation method of the hole transport layer was: 72.3mg Spiro-OMeTAD was added to 1ml chlorobenzene, stirred until clear, and then added 28.8ul of TBP and 17.5ul of Li-TFSI solution were stirred for 1min.
(5)最后采用热蒸发蒸镀50nm金电极。(5) Finally, a 50nm gold electrode is deposited by thermal evaporation.
所制备的钙钛矿薄膜晶粒尺寸为500nm,有机-无机杂化钙钛矿太阳能电池光转换效率为12.08%,在80天后,测试的光电转换效率为12.36%。The grain size of the prepared perovskite film is 500nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 12.08%. After 80 days, the tested photoelectric conversion efficiency is 12.36%.
实施例3Example 3
(1)在透明导电电极上沉积TiO2致密层:将1g钛酸四异丙酯加入到1g乙酰丙酮和3g乙醇溶液中配制TiO2前驱体,在450℃条件下,通过喷雾热解法沉积50nm厚的TiO2致密层。(1) Deposit a dense layer of TiO2 on the transparent conductive electrode: add 1g of tetraisopropyl titanate to 1g of acetylacetone and 3g of ethanol to prepare a TiO2 precursor, and deposit it by spray pyrolysis at 450 °C 50 nm thick TiO2 dense layer.
(2)配制混合阳离子有机无机杂化钙钛矿溶液:将摩尔比FAI:PbI2:MABr:PbBr2=0.90:0.90:0.10:0.10混合物加入到DMSO和DMF的混合溶液中,DMF和DMSO的质量比为9:1,所得混合阳离子有机无机杂化钙钛矿溶液浓度为0.3mol/L。(2) Preparation of mixed cation organic-inorganic hybrid perovskite solution: the molar ratio FAI:PbI 2 :MABr:PbBr 2 =0.90:0.90:0.10:0.10 mixture is added to the mixed solution of DMSO and DMF, the mixture of DMF and DMSO The mass ratio is 9:1, and the concentration of the obtained mixed cation organic-inorganic hybrid perovskite solution is 0.3 mol/L.
(3)在TiO2致密层上沉积钙钛矿薄膜:在大气环境下,通过热基底喷涂法制备钙钛矿薄膜,其中载气为N2,喷枪气压为3个大气压,热基底温度为130℃,控制喷涂时间,膜层厚度为200nm,然后在100℃退火15min。(3) Deposition of perovskite film on TiO 2 dense layer: In atmospheric environment, the perovskite film was prepared by hot substrate spraying method, in which the carrier gas was N 2 , the spray gun pressure was 3 atmospheres, and the temperature of the hot substrate was 130 ℃, control the spraying time, the film thickness is 200nm, and then anneal at 100℃ for 15min.
(4)将空穴传输层材料(Spiro-OMeTAD)在4000rpm转速下旋涂成膜,其中空穴传输层配制方法为:72.3mg Spiro-OMeTAD加入1ml氯苯中,搅拌至澄清,然后再加入28.8ul的TBP和17.5ul的Li-TFSI溶液搅拌1min。(4) The hole transport layer material (Spiro-OMeTAD) was spin-coated at 4000rpm to form a film. The preparation method of the hole transport layer was: 72.3mg Spiro-OMeTAD was added to 1ml chlorobenzene, stirred until clear, and then added 28.8ul of TBP and 17.5ul of Li-TFSI solution were stirred for 1min.
(5)最后采用热蒸发蒸镀50nm金电极。(5) Finally, a 50nm gold electrode is deposited by thermal evaporation.
所制备的钙钛矿薄膜晶粒尺寸为450nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.24%,在80天后,测试的光电转换效率为10.75%。The grain size of the prepared perovskite thin film is 450nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.24%. After 80 days, the tested photoelectric conversion efficiency is 10.75%.
实施例4Example 4
与实施例2不同的是热基底温度为110℃,所制备的钙钛矿薄膜晶粒尺寸为300nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.20%,在80天后,测试的光电转换效率为9.32%。The difference from Example 2 is that the temperature of the hot substrate is 110°C, the grain size of the prepared perovskite film is 300nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 10.20%. After 80 days, the tested The photoelectric conversion efficiency was 9.32%.
实施例5Example 5
与实施例2不同的是热基底温度为120℃,所制备的钙钛矿薄膜晶粒尺寸为350nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.00%,在80天后,测试的光电转换效率为10.37%。The difference from Example 2 is that the temperature of the hot substrate is 120°C, the grain size of the prepared perovskite film is 350nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.00%. After 80 days, the tested The photoelectric conversion efficiency was 10.37%.
实施例6Example 6
与实施例2不同的是热基底温度为140℃,所制备的钙钛矿薄膜晶粒尺寸为500nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.70%,在80天后,测试的光电转换效率为11.22%。The difference from Example 2 is that the temperature of the hot substrate is 140°C, the grain size of the prepared perovskite film is 500nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.70%. After 80 days, the tested The photoelectric conversion efficiency was 11.22%.
实施例7Example 7
与实施例2不同的是热基底温度为150℃,所制备的钙钛矿薄膜晶粒尺寸为450nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.55%,在80天后,测试的光电转换效率为10.48%。The difference from Example 2 is that the temperature of the hot substrate is 150°C, the grain size of the prepared perovskite film is 450nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.55%. After 80 days, the tested The photoelectric conversion efficiency was 10.48%.
实施例8Example 8
与实施例2不同的是退火时间为8min,所制备的钙钛矿薄膜晶粒尺寸为300nm,有机-无机杂化钙钛矿太阳能电池光转换效率为9.25%,在80天后,测试的光电转换效率为8.18%。The difference from Example 2 is that the annealing time is 8min, the grain size of the prepared perovskite film is 300nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 9.25%. After 80 days, the photoelectric conversion of the test The efficiency is 8.18%.
实施例9Example 9
与实施例2不同的是退火时间为10min,所制备的钙钛矿薄膜晶粒尺寸为350nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.45%,在80天后,测试的光电转换效率为9.37%。The difference from Example 2 is that the annealing time is 10min, the grain size of the prepared perovskite film is 350nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 10.45%. After 80 days, the photoelectric conversion of the test The efficiency is 9.37%.
实施例10Example 10
与实施例2不同的是退火时间为12min,所制备的钙钛矿薄膜晶粒尺寸为400nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.20%,在80天后,测试的光电转换效率为10.91%。The difference from Example 2 is that the annealing time is 12min, the grain size of the prepared perovskite film is 400nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.20%. After 80 days, the photoelectric conversion of the test The efficiency is 10.91%.
实施例11Example 11
与实施例2不同的是退火时间为18min,所制备的钙钛矿薄膜晶粒尺寸为450nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.82%,在80天后,测试的光电转换效率为11.21%。The difference from Example 2 is that the annealing time is 18min, the grain size of the prepared perovskite film is 450nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.82%. After 80 days, the photoelectric conversion of the test The efficiency is 11.21%.
实施例12Example 12
与实施例2不同的是退火时间为20min,所制备的钙钛矿薄膜晶粒尺寸为450nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.49%,在80天后,测试的光电转换效率为10.85%。The difference from Example 2 is that the annealing time is 20min, the grain size of the prepared perovskite film is 450nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.49%. After 80 days, the photoelectric conversion of the test The efficiency is 10.85%.
实施例13Example 13
与实施例2不同的是DMF:DMSO=7:1,所制备的钙钛矿薄膜晶粒尺寸为300nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.47%,在80天后,测试的光电转换效率为9.75%。The difference from Example 2 is DMF:DMSO=7:1, the prepared perovskite film grain size is 300nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 10.47%. After 80 days, the test The photoelectric conversion efficiency is 9.75%.
实施例14Example 14
与实施例2不同的是DMF:DMSO=8:1,所制备的钙钛矿薄膜晶粒尺寸为400nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.83%,在80天后,测试的光电转换效率为10.25%。The difference from Example 2 is that DMF:DMSO=8:1, the prepared perovskite film grain size is 400nm, and the light conversion efficiency of organic-inorganic hybrid perovskite solar cell is 10.83%. After 80 days, the test The photoelectric conversion efficiency is 10.25%.
实施例15Example 15
与实施例2不同的是DMF:DMSO=9.5:1,所制备的钙钛矿薄膜晶粒尺寸为500nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.53%,在80天后,测试的光电转换效率为11.05%。The difference from Example 2 is that DMF:DMSO=9.5:1, the prepared perovskite film grain size is 500nm, and the light conversion efficiency of organic-inorganic hybrid perovskite solar cell is 11.53%. After 80 days, the test The photoelectric conversion efficiency is 11.05%.
对比例1Comparative example 1
(1)在透明导电电极上沉积TiO2致密层:将1g钛酸四异丙酯加入到1g乙酰丙酮和3g乙醇溶液中配制TiO2前驱体,在450℃条件下,通过喷雾热解法沉积50nm厚的TiO2致密层。(1) Deposit a dense layer of TiO2 on the transparent conductive electrode: add 1g of tetraisopropyl titanate to 1g of acetylacetone and 3g of ethanol to prepare a TiO2 precursor, and deposit it by spray pyrolysis at 450 °C 50 nm thick TiO2 dense layer.
(2)配制混合阳离子有机无机杂化钙钛矿溶液:将摩尔比FAI:PbI2:MAI=0.85:1:0.15混合物加入到DMSO和DMF的混合溶液中,DMF和DMSO的质量比为9:1,所得混合阳离子有机无机杂化钙钛矿溶液浓度为0.3mol/L。(2) Prepare mixed cation organic-inorganic hybrid perovskite solution: add the molar ratio FAI:PbI 2 :MAI=0.85:1:0.15 mixture to the mixed solution of DMSO and DMF, the mass ratio of DMF and DMSO is 9: 1. The concentration of the obtained mixed cation organic-inorganic hybrid perovskite solution is 0.3mol/L.
(3)在TiO2致密层上沉积钙钛矿薄膜:在大气环境下,通过热基底喷涂法制备钙钛矿薄膜,其中载气为N2,喷枪气压为3个大气压,热基底温度为130℃,控制喷涂时间,膜层厚度为200nm,然后在100℃退火15min。(3) Deposition of perovskite film on TiO 2 dense layer: In atmospheric environment, the perovskite film was prepared by hot substrate spraying method, in which the carrier gas was N 2 , the spray gun pressure was 3 atmospheres, and the temperature of the hot substrate was 130 ℃, control the spraying time, the film thickness is 200nm, and then anneal at 100℃ for 15min.
(4)将空穴传输层材料(Spiro-OMeTAD)在4000rpm转速下旋涂成膜,其中空穴传输层配制方法为:72.3mg Spiro-OMeTAD加入1ml氯苯中,搅拌至澄清,然后再加入28.8ul的TBP和17.5ul的Li-TFSI溶液搅拌1min。(4) The hole transport layer material (Spiro-OMeTAD) was spin-coated at 4000rpm to form a film. The preparation method of the hole transport layer was: 72.3mg Spiro-OMeTAD was added to 1ml chlorobenzene, stirred until clear, and then added 28.8ul of TBP and 17.5ul of Li-TFSI solution were stirred for 1min.
(5)最后采用热蒸发蒸镀50nm金电极。(5) Finally, a 50nm gold electrode is deposited by thermal evaporation.
所制备的钙钛矿薄膜晶粒尺寸为400nm,有机-无机杂化钙钛矿太阳能电池光转换效率为11.28%,在80天后,测试的光电转换效率为7.36%。The grain size of the prepared perovskite film is 400nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 11.28%. After 80 days, the tested photoelectric conversion efficiency is 7.36%.
对比例2Comparative example 2
(1)在透明导电电极上沉积TiO2致密层:将1g钛酸四异丙酯加入到1g乙酰丙酮和3g乙醇溶液中配制TiO2前驱体,在450℃条件下,通过喷雾热解法沉积50nm厚的TiO2致密层。(1) Deposit a dense layer of TiO2 on the transparent conductive electrode: add 1g of tetraisopropyl titanate to 1g of acetylacetone and 3g of ethanol to prepare a TiO2 precursor, and deposit it by spray pyrolysis at 450 °C 50 nm thick TiO2 dense layer.
(2)配制混合阳离子有机无机杂化钙钛矿溶液:将摩尔比FAI:PbI2:MABr:PbBr2=0.85:0.85:0.15:0.15混合物加入到DMSO和DMF的混合溶液中,DMF和DMSO的质量比为9:1,所得混合阳离子有机无机杂化钙钛矿溶液浓度为0.3mol/L。(2) Preparation of mixed cation organic-inorganic hybrid perovskite solution: the molar ratio FAI:PbI 2 :MABr:PbBr 2 =0.85:0.85:0.15:0.15 mixture is added to the mixed solution of DMSO and DMF, the mixture of DMF and DMSO The mass ratio is 9:1, and the concentration of the obtained mixed cation organic-inorganic hybrid perovskite solution is 0.3 mol/L.
(3)在TiO2致密层上沉积钙钛矿薄膜:在手套箱中,通过旋涂法制备钙钛矿薄膜,旋涂转速为4000r/min,旋涂钙钛矿溶液量为40ul,旋涂时间30s,在旋涂过程中滴加乙醚去除溶剂,然后在100℃退火15min。(3) Deposit perovskite film on TiO 2 dense layer: in glove box, prepare perovskite film by spin coating method, spin coating speed is 4000r/min, spin coating perovskite solution volume is 40ul, spin coating The time is 30s, diethyl ether is added dropwise to remove the solvent during spin coating, and then annealed at 100°C for 15min.
(4)将空穴传输层材料(Spiro-OMeTAD)在4000rpm转速下旋涂成膜,其中空穴传输层配制方法为:72.3mg Spiro-OMeTAD加入1ml氯苯中,搅拌至澄清,然后再加入28.8ul的TBP和17.5ul的Li-TFSI溶液搅拌1min。(4) The hole transport layer material (Spiro-OMeTAD) was spin-coated at 4000rpm to form a film. The preparation method of the hole transport layer was: 72.3mg Spiro-OMeTAD was added to 1ml chlorobenzene, stirred until clear, and then added 28.8ul of TBP and 17.5ul of Li-TFSI solution were stirred for 1min.
(5)最后采用热蒸发蒸镀50nm金电极。(5) Finally, a 50nm gold electrode is deposited by thermal evaporation.
所制备的钙钛矿薄膜晶粒尺寸为300nm,有机-无机杂化钙钛矿太阳能电池光转换效率为10.42%,在80天后,测试的光电转换效率为6.26%。The grain size of the prepared perovskite film is 300nm, and the light conversion efficiency of the organic-inorganic hybrid perovskite solar cell is 10.42%. After 80 days, the tested photoelectric conversion efficiency is 6.26%.
表1实施例2太阳电池性能参数Table 1 Example 2 solar cell performance parameters
注:Voc为开路电压,Jsc为短路电流,FF为填充因子,PCE为电池光电转换效率。Note: V oc is the open circuit voltage, J sc is the short circuit current, FF is the fill factor, and PCE is the photoelectric conversion efficiency of the battery.
表2各实施例钙钛矿太阳能电池效率统计Table 2 Statistics of perovskite solar cell efficiency in each embodiment
表3对比例1钙钛矿太阳能电池效率Table 3 comparative example 1 perovskite solar cell efficiency
表4对比例2钙钛矿太阳能电池效率Table 4 comparative example 2 perovskite solar cell efficiency
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。According to the disclosure and teaching of the above specification, those skilled in the art to which the present invention pertains can also make appropriate changes and modifications to the above embodiment. Therefore, the present invention is not limited to the specific embodiments disclosed and described above, and some modifications and changes to the present invention should also fall within the protection scope of the claims of the present invention. In addition, although some specific terms are used in this specification, these terms are only for convenience of description and do not constitute any limitation to the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710493641.9A CN107464882A (en) | 2017-06-26 | 2017-06-26 | A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710493641.9A CN107464882A (en) | 2017-06-26 | 2017-06-26 | A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107464882A true CN107464882A (en) | 2017-12-12 |
Family
ID=60546388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710493641.9A Pending CN107464882A (en) | 2017-06-26 | 2017-06-26 | A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107464882A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108305945A (en) * | 2018-01-15 | 2018-07-20 | 南京信息工程大学 | A kind of perovskite precursor solution and the preparation method and application thereof |
CN108365102A (en) * | 2018-02-22 | 2018-08-03 | 南京工业大学 | Stable and efficient two-dimensional layered perovskite solar cell and preparation method thereof |
CN108615815A (en) * | 2018-04-08 | 2018-10-02 | 华中科技大学鄂州工业技术研究院 | NiO bases compacted zone, perovskite solar cell and preparation method thereof |
CN109326721A (en) * | 2018-10-12 | 2019-02-12 | 河南理工大学 | A kind of high stability perovskite solar cell and liquid phase preparation method thereof |
CN109830606A (en) * | 2019-02-28 | 2019-05-31 | 西交利物浦大学 | The preparation method and application of caesium adulterated with Ca and Ti ore light-absorption layer |
CN110504370A (en) * | 2019-07-08 | 2019-11-26 | 浙江浙能技术研究院有限公司 | A method for preparing cesium-doped hybrid perovskite solar cells in an air environment |
CN111063805A (en) * | 2019-11-11 | 2020-04-24 | 上海大学 | A kind of organic-inorganic perovskite solar cell and preparation and recovery method |
CN111261783A (en) * | 2020-03-31 | 2020-06-09 | 齐鲁工业大学 | A novel electron transport layer perovskite solar cell and preparation method thereof |
CN111584717A (en) * | 2020-05-15 | 2020-08-25 | 浙江大学 | A method for improving the efficiency of organic-inorganic hybrid perovskite solar cells with external field-assisted photothermal combination |
CN113285029A (en) * | 2021-04-23 | 2021-08-20 | 北方民族大学 | Organic-inorganic hybrid perovskite solar cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104051629A (en) * | 2014-06-28 | 2014-09-17 | 福州大学 | A method for preparing perovskite solar cells based on a spraying process |
CN104300083A (en) * | 2014-09-29 | 2015-01-21 | 中国科学院广州能源研究所 | Method for preparing organic-inorganic perovskite structure heterocomplex thin film solar cell |
WO2017026766A1 (en) * | 2015-08-07 | 2017-02-16 | 성균관대학교산학협력단 | Perovskite having improved moisture stability and photostability, and solar cell using same |
-
2017
- 2017-06-26 CN CN201710493641.9A patent/CN107464882A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104051629A (en) * | 2014-06-28 | 2014-09-17 | 福州大学 | A method for preparing perovskite solar cells based on a spraying process |
CN104300083A (en) * | 2014-09-29 | 2015-01-21 | 中国科学院广州能源研究所 | Method for preparing organic-inorganic perovskite structure heterocomplex thin film solar cell |
WO2017026766A1 (en) * | 2015-08-07 | 2017-02-16 | 성균관대학교산학협력단 | Perovskite having improved moisture stability and photostability, and solar cell using same |
Non-Patent Citations (1)
Title |
---|
ZHUONENG BI, ET AL.: "Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108305945B (en) * | 2018-01-15 | 2021-08-10 | 南京信息工程大学 | Perovskite precursor solution and preparation method and application thereof |
CN108305945A (en) * | 2018-01-15 | 2018-07-20 | 南京信息工程大学 | A kind of perovskite precursor solution and the preparation method and application thereof |
CN108365102A (en) * | 2018-02-22 | 2018-08-03 | 南京工业大学 | Stable and efficient two-dimensional layered perovskite solar cell and preparation method thereof |
CN108615815A (en) * | 2018-04-08 | 2018-10-02 | 华中科技大学鄂州工业技术研究院 | NiO bases compacted zone, perovskite solar cell and preparation method thereof |
CN109326721A (en) * | 2018-10-12 | 2019-02-12 | 河南理工大学 | A kind of high stability perovskite solar cell and liquid phase preparation method thereof |
CN109326721B (en) * | 2018-10-12 | 2024-03-22 | 河南理工大学 | Perovskite solar cell with high stability and liquid phase preparation method thereof |
CN109830606A (en) * | 2019-02-28 | 2019-05-31 | 西交利物浦大学 | The preparation method and application of caesium adulterated with Ca and Ti ore light-absorption layer |
CN110504370A (en) * | 2019-07-08 | 2019-11-26 | 浙江浙能技术研究院有限公司 | A method for preparing cesium-doped hybrid perovskite solar cells in an air environment |
CN111063805A (en) * | 2019-11-11 | 2020-04-24 | 上海大学 | A kind of organic-inorganic perovskite solar cell and preparation and recovery method |
CN111063805B (en) * | 2019-11-11 | 2021-06-22 | 上海大学 | An organic-inorganic perovskite solar cell and its preparation and recovery method |
CN111261783B (en) * | 2020-03-31 | 2023-04-07 | 齐鲁工业大学 | Novel electron transport layer perovskite solar cell and preparation method thereof |
CN111261783A (en) * | 2020-03-31 | 2020-06-09 | 齐鲁工业大学 | A novel electron transport layer perovskite solar cell and preparation method thereof |
CN111584717A (en) * | 2020-05-15 | 2020-08-25 | 浙江大学 | A method for improving the efficiency of organic-inorganic hybrid perovskite solar cells with external field-assisted photothermal combination |
CN111584717B (en) * | 2020-05-15 | 2022-05-10 | 浙江大学 | Method for improving efficiency of hybrid perovskite solar cell by aid of photo-thermal combined external field |
CN113285029A (en) * | 2021-04-23 | 2021-08-20 | 北方民族大学 | Organic-inorganic hybrid perovskite solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107464882A (en) | A kind of organic inorganic hybridization perovskite solar cell and preparation method thereof | |
CN104134711B (en) | A kind of preparation method of perovskite solar cell | |
WO2016026294A1 (en) | Perovskite film photovoltaic cell based on sno2 and preparation method therefor | |
CN109904318B (en) | A kind of perovskite thin film preparation method and solar cell based on inverse solution bath | |
CN108269918B (en) | Porous perovskite films, carbon pastes and carbon electrode-based solar cells | |
CN103794729B (en) | The preparation method of large area polymer solar battery and its active layer | |
CN108057590B (en) | Spraying liquid, perovskite layer, preparation method of perovskite layer and perovskite battery | |
CN104300083A (en) | Method for preparing organic-inorganic perovskite structure heterocomplex thin film solar cell | |
CN108417722A (en) | A kind of preparation method of perovskite solar cell based on ionic liquid additive | |
CN108389969B (en) | A green solvent system and mixed solution for the preparation of perovskite layers in perovskite solar cells | |
CN107620052A (en) | The chemical gas-phase deposition process for preparing and the photovoltaic device based on it of a kind of carbonamidine caesium lead iodine perovskite thin film | |
CN110534653A (en) | Perovskite thin film and its preparation method and application | |
CN111525038A (en) | A kind of perovskite solar cell doped with multifunctional additive and preparation method thereof | |
Kaleli et al. | The production route of the MASnBr3 based perovskite solar cells with fully ultrasonic spray pyrolysis method | |
CN108767120A (en) | A kind of method and solar cell preparing perovskite thin film using carbon quantum dot | |
CN111969113A (en) | Method for regulating morphology of perovskite film and application thereof | |
CN114883493A (en) | Solar cell based on three-dimensional/two-dimensional perovskite and preparation method thereof | |
CN114883496A (en) | Double-interface-processed efficient perovskite solar cell structure and preparation method thereof | |
CN107742673B (en) | Electron transport layer and preparation method thereof, perovskite battery and preparation method thereof | |
CN113937219A (en) | A method for preparing Dion-Jacobson type quasi-two-dimensional perovskite thin films based on ternary solvent | |
CN108365105A (en) | A kind of perovskite solar cell and preparation method thereof | |
CN107799655A (en) | Perovskite thin film, solar cell device and preparation method | |
CN108172687B (en) | A Fabrication Process of Organic Solar Cells Based on Inverted Thermal Annealing | |
CN114751908B (en) | Two-dimensional perovskite material, preparation method thereof and solar cell | |
CN112490368A (en) | Electrode and battery with optimized charge collection capacity and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171212 |
|
RJ01 | Rejection of invention patent application after publication |