CN107426748B - A method for multi-sensor performance estimation in wireless network control system - Google Patents
A method for multi-sensor performance estimation in wireless network control system Download PDFInfo
- Publication number
- CN107426748B CN107426748B CN201710256853.5A CN201710256853A CN107426748B CN 107426748 B CN107426748 B CN 107426748B CN 201710256853 A CN201710256853 A CN 201710256853A CN 107426748 B CN107426748 B CN 107426748B
- Authority
- CN
- China
- Prior art keywords
- channel
- sensor
- network control
- wireless network
- sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000011159 matrix material Substances 0.000 claims abstract description 44
- 230000005540 biological transmission Effects 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004540 process dynamic Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3913—Predictive models, e.g. based on neural network models
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/021—Estimation of channel covariance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及网络控制技术领域,特别是涉及一种无线网络控制系统中多传感器估计性能方法。The invention relates to the technical field of network control, in particular to a multi-sensor performance estimation method in a wireless network control system.
背景技术Background technique
随着现代通信科学技术的发展,无线网络化控制系统(WirelessNCSs,WNCSs)正在逐渐替代传统的有线网络化控制系统,相比于有线网络而言,无线网络通过无线介质传输数据,从而省去了复杂的安装布线过程,也使得今后系统的维护和升级更加方便,有效的节省了使用成本。因为WNCSs中存在可以在网络里面移动的节点,而且系统的通讯范围只受到节点的数量以及发射和接收的功率的影响,并不会受到布线的控制,所以这增加了系统的可移动性和拓展性。更重要的是在一些人们不能到达的场所或者是环境非常恶劣的地方,WNCSs依然能够很好地进行工作。With the development of modern communication science and technology, wireless networked control systems (WirelessNCSs, WNCSs) are gradually replacing traditional wired networked control systems. Compared with wired networks, wireless networks transmit data through wireless media, thus eliminating the need for The complex installation and wiring process also makes the maintenance and upgrade of the system more convenient in the future, effectively saving the cost of use. Because there are nodes in WNCSs that can move in the network, and the communication range of the system is only affected by the number of nodes and the power transmitted and received, and is not controlled by wiring, this increases the mobility and expansion of the system. sex. More importantly, WNCSs can still work well in places that people can't reach or in very harsh environments.
虽然无线网络化控制系统有很多优点,但是目前该系统在实际使用中仍然面临着诸多挑战。一方面,WNCSs中存在如数据包传输时延、数据包丢失、时钟同步和数据包时序错乱等网络化控制系统(NetworkedControlSystems,NCSs)中尚待解决的问题。另一方面,WNCSs中存在无线信道的衰落性和易受干扰,无线节点(如无线传感器)的节能需求,通信信道、带宽和频谱资源受限等问题,这些都成为WNCSs研究和应用的障碍。另外对于无线信道的丢包问题,已有的研究主要集中于单传感器估计问题,这种估计模式难以获得全面、稳定的信息而且传输距离有限,无法满足不断提高的控制系统的性能要求。Although the wireless networked control system has many advantages, it still faces many challenges in practical use. On the one hand, there are still unsolved problems in Networked Control Systems (NCSs) such as packet transmission delay, packet loss, clock synchronization and packet timing disorder in WNCSs. On the other hand, the fading and susceptibility to interference of wireless channels in WNCSs, the energy-saving requirements of wireless nodes (such as wireless sensors), and the limited communication channels, bandwidth, and spectrum resources have all become obstacles to the research and application of WNCSs. In addition, for the packet loss problem of wireless channels, the existing research mainly focuses on the single sensor estimation problem. This estimation mode is difficult to obtain comprehensive and stable information and the transmission distance is limited, which cannot meet the performance requirements of the continuously improving control system.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术中的不足,提供一种无线网络控制系统中多传感器估计性能方法,本发明方法考虑了无线网络控制系统中多传感器信道切换问题,可以保证在多信道传输系统中有效的调度传感器以降低估计误差的目的,完成无线网络控制系统中多传感器估计性能的优化。Aiming at the deficiencies in the prior art, the present invention provides a multi-sensor performance estimation method in a wireless network control system. The method of the present invention considers the multi-sensor channel switching problem in the wireless network control system, and can ensure effective performance in a multi-channel transmission system. The purpose of scheduling sensors to reduce estimation error is to complete the optimization of multi-sensor estimation performance in wireless network control systems.
为了解决上述技术问题,本发明通过下述技术方案得以解决。In order to solve the above technical problems, the present invention is solved by the following technical solutions.
一种无线网络控制系统中多传感器估计性能方法,包括如下步骤:A multi-sensor performance estimation method in a wireless network control system, comprising the following steps:
(1)获取无线网络控制系统传感器参数,建立过程的动态特性和传感器测量方程:(1) Obtain the sensor parameters of the wireless network control system, and establish the dynamic characteristics of the process and the sensor measurement equation:
其中,A∈Rn*n表示系统矩阵,C∈Rm*n表示行满秩的观测矩阵,xk∈Rn和yk∈Rm是实数向量,分别表示传感器的状态和量测,wk∈Rn和vk∈Rm是零均值的高斯过程,Q是wk的协方差矩阵,R是vk的协方差矩阵,满足Q>0和R>0,m,n是正整数,k表示时刻,(A,C)是可检测的,是稳定的;Among them, A∈R n*n denotes the system matrix, C∈R m*n denotes the observation matrix with full row rank, x k ∈ R n and y k ∈ R m are real vectors, representing the state and measurement of the sensor, respectively, w k ∈ R n and v k ∈ R m are Gaussian processes with zero mean, Q is the covariance matrix of w k , R is the covariance matrix of v k , satisfies Q>0 and R>0, m, n are positive integers , k represents the moment, (A, C) is detectable, is stable;
(2)连接多个传感器,在每两个传感器之间设置两条信道,同时设置每条信道的参数;利用其中一条连通的信道进行数据传输,如果这条信道开始丢包,则对信道进行切换;设置循环次数,初始化x0,P0,利用卡尔曼滤波算法,分别计算单信道和多信道中心处传感器的估计值与估计误差协方差矩阵,计算方程为:(2) Connect multiple sensors, set two channels between each two sensors, and set the parameters of each channel at the same time; use one of the connected channels for data transmission, if the channel starts to lose packets, then the channel Switch; set the number of cycles, initialize x 0 , P 0 , and use the Kalman filter algorithm to calculate the estimated value and estimated error covariance matrix of the sensor at the center of the single-channel and multi-channel respectively. The calculation equation is:
其中为中心处传感器的估计值,Pκ|κ为估计误差协方差矩阵,计算得出Pk|k的极限值,直到循环完成;in is the estimated value of the sensor at the center, P κ|κ is the estimated error covariance matrix, and the limit value of P k|k is calculated until the cycle is completed;
(3)对两个传感器之间通过两个信道传输性能比较,根据步骤(2)对信道完成循环中的估计值和估计误差协方差矩阵数据情况,生成多个信道的比较绘图。(3) Compare the transmission performance between the two sensors through the two channels, and generate a comparison drawing of multiple channels according to the estimated value and the estimated error covariance matrix data in the channel completion cycle in step (2).
作为优选,步骤(1)中,系统的初始状态x0是均值为0和协方差矩阵为P0>0的高斯随机向量,wk,vk和x0是相互独立的。Preferably, in step (1), the initial state x 0 of the system is a Gaussian random vector with a mean value of 0 and a covariance matrix of P 0 >0, and w k , v k and x 0 are independent of each other.
本发明由于采用了以上技术方案,具有显著的技术效果:The present invention has significant technical effects due to the adoption of the above technical solutions:
本发明方法首先建立过程的动态特性和传感器测量方程,获得系统参数;接着计算出临界收包概率,即收包率比临界值小的情况下误差会随着时刻推移而发散;然后分别迭代地求解单信道和多信道中心处传感器的估计值与估计误差协方差矩阵;最后根据计算得到的估计值和估计误差,确定多信道切换传输优于单信道传输并且给出切换方法,完成无线网络控制系统中多传感器估计性能的优化。本发明利用卡尔曼滤波算法设计无线网络控制系统中多传感器估计性能方法,能够保证在多信道传输系统中有效的调度传感器以降低估计误差。The method of the invention first establishes the dynamic characteristics of the process and the sensor measurement equation, and obtains the system parameters; then calculates the critical packet acceptance probability, that is, the error will diverge with the passage of time when the packet acceptance rate is smaller than the critical value; and then iteratively Solve the estimated value and estimated error covariance matrix of the sensor at the center of single-channel and multi-channel; finally, according to the calculated estimated value and estimated error, it is determined that multi-channel handover transmission is better than single-channel transmission, and the handover method is given to complete wireless network control Optimization of multi-sensor estimation performance in the system. The present invention utilizes the Kalman filter algorithm to design a multi-sensor performance estimation method in a wireless network control system, and can ensure effective scheduling of sensors in a multi-channel transmission system to reduce estimation errors.
附图说明Description of drawings
图1是本发明一种无线网络控制系统中多传感器估计性能方法中模型结构示意图;1 is a schematic diagram of a model structure in a multi-sensor performance estimation method in a wireless network control system of the present invention;
图2是本发明一种无线网络控制系统中多传感器估计性能方法中工作流程示意图;2 is a schematic diagram of a workflow in a method for estimating performance of multiple sensors in a wireless network control system according to the present invention;
图3是本发明一种无线网络控制系统中多传感器估计性能方法中单信道的真实值与估计值比较图;3 is a comparison diagram of the real value and the estimated value of a single channel in a multi-sensor performance estimation method in a wireless network control system of the present invention;
图4是本发明一种无线网络控制系统中多传感器估计性能方法中单信道传感器1与传感器2估计误差比较图;FIG. 4 is a comparison diagram of estimation errors of single-
图5是本发明一种无线网络控制系统中多传感器估计性能方法中估计性能方法中单信道传感器2平均估计误差图;5 is a graph of the average estimation error of the single-
图6是本发明一种无线网络控制系统中多传感器估计性能方法中双信道的真实值与估计值比较图;6 is a comparison diagram of the real value and the estimated value of dual channels in a multi-sensor performance estimation method in a wireless network control system of the present invention;
图7是本发明一种无线网络控制系统中多传感器估计性能方法中双信道传感器1与传感器2估计误差比较图;7 is a comparison diagram of the estimation errors of dual-
图8是本发明一种无线网络控制系统中多传感器估计性能方法中双信道传感器2平均估计误差图。FIG. 8 is a graph of the average estimation error of dual-
具体实施方式Detailed ways
下面结合附图与实施例对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
如图1至图8所示,一种无线网络控制系统中多传感器估计性能方法,包括如下步骤:As shown in Figures 1 to 8, a method for estimating performance of multiple sensors in a wireless network control system includes the following steps:
(1)获取无线网络控制系统传感器参数,建立过程的动态特性和传感器测量方程:(1) Obtain the sensor parameters of the wireless network control system, and establish the dynamic characteristics of the process and the sensor measurement equation:
其中,A∈Rn*n表示系统矩阵,C∈Rm*n表示行满秩的观测矩阵,xk∈Rn和yk∈Rm是实数向量,分别表示传感器的状态和量测,wk∈Rn和vk∈Rm是零均值的高斯过程,Q是wk的协方差矩阵,R是υk的协方差矩阵,满足Q>O和R>0;系统的初始状态x0是均值为0和协方差矩阵为P0>0的高斯随机向量,wk,vk和x0是相互独立的,m,n是正整数,k表示时刻,(A,C)是可检测的,是稳定的;Among them, A∈R n*n denotes the system matrix, C∈R m*n denotes the observation matrix with full row rank, x k ∈ R n and y k ∈ R m are real vectors, representing the state and measurement of the sensor, respectively, w k ∈ R n and v k ∈ R m are Gaussian processes with zero mean, Q is the covariance matrix of w k , R is the covariance matrix of υ k , satisfies Q>O and R>0; the initial state of the system x 0 is a Gaussian random vector with mean 0 and covariance matrix P 0 > 0, w k , v k and x 0 are independent of each other, m, n are positive integers, k represents time, (A, C) is detectable of, is stable;
(2)连接多个传感器,在每两个传感器之间设置两条信道,同时设置每条信道的参数;利用其中一条连通的信道进行数据传输,如果这条信道开始丢包,则对信道进行切换;设置循环次数,初始化x0,P0,利用卡尔曼滤波算法,分别计算单信道和多信道中心处传感器的估计值与估计误差协方差矩阵,计算方程为:(2) Connect multiple sensors, set two channels between each two sensors, and set the parameters of each channel at the same time; use one of the connected channels for data transmission, if the channel starts to lose packets, then the channel Switch; set the number of cycles, initialize x 0 , P 0 , and use the Kalman filter algorithm to calculate the estimated value and estimated error covariance matrix of the sensor at the center of the single-channel and multi-channel respectively. The calculation equation is:
其中为中心处传感器的估计值,Pk|k为估计误差协方差矩阵,计算得出Pk|k的极限值,直到循环完成;in is the estimated value of the sensor at the center, P k|k is the estimated error covariance matrix, and the limit value of P k|k is calculated until the cycle is completed;
(3)对两个传感器之间通过两个信道传输性能比较,根据步骤(2)对信道完成循环中的估计值和估计误差协方差矩阵数据情况,生成多个信道的比较绘图。(3) Compare the transmission performance between the two sensors through the two channels, and generate a comparison drawing of multiple channels according to the estimated value and the estimated error covariance matrix data in the channel completion cycle in step (2).
对于单信道无线网络控制系统中的多传感器,由于信道衰减或拥塞,数据包在信道的传播过程中可能存在丢失现象。类似的,γk表示估计器是否收到量测yk,估计器也知道γk的信息,不考虑延时等其他不确定因素,根据卡尔曼滤波器的最优性,得到:For multi-sensors in a single-channel wireless network control system, data packets may be lost during channel propagation due to channel attenuation or congestion. Similarly, γ k indicates whether the estimator has received the measurement y k , and the estimator also knows the information of γ k , regardless of other uncertain factors such as delay, according to the optimality of the Kalman filter, we get:
其中,卡尔曼增益Kk=Pk|k-1C′(CPk|k-1C′+R)-1,并且,卡尔曼滤波在时间上的更新也是最优的,即Pk+1|k=APk|kA′+Q和P0|-1=P0。Among them, K k =P k|k-1 C′(CP k|k-1 C′+R) −1 , and the time update of Kalman filter is also optimal, that is, P k+1|k =AP k|k A′+Q sum P 0|-1 =P 0 .
由于网络的随机数据丢包,估计误差的协方差矩阵也是随机的,这跟标准卡尔曼滤波器不一样,其估计误差协方差矩阵是确定性的。令Pk=Pk|k-1,则Pk的更新方程为:Due to the random data packet loss in the network, the covariance matrix of the estimated error is also random, which is different from the standard Kalman filter, and its estimated error covariance matrix is deterministic. Let P k =P k|k-1 , then the update equation of P k is:
Pk+1=APkA′+Q-γkAPkC′(CPkC′+R)-1CPkA′P k+1 =AP k A'+Q-γ k AP k C'(CP k C'+R) -1 CP k A'
现从系统中输出一个值,到达传感器1后在到达传感器2,其中有丢包率及时延的存在,假设从第9时刻起,第9时刻传感器1收到信号并成功传输到2,第10时刻传输不成功,11时刻不成功,12时刻成功,可以得到以下关系,即,Now output a value from the system. After reaching
从图中可得,传感器1、2之间成功时,传感器2获得的值为1输出值乘系统系数A,成功概率为如果不成功,则由上一时刻传感器2已获得的值进行计算。可以得到,在单信道无线网络控制系统中多传感器的估计误差协方差很大概率上将以指数型增长。As can be seen from the figure, when
图1表示双信道无线网络控制系统的模型图。FIG. 1 shows a model diagram of a dual-channel wireless network control system.
图2给出了无线网络控制系统中多传感器估计性能方法的流程图。具体地,可以描述如下:Figure 2 presents the flow chart of the method for multi-sensor performance estimation in the wireless network control system. Specifically, it can be described as follows:
一种无线网络控制系统中多传感器估计性能方法,该方法包括如下步骤:A multi-sensor performance estimation method in a wireless network control system, the method comprising the following steps:
步骤1:建立过程的动态特性和传感器测量方程:Step 1: Establish process dynamics and sensor measurement equations:
其中,A∈Rn*n表示系统矩阵,C∈Rm*n表示观测矩阵,xk∈Rn和yk∈Rm分别表示系统的状态和量测,wk∈Rn和vk∈Rm是零均值的高斯过程,其协方差矩阵分别为Q>0和R>0,要求可控,(A,C)可观,量测矩阵C是行满秩的,即rank(C)=m≤n,系统的初始状态x0是均值为0和协方差矩阵为P0>0的高斯随机向量,进一步,wk,vk和x0是相互独立的。where A∈R n*n denotes the system matrix, C∈R m*n denotes the observation matrix, x k ∈ R n and y k ∈ R m denote the state and measurement of the system, respectively, w k ∈ R n and v k ∈R m is a Gaussian process with zero mean, and its covariance matrices are Q>0 and R>0, respectively. Controllable, (A, C) is observable, the measurement matrix C is full rank, that is, rank(C)=m≤n, the initial state x 0 of the system is the mean value of 0 and the covariance matrix of P 0 >0 Gaussian random vector, further, w k , v k and x 0 are independent of each other.
步骤2:系统的量测yk经不可靠的通信信道传输到远程估计器,由于信道衰减或拥塞,数据包在信道的传播过程中可能存在丢失现象。直观上,丢包概率越大,信息损失越严重,则估计误差协方差矩阵Pk|k-1发散的可能性就越大。对于独立同分布的丢包过程,现存在一个临界收包概率critical使得只要收包概率大于该值,估计误差协方差矩阵即可达到平均有界性。Step 2: The measurement y k of the system is transmitted to the remote estimator through an unreliable communication channel. Due to channel attenuation or congestion, data packets may be lost during channel propagation. Intuitively, the greater the probability of packet loss and the more serious the loss of information, the greater the possibility of divergence of the estimated error covariance matrix P k|k-1 . For the independent and identically distributed packet loss process, there is a critical probability of receiving packets critical so that as long as the probability of receiving packets is greater than this value, the estimated error covariance matrix can achieve average boundedness.
先求出矩阵A的特征值:First find the eigenvalues of matrix A:
eigvalues=eig(A)eigvalues=eig(A)
然后再计算出矩阵A的谱半径:Then calculate the spectral radius of matrix A:
spectrumofA=max(abs(eigvalues))spectrumofA=max(abs(eigvalues))
最后得到临界收包概率:Finally, the critical acceptance probability is obtained:
步骤3:利用卡尔曼滤波算法,分别计算单信道和多信道中心处传感器的估计值与估计误差协方差矩阵:Step 3: Using the Kalman filter algorithm, calculate the estimated value and estimated error covariance matrix of the sensor at the center of the single-channel and multi-channel respectively:
标准卡尔曼滤波方程:Standard Kalman filter equation:
由上式可以得到:It can be obtained from the above formula:
这样可以得出Pk|k的极限,它满足方程X=g(h(X))。对于单信道无线网络控制系统中的多传感器,由于信道衰减或拥塞,数据包在信道的传播过程中可能存在丢失现象,可以得到,在单信道无线网络控制系统中多传感器的估计误差协方差很大概率上将以指数型增长。This gives the limit of P k|k , which satisfies the equation X=g(h(X)). For multi-sensors in a single-channel wireless network control system, data packets may be lost during channel propagation due to channel attenuation or congestion. It can be obtained that the estimation error covariance of multi-sensors in a single-channel wireless network control system is very high. There is a high probability that it will grow exponentially.
步骤4:现在比较两个传感器之间通过两个信道传输性能比较:Step 4: Now compare the transmission performance comparison between the two sensors over the two channels:
假设信道1:Assuming channel 1:
假设信道2:Assuming channel 2:
之所以定义两个信道的转移概率即T1(1,1)>0.5,T1(2,2)>0.5,T2(1,1)>0.5,T2(2,2)>0.5是因为这样的信道叫做Gilbert-Elliott信道,这种信道一般来说存在的记忆性取决于状态之间的转移概率。马尔科夫提出一个系统某些因素转移过程中,第N次结果只取决于第N-1次的结果的影响,也就是只和当前状态相关与之前状态无关,因此当T1(1,1)>0.5,T1(2,2)>0.5的时候,下一个时刻的转移矩阵两个元素的收包率仍较高以此避免更容易产生误差。The reason why the transition probabilities of the two channels are defined, namely T 1 (1, 1)>0.5, T 1 (2, 2)>0.5, T 2 (1, 1)>0.5, T 2 (2, 2)>0.5 is that Because such channels are called Gilbert-Elliott channels, the memory that such channels generally exist depends on the transition probabilities between states. Markov proposed that in the process of transferring certain factors of a system, the Nth result only depends on the influence of the N-1th result, that is, it is only related to the current state and has nothing to do with the previous state, so when T 1 (1, 1 )>0.5, when T 1 (2, 2)>0.5, the packet acceptance rate of the two elements of the transition matrix at the next moment is still high to avoid errors.
以两个信道为例,假设传感器之间先通过信道1传输,成功n1次后失败转换为信道2传输,再成功n2次后失败换回信道1,之所以采用这样的调度方式是因为在第一个信道传输错误后系统开始产生误差,倘若继续由该信道传输则它的丢包率更大于收包率,容易使误差值开始以指数型增长,这时候换了一个信道系统重新开始传输则避免了这种误差的指数型增长。类似的,可以推广到多信道系统中。Taking two channels as an example, it is assumed that the sensors first transmit through
步骤5:根据计算得到估计值确定多信道切换传输优于单信道传输并给出信道切换方法,完成无线网络控制系统中多传感器估计性能的优化。Step 5: According to the estimated value obtained by calculation, it is determined that multi-channel switching transmission is better than single-channel transmission, and a channel switching method is given to complete the optimization of multi-sensor estimation performance in the wireless network control system.
进一步的,所述步骤4中所得到的信道切换方法能够保证在多信道传输系统中有效的调度传感器以降低估计误差。Further, the channel switching method obtained in the
下面通过具体实例对本发明的技术方案进行进一步阐述。实验中,采用单信道和双信道无线网络控制系统对比进行算法验证。具体地,使用下面的实验参数:The technical solutions of the present invention will be further elaborated below through specific examples. In the experiment, single-channel and dual-channel wireless network control systems are used to compare and verify the algorithm. Specifically, the following experimental parameters were used:
分别假设系统矩阵观测矩阵C=[3 2],系统协方差矩阵观测协方差矩阵R=0.6,设置循环次数为1000,取0~1之间的随机数作为估计值xk|k、估计误差协方差矩阵Pk|k和真实值xk的初始,定义初始观测值yk=0,真实值xk第二列为[1 0.4],设置信道参数 Assume the system matrix separately Observation matrix C=[3 2], system covariance matrix The observation covariance matrix R=0.6, the number of cycles is set to 1000, the random number between 0 and 1 is taken as the initial value of the estimated value x k|k , the estimated error covariance matrix P k|k and the real value x k , and the initial value is defined. The observed value y k =0, the second column of the true value x k is [1 0.4], and the channel parameters are set
对单信道和双信道无线网络控制系统进行卡尔曼滤波,对于单信道系统中输出一个值,到达传感器1后在到达传感器2,其中有丢包率及时延的存在,传感器1、2之间成功时,传感器2获得的值为1输出值乘系统系数A,成功概率为如果不成功,则由上一时刻传感器2已获得的值进行计算。可以得到,在单信道无线网络控制系统中多传感器的估计误差协方差将以指数型增长;对于双信道系统,假设传感器之间先通过信道1传输,成功n1次后失败转换为信道2传输,再成功n2次后失败换回信道1,之所以采用这样的调度方式是因为在第一个信道传输错误后系统开始产生误差,倘若继续由该信道传输则它的丢包率更大于收包率,容易使误差值开始以指数型增长,这时候换了一个信道系统重新开始传输则避免了这种误差的指数型增长。Kalman filtering is performed on single-channel and dual-channel wireless network control systems. For a single-channel system, a value is output, and after reaching
图3、4、5、6、7、8是通过Matlab系统对所设计方法的仿真验证结果图。Figures 3, 4, 5, 6, 7, and 8 are the results of simulation verification of the designed method through the Matlab system.
图3给出了在单信道系统中真实值、传感器1处估计值和传感器2处的估计值的比较关系图,图4给出了在单信道系统中传感器1处的估计误差和传感器2处的估计误差比较关系图,图5给出了在单信道系统中传感器2处的平均估计误差。从图中可以看出传感器2处的估计误差和平均估计误差相对较大。Figure 3 shows the comparison of the true value, the estimated value at
图6给出了在双信道系统中真实值、传感器1处估计值和传感器2处的估计值的比较关系图,图7给出了在双信道系统中传感器1处的估计误差和传感器2处的估计误差比较关系图,图8给出了在双信道系统中传感器2处的平均估计误差。从图中可以看出传感器2处的估计误差和平均估计误差相对较小。Figure 6 shows the comparison of the true value, the estimated value at
本发明方法首先建立过程的动态特性和传感器测量方程,获得系统参数;接着计算出临界收包概率,即收包率比临界值小的情况下误差会随着时刻推移而发散;然后分别迭代地求解单信道和多信道中心处传感器的估计值与估计误差协方差矩阵;最后根据计算得到的估计值和估计误差,确定多信道切换传输优于单信道传输并且给出切换方法,完成无线网络控制系统中多传感器估计性能的优化。本发明利用卡尔曼滤波算法设计无线网络控制系统中多传感器估计性能方法,能够保证在多信道传输系统中有效的调度传感器以降低估计误差。The method of the invention first establishes the dynamic characteristics of the process and the sensor measurement equation to obtain the system parameters; then calculates the critical packet acceptance probability, that is, the error will diverge with the passage of time when the packet acceptance rate is smaller than the critical value; and then iteratively Solve the estimated value and estimated error covariance matrix of the sensor at the center of single-channel and multi-channel; finally, according to the calculated estimated value and estimated error, it is determined that multi-channel switching transmission is better than single-channel transmission, and the switching method is given to complete the wireless network control Optimization of multi-sensor estimation performance in the system. The present invention utilizes the Kalman filter algorithm to design a multi-sensor performance estimation method in a wireless network control system, and can ensure effective scheduling of sensors in a multi-channel transmission system to reduce estimation errors.
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。In a word, the above are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the patent of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710256853.5A CN107426748B (en) | 2017-04-19 | 2017-04-19 | A method for multi-sensor performance estimation in wireless network control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710256853.5A CN107426748B (en) | 2017-04-19 | 2017-04-19 | A method for multi-sensor performance estimation in wireless network control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107426748A CN107426748A (en) | 2017-12-01 |
CN107426748B true CN107426748B (en) | 2020-08-07 |
Family
ID=60423699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710256853.5A Active CN107426748B (en) | 2017-04-19 | 2017-04-19 | A method for multi-sensor performance estimation in wireless network control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107426748B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110366232B (en) * | 2019-06-19 | 2022-02-11 | 东南大学 | Sensor transmission energy control method for remote state estimation |
CN115276917B (en) * | 2022-07-29 | 2023-06-20 | 东北大学 | A Remote State Estimation Transmission Control Method Using Historical Information |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102685780A (en) * | 2012-05-16 | 2012-09-19 | 姚国良 | Wireless sensor network channel access and bulk data transmission method |
CN103067965A (en) * | 2013-01-05 | 2013-04-24 | 无锡赛睿科技有限公司 | Wireless sensor network management method and system based on compressed sensing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8224255B2 (en) * | 2006-08-22 | 2012-07-17 | Embarq Holdings Company, Llc | System and method for managing radio frequency windows |
-
2017
- 2017-04-19 CN CN201710256853.5A patent/CN107426748B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102685780A (en) * | 2012-05-16 | 2012-09-19 | 姚国良 | Wireless sensor network channel access and bulk data transmission method |
CN103067965A (en) * | 2013-01-05 | 2013-04-24 | 无锡赛睿科技有限公司 | Wireless sensor network management method and system based on compressed sensing |
Also Published As
Publication number | Publication date |
---|---|
CN107426748A (en) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113537514B (en) | Digital twinning-based federal learning framework with high energy efficiency | |
JP5389801B2 (en) | Wireless communication system, communication terminal, management terminal, communication method, and integrated circuit | |
CN107071829B (en) | A data collection task-oriented media access control method for underwater acoustic network | |
CN104488336A (en) | Terminal synchronization method and apparatus for use in wireless communication network | |
WO2022206328A1 (en) | Communication collaboration method and apparatus | |
CN113723620A (en) | Terminal scheduling method and device in wireless federal learning | |
CN107426748B (en) | A method for multi-sensor performance estimation in wireless network control system | |
CN113194548A (en) | Intelligent super-surface-assisted large-scale passive random access method | |
CN103067940A (en) | Collaboration estimation method based on wireless sensor network | |
US20230337131A1 (en) | Method and apparatus for asynchronously allocating resources in mobile edge computing system | |
US9775171B2 (en) | System and method for speed frame exchange | |
CN104254084A (en) | Method for performing distributed channel detection and sequential access | |
CN104540203A (en) | Performance optimizing method for wireless body area network based on independent sets | |
CN116848828A (en) | Machine learning model distribution | |
CN105207959B (en) | A kind of channel estimation methods of MISO-OFDM system | |
WO2022001240A1 (en) | Detection method, device, and communication apparatus | |
Johansson et al. | On distributed optimization using peer-to-peer communications in wireless sensor networks | |
CN110971546B (en) | Channel tracking method for large-scale MIMO system | |
WO2016029686A1 (en) | Precoding method, apparatus and system | |
CN106604387B (en) | Wireless sensor time synchronization method based on game theory | |
CN103795597A (en) | ZigBee network control system and network-induced delay computing method thereof | |
CN116633462A (en) | Federal learning resource optimization design method based on statistical channel state information | |
CN107343314B (en) | Time synchronization method and device of wireless sensor network | |
CN114978268B (en) | De-cellular pilot length optimization method, device, electronic equipment and storage medium | |
CN113676954B (en) | Large-scale user task offloading method, device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |