CN107419333B - 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 - Google Patents
一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 Download PDFInfo
- Publication number
- CN107419333B CN107419333B CN201710551026.9A CN201710551026A CN107419333B CN 107419333 B CN107419333 B CN 107419333B CN 201710551026 A CN201710551026 A CN 201710551026A CN 107419333 B CN107419333 B CN 107419333B
- Authority
- CN
- China
- Prior art keywords
- thin films
- source
- organic metal
- stannum oxide
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010955 niobium Substances 0.000 title claims abstract description 121
- 239000010409 thin film Substances 0.000 title claims abstract description 60
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910052758 niobium Inorganic materials 0.000 title claims abstract description 38
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 239000010408 film Substances 0.000 claims abstract description 54
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 239000012159 carrier gas Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims abstract description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims abstract description 15
- 229910006404 SnO 2 Inorganic materials 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000019441 ethanol Nutrition 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims abstract description 4
- RWWNQEOPUOCKGR-UHFFFAOYSA-N tetraethyltin Chemical compound CC[Sn](CC)(CC)CC RWWNQEOPUOCKGR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000001590 oxidative effect Effects 0.000 claims abstract description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 41
- 239000013078 crystal Substances 0.000 claims description 21
- 229910001887 tin oxide Inorganic materials 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000035699 permeability Effects 0.000 claims description 7
- 125000002524 organometallic group Chemical group 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 27
- 229910052718 tin Inorganic materials 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000004549 pulsed laser deposition Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法。该方法包括采用MOCVD法,以四乙基锡和乙醇铌为金属有机源,以氧气为氧化气体,氮气作为载气,在真空条件下在氟化镁衬底上生长铌掺杂氧化锡单晶薄膜。该氧化锡薄膜是具有单晶结构的外延材料,薄膜内无孪晶和畴结构,铌掺杂氧化锡薄膜的载流子迁移率高达83.8cm2V‑1s‑1,在可见光区的平均透过率达83%。用于制备透明半导体器件或紫外光电子器件。
Description
技术领域
本发明涉及一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法,属于半导体光电子材料技术领域。
背景技术
氧化锡(SnO2)是一种具有直接带隙的宽禁带半导体材料。与氮化镓(GaN,Eg~3.4eV)和氧化锌(ZnO,Eg~3.37eV,激子束缚能为~60meV)相比较,氧化锡材料不仅具有更宽的带隙和更高的激子束缚能(室温下分别是~3.7eV和~130meV),而且具有制备温度低、物理化学性能稳定等优点。迄今为止,对氧化锡的研究主要集中在透明导电和气敏性质及纳米材料性质等方面。目前氧化锡薄膜材料主要应用于薄膜太阳能电池和发光器件的透明电极以及气敏传感器等。
SnO2薄膜常见的制备方法有:磁控溅射法、喷雾热解法、脉冲激光沉积法(PLD)、化学气相沉积法(CVD)、溶胶凝胶法(solgel)等。其中,常压化学气相淀积(APCVD)和磁控溅射等传统方法制备的氧化锡薄膜一般为多晶结构,薄膜的缺陷较多,结晶质量差,影响薄膜的电学和光学性质,限制了其在光电材料器件领域的应用。本征的氧化锡为n型半导体材料,并且存在自补偿作用,因此常规方法制备的氧化锡多晶薄膜,即使通过掺杂也难以获得性能优良并且稳定的P型氧化锡薄膜材料。Suzuki等人采用脉冲激光沉积法(PLD)生长了Nb掺杂SnO2薄膜(参见Applied Physics Express 5(2012)011103),所得薄膜为多晶结构,霍尔迁移率最高为26cm2V-1s-1,迁移率比较低,无法满足市场的需要。
另一方面,氧化锡单晶薄膜的外延生长首先要考虑的是衬底材料,氧化锡单晶薄膜需要与氧化锡晶格相匹配的衬底材料,目前使用最普遍的玻璃衬底、蓝宝石衬底和硅衬底材料不能满足氧化锡晶格匹配要求,这些衬底材料普遍存在晶格失配和热应力失配等问题,这会在外延层中产生大量缺陷,很难得到大面积的氧化锡单晶薄膜。
高质量的氧化锡外延薄膜材料是制备透明和紫外光电子器件的重要材料。现有技术条件下制备的SnO2薄膜材料难以达到器件应用的标准,主要原因是传统的制备技术难以得到具有高迁移率、低缺陷密度的单晶SnO2掺杂薄膜材料,严重影响了材料的电学性质。
发明内容
针对现有技术的不足,本发明提供一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法。
术语解释:
MOCVD:有机金属化学气相淀积。
Nb掺杂比:Nb原子占Nb和Sn原子之和的百分比,Nb/(Nb+Sn),原子比的简写为:%atm。
本发明的技术方案如下:
一种铌掺杂氧化锡单晶薄膜的制备方法,采用有机金属化学气相淀积(MOCVD)法,以四乙基锡(Sn(C2H5)4)为有机金属Sn源,乙醇铌(Nb(C2H5O)5)为有机金属Nb源,用氧气作为氧化气体,用氮气作为载气,在氟化镁衬底上外延生长铌掺杂氧化锡单晶薄膜,其中,Nb掺杂比为1.6~9%atm。
根据本发明优选的,所述铌掺杂氧化锡单晶薄膜的制备方法,其工艺条件如下:
反应室压强 10~100Torr,
生长温度 580~700℃,
背景N2流量 200~800sccm,
氧气流量 30~100sccm,
有机金属Sn源冷阱温度 10~25℃,
有机金属Sn源载气(N2)流量 10~40sccm,
有机金属Nb源冷阱温度 60~90℃,
有机金属Nb源载气(N2)流量 2~10sccm。
氧化锡薄膜的外延生长速率为 3.5~5nm/min。
根据本发明优选的,Nb掺杂比为2~8.5%atm;进一步优选的,Nb掺杂比为2.5~7.5%atm;最优选的,Nb掺杂比为5.5%atm,所得铌掺杂氧化锡单晶薄膜迁移率达到83.8cm2V-1s-1。所得铌掺杂氧化锡单晶薄膜的迁移率随Nb掺杂比的提高呈先增大后减少的情况。通过改变有机金属Sn源和Nb源的冷阱温度和流量来控制有机Sn源和Nb源的摩尔流量,以此达到控制Nb原子掺杂比例。
根据本发明优选的,氧化锡薄膜的外延生长速率为4~5nm/min。最优选4.5~4.8nm/min。
根据本发明,一个优选的实施方式如下:
一种铌掺杂氧化锡单晶薄膜的制备方法,采用有机金属化学气相淀积,步骤如下:
(1)将MOCVD反应室抽成高真空状态,真空度4×10-5Pa~6×10-4Pa,将氟化镁衬底置于反应室中并加热到生长温度500~800℃;
(2)打开氮气瓶阀门,向反应室通入背景N2,背景N2流量为200~800sccm,反应室压强10~100Torr,保持30~35分钟;
(3)打开氧气瓶阀门,氧气流量为10~100sccm,保持8~12分钟;
(4)打开有机金属Sn源瓶阀门,调节载气N2流量10~40sccm,保持8~12分钟;冷阱温度10~25℃;
(5)打开有机金属Nb源瓶阀门,调节载气N2流量2~10sccm,保持8~12分钟;有机金属Nb源冷阱温度60~90℃;
(6)将步骤(3)的氧气、步骤(4)的携带有机金属Sn源载气N2和步骤(4)携带有Nb源的载气N2同时通入反应室,保持时间为180~300分钟;在氟化镁衬底上外延生长铌掺杂氧化锡单晶薄膜,外延生长速率为3.5~5nm/min;
(7)反应结束,关闭有机金属Sn源瓶,Nb源瓶和氧气瓶阀门,用氮气冲洗管道20-30分钟。
根据本发明优选的,所述有机金属Sn源是99.9999%的高纯四乙基锡(Sn(C2H5)4),所述有机金属Nb源是99.9999%的高纯乙醇铌(Nb(C2H5O)5),所述氧气是99.999%的高纯氧气。
根据本发明优选的,所述载气N2是由99.999%的高纯氮气经纯化器纯化为99.9999999%的超高纯氮气。
根据本发明优选的,所述氟化镁衬底的生长面是(110)晶面。该晶面经过抛光处理。
根据本发明优选的,优选的,Nb掺杂比为5.5%。
进一步优选的,工艺条件如下:
反应室压强 30Torr,
生长温度 660℃,
背景N2流量 500sccm,
有机金属Sn源冷阱温度15℃,载气N2流量 20sccm,
有机金属Nb源冷阱温度80℃,载气N2流量 2sccm,
氧气流量 50sccm,
氧化锡薄膜的外延生长速率为 4~5nm/min。
根据本发明,所制备的Nb掺杂SnO2单晶薄膜厚度为450~600nm。
本发明制备的Nb掺杂SnO2薄膜为四方金红石结构的单晶薄膜;所得产品的X射线衍射图谱显示只出现金红石结构氧化锡(110)和(220)晶面,(110)晶面的半高宽为0.21度;如图1所示。所制备的Nb掺杂SnO2薄膜晶格结构完整,其{101}面的X射线镜像φ扫描结果显示,出现(011)和(101)晶面的衍射峰,薄膜内部呈现完整规则的晶面排列,没有孪晶和畴结构;如图2所示。
本发明制备的Nb掺杂SnO2单晶薄膜霍尔迁移率为30~83.8cm2V-1s-1;优选的,在Nb掺杂比为2~8.5%时Nb掺杂SnO2单晶薄膜霍尔迁移率在40~83.8cm2V-1s-1,更有选的Nb掺杂比为2.5~7.5%atm时Nb掺杂SnO2单晶薄膜霍尔迁移率在50~83.8cm2V-1s-1,最优选Nb掺杂比为5.5%atm时Nb掺杂SnO2单晶薄膜霍尔迁移率达83.8cm2V-1s-1,此时可见光范围的平均相对透过率超过83%,光学带隙为3.95eV。
本发明制备的Nb掺杂SnO2单晶薄膜的应用,用于制备透明半导体器件和紫外光电子器件。
本发明方法中为特别限定的均参照现有技术即可。
本发明的优良效果:
1、本发明人惊喜地发现,采用氟化镁做衬底能够与金红石结构的氧化锡匹配好,氟化镁与氧化锡两种材料沿[110]晶向的失配率仅2.2%,所得铌掺杂氧化锡单晶薄膜迁移率高。制备的Nb掺杂SnO2薄膜为单晶薄膜,而相同条件下,在抛光的单晶石英衬底或单晶硅片衬底上生长的铌掺杂SnO2薄膜均为多晶结构,且迁移率均低于40cm2V-1s-1。另一方面,现有技术采用采用脉冲激光沉积法(PLD)、等离子溅射技术制备的Nb掺杂SnO2薄膜均为多晶结构或非晶结构薄膜。
2、本发明通过改变有机金属Sn源和Nb源的冷阱温度和流量来控制有机Sn源和Nb源的摩尔流量,以此精准控制Nb原子掺杂比例,以期获得较高迁移率的铌掺杂氧化锡单晶薄膜。其中冷阱温度对有机源的饱和蒸汽压有影响,进而会影响到有机源的摩尔流量。
3、本发明方法选择在合适的氟化镁晶面上生长出优质氧化锡单晶薄膜。本发明制备的Nb掺杂SnO2薄膜为四方金红石结构的单晶薄膜,薄膜的霍尔迁移率可达83.8cm2V-1s-1,可见光范围的平均相对透过率超过83%。所制备Nb掺杂SnO2单晶薄膜的晶格结构及稳定性优于SnO2多晶薄膜,因此是制造透明半导体器件和紫外光电子器件的重要材料。
4、Nb掺杂SnO2单晶薄膜的电学和光学性能优良,光学带隙为3.95eV,由于其带隙宽度大于GaN和ZnO,适合于用来制造氧化锡紫外光电子器件以及透明半导体器件。
5、本发明工艺条件易于精确控制,制备薄膜的均匀性和重复性好,便于产业化生产。所制备的材料光电性能优良,稳定性高,应用前景广阔。
附图说明
图1是实施例1制备Nb掺杂SnO2薄膜的X射线衍射谱,其中,横坐标Degree:度,纵坐标Intensity/a.u.:强度(任意单位)。
图2是实施例1制备Nb掺杂SnO2薄膜{101}面和衬底氟化镁{101}面X射线镜像φ扫描试验结果,其中,横坐标Degree:度,纵坐标Intensity/a.u.:强度(任意单位)。
图3是实施例1制备Nb掺杂SnO2薄膜的霍尔迁移率随掺杂比例的变化曲线,其中,纵坐标(Hall mobility/cm2V-1s-1)是迁移率/cm2V-1s-1,横坐标(Nb concentration/%)是Nb掺杂比/%atm。图中显示,随着Nb掺杂比例的升高,薄膜的霍尔迁移率先增大后减小,在Nb掺杂比例为5.5%时,迁移率最高可达83.8cm2V-1s-1。
图4是实施例1制备不同Nb掺杂比例的SnO2薄膜的透过谱,纵坐标(Transmittance/%)是透过率/%,横坐标(Wavelength/nm)是波长/nm。在Nb掺杂比为5.5%atm时,薄膜的平均相对透过率超过83%,经计算其光学带隙宽度约为3.95eV。
具体实施方式
下面结合附图和实施例、对比例对本发明做进一步说明,但不限于此。
实施例1:Nb掺杂比为5.5%
MOCVD技术制备Nb掺杂氧化锡薄膜材料,以抛光的氟化镁(110)面为衬底,用Sn(C2H5)4作为有机金属锡源,Nb(C2H5O)5作为有机金属铌源,步骤如下:
(1)首先将MOCVD设备反应室抽至高真空状态5×10-4Pa,将衬底加热到660℃;
(2)打开氮气瓶阀门,向反应室通入氮气(背景N2)500sccm,30分钟,使反应室压
强为30Torr;
(3)打开氧气瓶阀门,调节氧气的流量50sccm,保持10分钟;
(4)打开有机金属Sn源瓶阀门,调节载气N2流量20sccm,保持10分钟;
(5)打开有机金属Nb源瓶阀门,调节载气(N2)流量2sccm,保持10分钟;
(6)将氧气和有机金属Sn源、Nb源同时通入反应室,保持薄膜生长时间为120分钟;
(7)反应结束后关闭锡源瓶和氧气瓶阀门,用氮气冲洗管道20分钟后结束。
薄膜生长工艺条件如下:
有机金属Sn源冷阱温度为15℃,载气流量20sccm,有机金属Nb源冷阱温度为80℃,载气流量为2sccm。氧化锡薄膜的外延生长速率为4.7nm/min。
本实施例1在660℃条件下制备的Nb掺杂氧化锡薄膜为单晶结构,Nb掺杂比例为5.5%,薄膜厚度为566nm。载流子迁移率为83.8cm2V-1s-1,可见光范围的平均相对透过率超过83%。
本实施例1制备的Nb掺杂氧化锡薄膜的X射线衍射图谱如图1所示,X射线衍射图谱显示只出现金红石结构氧化锡(110)和(220)晶面,(110)晶面的半高宽0.21度。所制备的SnO2薄膜具有沿(110)晶面单一取向生长的薄膜,可以确定Nb掺杂SnO2薄膜为单晶结构。
本实施例1制备的Nb掺杂SnO2薄膜晶格结构完整,其{101}面的X射线镜像φ扫描结果如图2所示,图2显示,扫描过程中出现(011)和(101)晶面的衍射峰,表明薄膜内部呈现完整规则的晶面排列,没有孪晶和畴结构。面内外延关系为SnO2[001]||MgF2[001]。
实施例2:MOCVD技术制备铌掺杂单晶氧化锡薄膜材料,改变Nb掺杂比
制备步骤如实施例1所述,所不同的是,改变Nb源流量,使Nb掺杂比为1.6%、2.6%和8.4%,所制备的薄膜均为单晶结构,薄膜的载流子迁移率分别是30.2cm2V-1s-1、58.5cm2V-1s-1和41.3cm2V-1s-1,随着Nb掺杂比例的升高,薄膜的霍尔迁移率先增大后减小,如图3所示。可见光范围的平均相对透过率分别为74%、80%和68%,如图4所示。
对比例1:MOCVD法制备氧化锡单晶外延薄膜材料。
(1)首先将MOCVD设备反应室抽至高真空状态5×10-4Pa,将衬底加热到660℃;
(2)开氮气瓶阀门,向反应室通入氮气(背景N2)500sccm,30分钟,使反应室压强
为30Torr;
(3)开氧气瓶阀门,调节氧气的流量50sccm,保持10分钟;
(4)开锡源瓶阀门,调节载气(氮气)流量16sccm,保持10分钟;有机金属Sn源冷阱温度10℃;
(5)将氧气和有机金属锡源同时通入反应室,生长温度(衬底温度)660℃,保持薄膜生长时间为300分钟;
(6)反应结束后关闭锡源瓶和氧气瓶阀门,用氮气冲洗管道20分钟后结束。
以抛光的氟化镁(110)面为衬底材料,用Sn(C2H5)4作为有机金属源,在660℃条件下制备的氧化锡薄膜为单晶结构,无孪晶和畴结构,薄膜的载流子迁移率为21cm2V-1s-1。
对比例2:石英衬底,MOCVD法制备Nb掺杂氧化锡薄膜材料
制备方法与实施例1相同,所不同的是以抛光的石英(001)面为衬底材料,在660℃条件下制备的Nb掺杂氧化锡薄膜,薄膜生长时间为120分钟,制备的Nb掺杂氧化锡薄膜为多晶结构。薄膜载流子迁移率为38cm2V-1s-1,可见光范围的平均相对透过率为78%。
对比例3:硅片衬底,MOCVD法制备Nb掺杂氧化锡薄膜材料
制备方法与实施例1相同,所不同的是:以硅片为衬底材料,反应室压强40Torr,衬底温度620℃,薄膜生长时间为120分钟,制备的Nb掺杂氧化锡薄膜为多晶结构,薄膜的载流子迁移率为25cm2V-1s-1。
Claims (10)
1.一种铌掺杂氧化锡单晶薄膜的制备方法,采用有机金属化学气相淀积法,以四乙基锡为有机金属Sn源,乙醇铌为有机金属Nb源,用氧气作为氧化气体,用氮气作为载气,在氟化镁衬底上外延生长铌掺杂氧化锡单晶薄膜,其中,Nb掺杂比为1.6~9%atm;所述氟化镁衬底的生长面是(110)晶面;
工艺条件如下:
反应室压强 10~100 Torr,
生长温度 580~700℃,
背景N2流量 200~800 sccm,
氧气流量 30~100 sccm,
有机金属Sn源冷阱温度 10~25℃,
有机金属Sn源载气(N2)流量10~40 sccm,
有机金属Nb源冷阱温度 60~90℃,
有机金属Nb源载气(N2)流量2~10 sccm;
氧化锡薄膜的外延生长速率为 3.5~ 5 nm/min。
2.如权利要求1所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,所述Nb掺杂比为2~8.5% atm。
3.如权利要求1所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,所述Nb掺杂比为2.5~7.5% atm。
4.如权利要求1所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,所述氧化锡薄膜的外延生长速率为4~5 nm/min。
5.如权利要求1所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,所述氧化锡薄膜的外延生长速率为4.5~4.8 nm/min。
6.如权利要求1所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,步骤如下:
(1)将MOCVD反应室抽成高真空状态,真空度 4´10-5Pa~ 6´10-4Pa,将氟化镁衬底置于反应室中并加热到生长温度500~800℃;
(2)打开氮气瓶阀门,向反应室通入背景N2,背景N2流量为200~800 sccm ,反应室压强10~100 Torr,保持30~35分钟;
(3)打开氧气瓶阀门,氧气流量为10~100 sccm,保持8~12分钟;
(4)打开有机金属Sn源瓶阀门,调节载气N2流量10~40 sccm,保持8~12分钟;冷阱温度10~25℃;
(5)打开有机金属Nb源瓶阀门,调节载气N2流量2~10 sccm,保持8~12分钟;有机金属Nb源冷阱温度 60~90℃;
(6)将步骤(3)的氧气、步骤(4)的携带有机金属Sn源载气N2和步骤(4)携带有Nb源的载气N2同时通入反应室,保持时间为180~300分钟;在氟化镁衬底上外延生长铌掺杂氧化锡单晶薄膜,外延生长速率为3.5~ 5 nm/min;
(7)反应结束,关闭有机金属Sn源瓶,Nb源瓶和氧气瓶阀门,用氮气冲洗管道20-30分钟。
7.如权利要求1或6所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,所述Nb掺杂比为5.5%。
8.如权利要求1或6所述的铌掺杂氧化锡单晶薄膜的制备方法,其特征在于,工艺条件如下:
反应室压强 30 Torr,
生长温度 660℃,
背景N2流量 500 sccm,
有机金属Sn源冷阱温度 15 ℃,载气N2流量20 sccm,
有机金属Nb源冷阱温度 80 ℃,载气N2流量2 sccm,
氧气流量 50 sccm,
氧化锡薄膜的外延生长速率为4~5 nm/min。
9.权利要求1-8任一项制备的铌掺杂氧化锡单晶薄膜,其特征在于所述单晶薄膜厚度为450~600 nm,薄膜的载流子迁移率达83.8 cm2V-1s-1,可见光范围的平均相对透过率达83%。
10.权利要求1-8任一项制备的铌掺杂氧化锡单晶薄膜的应用,用于制备透明半导体器件或紫外光电子器件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710551026.9A CN107419333B (zh) | 2017-07-07 | 2017-07-07 | 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710551026.9A CN107419333B (zh) | 2017-07-07 | 2017-07-07 | 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107419333A CN107419333A (zh) | 2017-12-01 |
CN107419333B true CN107419333B (zh) | 2019-10-01 |
Family
ID=60427045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710551026.9A Expired - Fee Related CN107419333B (zh) | 2017-07-07 | 2017-07-07 | 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107419333B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108396288B (zh) * | 2018-03-30 | 2020-04-24 | 湖北大学 | 超宽禁带ZrxSn1-xO2合金半导体外延薄膜材料及其制备方法、应用和器件 |
CN108546993A (zh) * | 2018-05-14 | 2018-09-18 | 山东大学 | 一种沿[101]晶向生长的金红石结构钽掺杂氧化锡单晶薄膜及其制备方法 |
CN108751741B (zh) * | 2018-07-11 | 2020-07-17 | 燕山大学 | 一种具有缓冲层和共掺杂的低辐射玻璃及其制备方法 |
CN111705306A (zh) * | 2020-07-21 | 2020-09-25 | 深圳扑浪创新科技有限公司 | 一种锌掺杂氧化锡透明导电薄膜及其制备方法和用途 |
CN112289677B (zh) * | 2020-10-14 | 2022-04-29 | 滕州创感电子科技有限公司 | 一种柔性衬底高迁移率氧化物半导体薄膜室温生长与后处理方法 |
CN112086532B (zh) * | 2020-10-15 | 2021-10-22 | 湖北大学 | SnO2基同质结自驱动紫外光光电探测器及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101070612A (zh) * | 2007-03-21 | 2007-11-14 | 山东大学 | 一种氧化锡单晶薄膜的制备方法 |
CN101736399A (zh) * | 2010-01-14 | 2010-06-16 | 山东大学 | 一种正交结构氧化锡单晶薄膜的制备方法 |
CN102858706A (zh) * | 2010-04-27 | 2013-01-02 | Ppg工业俄亥俄公司 | 在基材上沉积铌掺杂的氧化钛膜的方法和由此制备的涂覆基材 |
CN103996969A (zh) * | 2014-05-29 | 2014-08-20 | 山东大学 | 层状vo2激光脉冲调制器件及应用 |
CN105821378A (zh) * | 2016-05-20 | 2016-08-03 | 郑州大学 | 一种铌掺杂二氧化锡透明导电膜及其制备方法 |
CN106118650A (zh) * | 2016-06-13 | 2016-11-16 | 郑甘裕 | 红光铌锌酸盐发光材料、制备方法及其应用 |
CN106684325A (zh) * | 2017-01-10 | 2017-05-17 | 郑州大学 | 一种铌掺杂二氧化锡薄膜锂离子电池负极极片及其制备方法,锂离子电池 |
-
2017
- 2017-07-07 CN CN201710551026.9A patent/CN107419333B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101070612A (zh) * | 2007-03-21 | 2007-11-14 | 山东大学 | 一种氧化锡单晶薄膜的制备方法 |
CN101736399A (zh) * | 2010-01-14 | 2010-06-16 | 山东大学 | 一种正交结构氧化锡单晶薄膜的制备方法 |
CN102858706A (zh) * | 2010-04-27 | 2013-01-02 | Ppg工业俄亥俄公司 | 在基材上沉积铌掺杂的氧化钛膜的方法和由此制备的涂覆基材 |
CN103996969A (zh) * | 2014-05-29 | 2014-08-20 | 山东大学 | 层状vo2激光脉冲调制器件及应用 |
CN105821378A (zh) * | 2016-05-20 | 2016-08-03 | 郑州大学 | 一种铌掺杂二氧化锡透明导电膜及其制备方法 |
CN106118650A (zh) * | 2016-06-13 | 2016-11-16 | 郑甘裕 | 红光铌锌酸盐发光材料、制备方法及其应用 |
CN106684325A (zh) * | 2017-01-10 | 2017-05-17 | 郑州大学 | 一种铌掺杂二氧化锡薄膜锂离子电池负极极片及其制备方法,锂离子电池 |
Non-Patent Citations (3)
Title |
---|
High Transparency and Electrical Conductivity of SnO2:Nb Thin Films Formed through (001)-Oriented SnO:Nb on Glass Substrate;Suzuki等;《Applied Physics Express》;20120111;第5卷;第011103页 * |
Optical and electrical switching properties of VO2 thin film on MgF2 (111) substrate;Huaijuan Zhou等;《Ceramics International》;20160202;第42卷;第7655-7663页 * |
The epitaxial growth and interfacial strain study of VO2/MgF2 (001) films by synchrotron based grazing incidence X-ray diffraction;L.L. Fan等;《Journal of Alloys and Compounds》;20160404;第678卷;第312-316页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107419333A (zh) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107419333B (zh) | 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法 | |
Du et al. | Controlled growth of high‐quality ZnO‐based films and fabrication of visible‐blind and solar‐blind ultra‐violet detectors | |
Gomez et al. | Gallium-doped ZnO thin films deposited by chemical spray | |
JP4817350B2 (ja) | 酸化亜鉛半導体部材の製造方法 | |
US6562702B2 (en) | Semiconductor device and method and apparatus for manufacturing semiconductor device | |
CN101967680B (zh) | 一种在氧化镁衬底上制备单斜晶型氧化镓单晶薄膜的方法 | |
CN110676339B (zh) | 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法 | |
WO2008096884A1 (ja) | n型導電性窒化アルミニウム半導体結晶及びその製造方法 | |
CN112086344B (zh) | 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用 | |
CN112309832B (zh) | 可转移氧化镓单晶薄膜的制备方法 | |
Sharafutdinov et al. | Gas-jet electron beam plasma chemical vapor deposition method for solar cell application | |
WO2020215444A1 (zh) | 氧化镓半导体及其制备方法 | |
CN100479221C (zh) | 一种氧化锡单晶薄膜的制备方法 | |
Ali | Origin of photoluminescence in nanocrystalline Si: H films | |
CN101736399B (zh) | 一种正交结构氧化锡单晶薄膜的制备方法 | |
Hollingsworth et al. | Doped microcrystalline silicon growth by high frequency plasmas | |
CN101792901B (zh) | 一种在钇掺杂氧化锆衬底上制备立方结构氧化铟单晶薄膜的方法 | |
CN108546993A (zh) | 一种沿[101]晶向生长的金红石结构钽掺杂氧化锡单晶薄膜及其制备方法 | |
JP2004137135A (ja) | 薄膜付き石英基板 | |
CN103695866A (zh) | 采用简单化学气相沉积法制备Sb掺杂p型ZnO薄膜的方法 | |
EP3404725A1 (en) | Solar cell comprising cigs light absorbing layer and method for manufacturing same | |
CN101311357B (zh) | 一种氧化铟单晶外延薄膜的制备方法 | |
WO2018032874A1 (zh) | 一种紫外透明导电薄膜及其制造方法 | |
JP3055158B2 (ja) | 炭化珪素半導体膜の製造方法 | |
KR100594383B1 (ko) | 알루미늄이 도핑된 산화 아연 박막 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191001 Termination date: 20210707 |
|
CF01 | Termination of patent right due to non-payment of annual fee |