CN107392950A - A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection - Google Patents
A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection Download PDFInfo
- Publication number
- CN107392950A CN107392950A CN201710631310.7A CN201710631310A CN107392950A CN 107392950 A CN107392950 A CN 107392950A CN 201710631310 A CN201710631310 A CN 201710631310A CN 107392950 A CN107392950 A CN 107392950A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msup
- mtd
- msub
- munder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000006116 polymerization reaction Methods 0.000 title abstract description 5
- 230000036548 skin texture Effects 0.000 title abstract 4
- 239000007787 solid Substances 0.000 title abstract 3
- 230000011218 segmentation Effects 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims abstract description 4
- 238000004220 aggregation Methods 0.000 claims description 24
- 230000002776 aggregation Effects 0.000 claims description 24
- 238000005457 optimization Methods 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 abstract 1
- 238000004040 coloring Methods 0.000 abstract 1
- 208000006440 Open Bite Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection of the present invention belongs to computer vision field, more particularly to the solid matching method to weak texture image, comprises the following steps:Two width coloured images are inputted, two described width coloured images are respectively left image and right image, and weak skin texture detection and segmentation are carried out to picture using the gradient information of left image;Matching power flow is calculated according to the colouring information and gradient information of left image and right image;On the basis of weak skin texture detection and segmentation result in above-mentioned, the interior yardstick based on gaussian filtering and the polymerization of across yardstick cost are carried out;Take policy calculation parallax entirely using the person of winning;Parallax is refined using left and right consistency detection and the method based on adaptive weighting, exports anaglyph.The present invention is realized on the premise of texture region matching accuracy is ensured, improves weak texture region matching accuracy, obtains the technical purpose of more preferable disparity map.
Description
Technical Field
The invention discloses a cross-scale cost aggregation stereo matching method based on weak texture detection, belongs to the field of computer vision, and particularly relates to a stereo matching method for weak texture images.
Background
Binocular stereo vision (binocular stereo vision) is an important form of computer vision, and is a method for acquiring three-dimensional geometric information of an object by acquiring two images of the object to be measured from different positions by using imaging equipment based on a parallax principle and calculating position deviation between corresponding points of the images. And the quality of the three-dimensional information acquisition mainly depends on the accuracy of the disparity map obtained by stereo matching. At present, the problems of stereo matching mainly include external factors such as uneven illumination, overexposure and the like, and the picture has the picture characteristics such as shading, weak texture, repeated texture and the like which are difficult to distinguish by a computer. Although a large number of scholars have studied stereo matching for many years, matching for weakly textured regions remains a difficulty in the field of image processing. On the premise of ensuring the matching accuracy of the texture region, the method for improving the matching accuracy of the weak texture region and obtaining a better disparity map is a major problem.
Disclosure of Invention
The invention provides a cross-scale cost polymerization stereo matching method based on weak texture detection, which can improve the matching accuracy of a weak texture region and obtain a better disparity map on the premise of ensuring the matching accuracy of the texture region.
The purpose of the invention is realized as follows:
a cross-scale cost aggregation stereo matching method based on weak texture detection comprises the following steps:
step a, inputting two color images, wherein the two color images are a left image and a right image respectively, and performing weak texture detection and segmentation on the images by using gradient information of the left image;
b, calculating matching cost according to the color information and the gradient information of the left image and the right image;
step c, taking the weak texture detection and segmentation result in the step a as a reference, and carrying out inner scale and cross-scale cost aggregation based on Gaussian filtering;
d, calculating the parallax by adopting a win person total-taking strategy;
and e, adopting a left-right consistency detection method and a self-adaptive weight-based method to refine the parallax and output a parallax image.
The cross-scale cost aggregation stereo matching method based on weak texture detection specifically comprises the following steps of:
calculating the gradient value g (x, y) of the pixel point at the coordinate (x, y) of the left image and the gradient threshold value gTComparing and judging whether the texture is a weak texture area, wherein the calculation formula is as follows:
g(x,y)<gT
in the formula, N (x, y) represents a window with a pixel (x, y) as the center, M represents the number of pixels in the window, and I (x, y) represents the gray scale value of the pixel.
In the method for cross-scale cost aggregation stereo matching based on weak texture detection, the calculating of the matching cost in the step b specifically includes:
calculating a left image I of a stereoscopic color image pairLAnd a right image IRThe matching cost C (p, d) is calculated by the formula:
C(p,d)=(1-α)·CAD(p,d)+α·(Cgrad_x(p,d)+Cgrad_y(p,d))
in the formula: p is a point in the left image, where i ═ R, G, B represent the three channels of the color image, respectively, and TADAnd TgradCutoff thresholds representing color and gradient, respectively;representing the gradient operators of the picture in the x and y directions, respectively, α is a balance factor between the color difference and the gradient difference.
The cross-scale cost aggregation stereo matching method based on weak texture detection is characterized in that the cost aggregation in the step c specifically comprises the following steps:
wherein,indicating match after aggregationThe cost is that z is an expected optimization target value, W is a Gaussian filter kernel, N is a neighborhood window of a pixel p, q is a neighborhood pixel point of p, S ∈ {0, 1.., S } is a scale parameter, and when S is 0, C is0Representing the original scale matching cost of the image;an aggregate cost representing S +1 scales of the image;
in the formula, lambda is a regularization factor,by usingAn optimization objective function representing equation (11), andcomprises the following steps:
wherein, ThighAnd TlowRespectively representing the texture region and the weak texture region detected in the text; c1And C1/2Respectively representing the matching cost of the original image scale and the half scale, carrying out Gaussian filtering by using windows with different sizes, and obtaining the final matching cost after fusion.
The cross-scale cost aggregation stereo matching method based on weak texture detection includes the following steps:
|D'L(P)-D'R(P-D'R(P))|<
DLRC(P)=min(D'(PL),D'(PR))
wherein, the left chart parallax value D 'of one point p in the parallax chart'L(p) and Right View disparity value D'R(p-D'L(p)), a threshold for LRC; d' (PL) is the disparity value of the first non-occlusion point on the left side, and D (PR) is the disparity value of the first non-occlusion point on the right side; WB (wideband weight division multiple Access)pq(IL) As a function of the left image, Δ cpqAnd Δ spqRespectively the color difference and the spatial euclidean distance of points p and q in the left image,andadjustment parameters of color difference and distance difference respectively; dw(p) a filtered image.
Has the advantages that:
the invention discloses a cross-scale cost polymerization stereo matching method based on weak texture detection, and provides a novel stereo matching algorithm.
The stereo matching image pair processed by the algorithm of the embodiment can obtain better effect in the texture region and the weak texture region of the image, and the error matching rate is reduced (5% lower than that of the stereo matching image pair without the weak texture region segmentation algorithm). The algorithm of the embodiment can improve the matching accuracy of the weak texture region and obtain a better disparity map on the premise of ensuring the matching accuracy of the texture region.
Drawings
Fig. 1 is a flowchart of a cross-scale cost aggregation stereo matching method based on weak texture detection.
Fig. 2 is a Bowling1 disparity map.
Fig. 3 is a Lampshade1 disparity map.
Fig. 4 is a Monopoly disparity map.
FIG. 5 is a Plastic disparity map.
Detailed Description
The following describes embodiments of the present invention in further detail with reference to the accompanying drawings.
Detailed description of the preferred embodiment
A cross-scale cost aggregation stereo matching method based on weak texture detection is disclosed, as shown in FIG. 1, and includes the following steps:
step a, inputting two color images, wherein the two color images are a left image and a right image respectively, and performing weak texture detection and segmentation on the images by using gradient information of the left image;
b, calculating matching cost according to the color information and the gradient information of the left image and the right image;
step c, taking the weak texture detection and segmentation result in the step a as a reference, and carrying out inner scale and cross-scale cost aggregation based on Gaussian filtering;
d, calculating the parallax by adopting a win person total-taking strategy;
and e, adopting a left-right consistency detection method and a self-adaptive weight-based method to refine the parallax and output a parallax image.
According to the above steps, four pictures are selected for comparison, as shown in figures 2, 3, 4 and 5,
in FIG. 2, FIG. 2(a) is the left image of Bowling 1; FIG. 2(b) is a Bowling1 true disparity map; FIG. 2(c) is Bowling1 weak texture detection results; FIG. 2(d) is Bowling1 final disparity map; fig. 2(e) is a disparity map in which no weak texture detection is performed by Bowling 1.
In fig. 3, fig. 3(a) is a left image of Lampshade 1; fig. 3(b) is a real disparity map of Lampshade 1; FIG. 3(c) is the result of the weak texture detection of Lampshade 1; fig. 3(d) is a final disparity map of Lampshade 1; fig. 3(e) is a disparity map in which Lampshade1 does not perform weak texture detection.
In FIG. 4, FIG. 4(a) is a left image of a Monochromatic original image; FIG. 4(b) is a Monochromatic real disparity map; FIG. 4(c) is the Monopoly weak texture detection result; FIG. 4(d) is a Monochromatic final disparity map; fig. 4(e) is a parallax map in which Monopoly does not perform weak texture detection.
In FIG. 5, FIG. 5(a) is a left view of the original image of the Plastic; FIG. 5(b) is a Plastic true disparity map; FIG. 5(c) shows the result of the weak texture test of Plastic; FIG. 5(d) is a final disparity map of Plastic; fig. 5(e) is a parallax map in which Plastic does not perform weak texture detection.
The parallax images in fig. 2(a) to 2(e), fig. 3(a) to 3(e), fig. 4(a) to 4(e), and fig. 5(a) to 5(e) are subjectively evaluated in terms of visual effect. In fig. 2 to 5(c), the black portion indicates the detected weak texture region, and the white portion indicates the texture region. Comparing the disparity maps, it can be seen that in the weak texture region, the disparity map result obtained by applying the algorithm of the present embodiment is much better than the disparity map result obtained by the algorithm without weak texture detection.
The method of the invention is evaluated from objective evaluation indexes.
Table 1 shows the false match rate for processing 4 image pairs of the midlineby image set with distinct weak texture regions using two algorithms.
TABLE 1
As can be seen from table 1, in the test result of processing the stereo matching image pair by the two algorithms, the algorithm mismatching rate of the image pair processed by the algorithm of the present embodiment is reduced by 5% compared to the algorithm without weak texture detection and segmentation. The algorithm of the embodiment can improve the matching accuracy of the weak texture region and obtain a better disparity map on the premise of ensuring the matching accuracy of the texture region.
Detailed description of the invention
The cross-scale cost aggregation stereo matching method based on weak texture detection specifically comprises the following steps of:
calculating the gradient value g (x, y) of the pixel point at the coordinate (x, y) of the left image and the gradient threshold value gTComparing and judging whether the texture is a weak texture area, wherein the calculation formula is as follows:
g(x,y)<gT
in the formula, N (x, y) represents a window with a pixel (x, y) as the center, M represents the number of pixels in the window, and I (x, y) represents the gray scale value of the pixel.
In the method for cross-scale cost aggregation stereo matching based on weak texture detection, the calculating of the matching cost in the step b specifically includes:
calculating a left image I of a stereoscopic color image pairLAnd a right image IRThe matching cost C (p, d) is calculated by the formula:
C(p,d)=(1-α)·CAD(p,d)+α·(Cgrad_x(p,d)+Cgrad_y(p,d))
in the formula: p is a point in the left image, where i ═ R, G, B represent the three channels of the color image, respectively, and TADAnd TgradCutoff thresholds representing color and gradient, respectively;representing the gradient operators of the picture in the x and y directions, respectively, α is a balance factor between the color difference and the gradient difference.
The cross-scale cost aggregation stereo matching method based on weak texture detection is characterized in that the cost aggregation in the step c specifically comprises the following steps:
wherein,representing the aggregated matching cost, wherein z is an expected optimization target value, W is a Gaussian filter kernel, N is a neighborhood window of a pixel p, q is a neighborhood pixel point of p, S ∈ {0, 1.., S } is a scale parameter, and when S is 0, C is the value0Representing the original scale matching cost of the image;an aggregate cost representing S +1 scales of the image;
in the formula, lambda is a regularization factor,by usingAn optimization objective function representing equation (11), andcomprises the following steps:
wherein, ThighAnd TlowRespectively representing the texture region and the weak texture region detected in the text; c1And C1/2Respectively representing the matching cost of the original image scale and the half scale, carrying out Gaussian filtering by using windows with different sizes, and obtaining the final matching cost after fusion.
The cross-scale cost aggregation stereo matching method based on weak texture detection includes the following steps:
|D'L(P)-D'R(P-D'R(P))|<
DLRC(P)=min(D'(PL),D'(PR))
wherein, the left chart parallax value D 'of one point p in the parallax chart'L(p) and Right View disparity value D'R(p-D'L(p)), a threshold for LRC; d '(PL) is the disparity value for the first non-occluded point on the left, and D' (PR) is the disparity value for the first non-occluded point on the right; WB (wideband weight division multiple Access)pq(IL) As a function of the left image, Δ cpqAnd Δ spqRespectively the color difference and the spatial euclidean distance of points p and q in the left image,andadjustment parameters of color difference and distance difference respectively; dw(p) a filtered image.
Claims (5)
1. A cross-scale cost aggregation stereo matching method based on weak texture detection is characterized by comprising the following steps:
step a, inputting two color images, wherein the two color images are a left image and a right image respectively, and performing weak texture detection and segmentation on the images by using gradient information of the left image;
b, calculating matching cost according to the color information and the gradient information of the left image and the right image;
step c, taking the weak texture detection and segmentation result in the step a as a reference, and carrying out inner scale and cross-scale cost aggregation based on Gaussian filtering;
d, calculating the parallax by adopting a win person total-taking strategy;
and e, adopting a left-right consistency detection method and a self-adaptive weight-based method to refine the parallax and output a parallax image.
2. The method for cross-scale cost aggregation stereo matching based on weak texture detection as claimed in claim 1, wherein the weak texture detection and segmentation of the picture in the step a specifically comprises:
calculating the gradient value g (x, y) of the pixel point at the coordinate (x, y) of the left image and the gradient threshold value gTComparing and judging whether the texture is a weak texture area, wherein the calculation formula is as follows:
g(x,y)<gT
<mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <mo>&CenterDot;</mo> <munder> <mo>&Sigma;</mo> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>)</mo> <mo>&Element;</mo> <mi>N</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </munder> <mrow> <mo>(</mo> <mo>|</mo> <mi>I</mi> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>I</mi> <mo>(</mo> <mrow> <mi>u</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> <mo>+</mo> <mo>|</mo> <mi>I</mi> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>I</mi> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>|</mo> <mo>)</mo> </mrow> </mrow>
in the formula, N (x, y) represents a window with a pixel (x, y) as the center, M represents the number of pixels in the window, and I (x, y) represents the gray scale value of the pixel.
3. The method for cross-scale cost aggregation stereo matching based on weak texture detection as claimed in claim 1, wherein the calculating the matching cost in the step b specifically comprises:
calculating a left image I of a stereoscopic color image pairLAnd a right image IRThe matching cost C (p, d) is calculated by the formula:
C(p,d)=(1-α)·CAD(p,d)+α·(Cgrad_x(p,d)+Cgrad_y(p,d))
<mrow> <msub> <mi>C</mi> <mrow> <mi>A</mi> <mi>D</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mi>R</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>B</mi> </mrow> </munder> <mo>|</mo> <msubsup> <mi>I</mi> <mi>L</mi> <mi>i</mi> </msubsup> <mo>(</mo> <mi>p</mi> <mo>)</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mi>R</mi> <mi>i</mi> </msubsup> <mo>(</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>d</mi> </mrow> <mo>)</mo> <mo>|</mo> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mi>A</mi> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
Cgrad_x(p,d)=min(|▽xIL(p)-▽xIR(p,d)|,Tgrad)
Cgrad_y(p,d)=min(|▽yIL(p)-▽yIR(p,d)|,Tgrad)
in the formula: p is a point in the left image, where i ═ R, G, B represent the three channels of the color image, respectively, and TADAnd TgradRepresenting the cut-off thresholds for color and gradient, respectively, ▽x、▽yRepresenting the gradient operators of the picture in the x and y directions, respectively, α is a balance factor between the color difference and the gradient difference.
4. The method for cross-scale cost aggregation stereo matching based on weak texture detection as claimed in claim 1, wherein the cost aggregation in the step c is specifically:
<mrow> <mover> <mi>C</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>argmin</mi> <mi>z</mi> </munder> <munder> <mo>&Sigma;</mo> <mrow> <mi>q</mi> <mo>&Element;</mo> <mi>N</mi> </mrow> </munder> <mi>W</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <mi>z</mi> <mo>-</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow>
<mrow> <mover> <mi>C</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>q</mi> <mo>&Element;</mo> <mi>N</mi> </mrow> </munder> <mi>W</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>C</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>v</mi> <mo>~</mo> </mover> <mo>=</mo> <munder> <mrow> <mi>a</mi> <mi>r</mi> <mi>g</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <msubsup> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>}</mo> </mrow> <mrow> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>S</mi> </msubsup> </munder> <munderover> <mo>&Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>S</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </munder> <mi>W</mi> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>-</mo> <msup> <mi>C</mi> <mi>s</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow>
wherein,representing the aggregated matching cost, wherein z is an expected optimization target value, W is a Gaussian filter kernel, N is a neighborhood window of a pixel p, q is a neighborhood pixel point of p, S ∈ {0, 1.., S } is a scale parameter, and when S is 0, C is the value0Representing the original scale matching cost of the image;an aggregate cost representing S +1 scales of the image;
<mrow> <msup> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>s</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </munder> <mi>W</mi> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mi>C</mi> <mi>s</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>v</mi> <mo>~</mo> </mover> <mo>=</mo> <munder> <mrow> <mi>a</mi> <mi>r</mi> <mi>g</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <msubsup> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>}</mo> </mrow> <mrow> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>S</mi> </msubsup> </munder> <mrow> <mo>(</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>S</mi> </munderover> <munder> <mo>&Sigma;</mo> <mrow> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>s</mi> </msub> </mrow> </munder> <mi>W</mi> <mo>(</mo> <mrow> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>q</mi> <mi>s</mi> </msup> </mrow> <mo>)</mo> <mo>|</mo> <mo>|</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>-</mo> <msup> <mi>C</mi> <mi>s</mi> </msup> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> </mrow> <mo>)</mo> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mi>&lambda;</mi> <mo>&CenterDot;</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <mo>|</mo> <mo>|</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>-</mo> <msup> <mi>z</mi> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow>
in the formula, lambda is a regularization factor,by usingAn optimization objective function representing equation (11), andcomprises the following steps:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&lambda;</mi> <mo>)</mo> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>-</mo> <msup> <mi>&lambda;z</mi> <mrow> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>s</mi> </msup> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msup> <mi>&lambda;z</mi> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>&lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>-</mo> <msup> <mi>&lambda;z</mi> <mrow> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>s</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>S</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msup> <mi>&lambda;z</mi> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>&lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mi>s</mi> </msup> <mo>=</mo> <msup> <mover> <mi>C</mi> <mo>~</mo> </mover> <mi>s</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>d</mi> <mi>s</mi> </msup> <mo>)</mo> </mrow> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mi>A</mi> <mover> <mi>v</mi> <mo>^</mo> </mover> <mo>=</mo> <mover> <mi>v</mi> <mo>~</mo> </mover> </mrow>
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow></mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mi>&lambda;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <mover> <mi>v</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mover> <mi>v</mi> <mo>~</mo> </mover> </mrow>
<mrow> <msub> <mover> <mi>C</mi> <mo>~</mo> </mover> <mrow> <mi>f</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> <mo>&CenterDot;</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>&Element;</mo> <mi>N</mi> </mrow> </munder> <msub> <mi>W</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> <mo>&CenterDot;</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>&Element;</mo> <mi>N</mi> </mrow> </munder> <msub> <mi>W</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow>
wherein, ThighAnd TlowRespectively representing the texture region and the weak texture region detected in the text; c1And C1/2Respectively representing the matching cost of the original image scale and the half scale, carrying out Gaussian filtering by using windows with different sizes, and obtaining the final matching cost after fusion.
5. The method for cross-scale cost aggregation stereo matching based on weak texture detection as claimed in claim 1, wherein the disparity refinement in step e specifically comprises:
|D'L(P)-D'R(P-D'R(P))|<
DLRC(P)=min(D'(PL),D'(PR))
<mrow> <msub> <mi>D</mi> <mi>w</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>q</mi> </munder> <msub> <mi>WB</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>D</mi> <mrow> <mi>L</mi> <mi>R</mi> <mi>C</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>WB</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&Delta;c</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mrow> <msubsup> <mi>&sigma;</mi> <mi>c</mi> <mn>2</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&Delta;s</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </msub> </mrow> <msubsup> <mi>&sigma;</mi> <mi>s</mi> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow>
wherein, the left chart parallax value D 'of one point p in the parallax chart'L(p) and Right View disparity value D'R(p-D'L(p)), a threshold for LRC; d '(PL) is the disparity value for the first non-occluded point on the left, and D' (PR) is the disparity value for the first non-occluded point on the right; WB (wideband weight division multiple Access)pq(IL) As a function of the left image, Δ cpqAnd Δ spqRespectively the color difference and the spatial euclidean distance of points p and q in the left image,andadjustment parameters of color difference and distance difference respectively; dw(p) a filtered image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710631310.7A CN107392950A (en) | 2017-07-28 | 2017-07-28 | A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710631310.7A CN107392950A (en) | 2017-07-28 | 2017-07-28 | A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107392950A true CN107392950A (en) | 2017-11-24 |
Family
ID=60342086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710631310.7A Pending CN107392950A (en) | 2017-07-28 | 2017-07-28 | A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107392950A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107945222A (en) * | 2017-12-15 | 2018-04-20 | 东南大学 | A kind of new Stereo matching cost calculates and parallax post-processing approach |
CN108181319A (en) * | 2017-12-12 | 2018-06-19 | 陕西三星洁净工程有限公司 | A kind of laying dust detecting device and method based on stereoscopic vision |
CN108510529A (en) * | 2018-03-14 | 2018-09-07 | 昆明理工大学 | A kind of figure based on adaptive weight cuts solid matching method |
CN108596975A (en) * | 2018-04-25 | 2018-09-28 | 华南理工大学 | A kind of Stereo Matching Algorithm for weak texture region |
CN108682026A (en) * | 2018-03-22 | 2018-10-19 | 辽宁工业大学 | A kind of binocular vision solid matching method based on the fusion of more Matching units |
CN108765486A (en) * | 2018-05-17 | 2018-11-06 | 长春理工大学 | Based on sparse piece of aggregation strategy method of relevant Stereo matching in color |
CN109816782A (en) * | 2019-02-03 | 2019-05-28 | 哈尔滨理工大学 | A kind of indoor scene three-dimensional rebuilding method based on binocular vision |
CN109887021A (en) * | 2019-01-19 | 2019-06-14 | 天津大学 | Based on the random walk solid matching method across scale |
CN109961417A (en) * | 2017-12-26 | 2019-07-02 | 广州极飞科技有限公司 | Image processing method, device and mobile device control method |
CN111191694A (en) * | 2019-12-19 | 2020-05-22 | 浙江科技学院 | Image stereo matching method |
CN111508013A (en) * | 2020-04-21 | 2020-08-07 | 中国科学技术大学 | Stereo matching method |
CN112070694A (en) * | 2020-09-03 | 2020-12-11 | 深兰人工智能芯片研究院(江苏)有限公司 | Binocular stereo vision disparity map post-processing method and device |
WO2021018093A1 (en) * | 2019-07-31 | 2021-02-04 | 深圳市道通智能航空技术有限公司 | Stereo matching method, image processing chip, and moving carrier |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105551035A (en) * | 2015-12-09 | 2016-05-04 | 深圳市华和瑞智科技有限公司 | Stereoscopic vision matching method based on weak edge and texture classification |
CN106340036A (en) * | 2016-08-08 | 2017-01-18 | 东南大学 | Binocular stereoscopic vision-based stereo matching method |
CN106530336A (en) * | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Stereo matching algorithm based on color information and graph-cut theory |
-
2017
- 2017-07-28 CN CN201710631310.7A patent/CN107392950A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105551035A (en) * | 2015-12-09 | 2016-05-04 | 深圳市华和瑞智科技有限公司 | Stereoscopic vision matching method based on weak edge and texture classification |
CN106340036A (en) * | 2016-08-08 | 2017-01-18 | 东南大学 | Binocular stereoscopic vision-based stereo matching method |
CN106530336A (en) * | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Stereo matching algorithm based on color information and graph-cut theory |
Non-Patent Citations (3)
Title |
---|
张华 等: ""基于跨尺度变窗口代价聚合的快速立体匹配"", 《计算机工程与应用》 * |
曹晓倩 等: "基于弱纹理检测及视差图融合的立体匹配", 《仪器仪表学报》 * |
林雪: "双目立体视觉中立体匹配技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108181319A (en) * | 2017-12-12 | 2018-06-19 | 陕西三星洁净工程有限公司 | A kind of laying dust detecting device and method based on stereoscopic vision |
CN108181319B (en) * | 2017-12-12 | 2020-09-11 | 陕西三星洁净工程有限公司 | Accumulated dust detection device and method based on stereoscopic vision |
CN107945222A (en) * | 2017-12-15 | 2018-04-20 | 东南大学 | A kind of new Stereo matching cost calculates and parallax post-processing approach |
CN109961417A (en) * | 2017-12-26 | 2019-07-02 | 广州极飞科技有限公司 | Image processing method, device and mobile device control method |
CN108510529A (en) * | 2018-03-14 | 2018-09-07 | 昆明理工大学 | A kind of figure based on adaptive weight cuts solid matching method |
CN108682026A (en) * | 2018-03-22 | 2018-10-19 | 辽宁工业大学 | A kind of binocular vision solid matching method based on the fusion of more Matching units |
CN108682026B (en) * | 2018-03-22 | 2021-08-06 | 江大白 | Binocular vision stereo matching method based on multi-matching element fusion |
CN108596975A (en) * | 2018-04-25 | 2018-09-28 | 华南理工大学 | A kind of Stereo Matching Algorithm for weak texture region |
CN108596975B (en) * | 2018-04-25 | 2022-03-29 | 华南理工大学 | Stereo matching algorithm for weak texture region |
CN108765486A (en) * | 2018-05-17 | 2018-11-06 | 长春理工大学 | Based on sparse piece of aggregation strategy method of relevant Stereo matching in color |
CN109887021A (en) * | 2019-01-19 | 2019-06-14 | 天津大学 | Based on the random walk solid matching method across scale |
CN109887021B (en) * | 2019-01-19 | 2023-06-06 | 天津大学 | Cross-scale-based random walk stereo matching method |
CN109816782A (en) * | 2019-02-03 | 2019-05-28 | 哈尔滨理工大学 | A kind of indoor scene three-dimensional rebuilding method based on binocular vision |
WO2021018093A1 (en) * | 2019-07-31 | 2021-02-04 | 深圳市道通智能航空技术有限公司 | Stereo matching method, image processing chip, and moving carrier |
CN111191694A (en) * | 2019-12-19 | 2020-05-22 | 浙江科技学院 | Image stereo matching method |
CN111508013A (en) * | 2020-04-21 | 2020-08-07 | 中国科学技术大学 | Stereo matching method |
CN111508013B (en) * | 2020-04-21 | 2022-09-06 | 中国科学技术大学 | Stereo matching method |
CN112070694A (en) * | 2020-09-03 | 2020-12-11 | 深兰人工智能芯片研究院(江苏)有限公司 | Binocular stereo vision disparity map post-processing method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107392950A (en) | A kind of across yardstick cost polymerization solid matching method based on weak skin texture detection | |
CN105528785B (en) | A kind of binocular vision image solid matching method | |
CN110473217B (en) | Binocular stereo matching method based on Census transformation | |
CN107578418B (en) | Indoor scene contour detection method fusing color and depth information | |
CN108682026B (en) | Binocular vision stereo matching method based on multi-matching element fusion | |
CN108596975B (en) | Stereo matching algorithm for weak texture region | |
CN104574366B (en) | A kind of extracting method in the vision significance region based on monocular depth figure | |
CN102665086B (en) | Method for obtaining parallax by using region-based local stereo matching | |
US8953873B2 (en) | Method for objectively evaluating quality of stereo image | |
CN104835175B (en) | Object detection method in a kind of nuclear environment of view-based access control model attention mechanism | |
CN109345502B (en) | Stereo image quality evaluation method based on disparity map stereo structure information extraction | |
CN102750695A (en) | Machine learning-based stereoscopic image quality objective assessment method | |
CN106973288B (en) | A kind of three-dimensional video-frequency Comfort Evaluation method and device | |
CN107578430A (en) | A kind of solid matching method based on adaptive weight and local entropy | |
CN108010075B (en) | Local stereo matching method based on multi-feature combination | |
CN103026380A (en) | Image processing apparatus and image processing method | |
CN107610093B (en) | Full-reference image quality evaluation method based on similarity feature fusion | |
CN103325120A (en) | Rapid self-adaption binocular vision stereo matching method capable of supporting weight | |
CN110866882B (en) | Layered joint bilateral filtering depth map repairing method based on depth confidence | |
CN105654142A (en) | Natural scene statistics-based non-reference stereo image quality evaluation method | |
CN114998320B (en) | Method, system, electronic device and storage medium for visual saliency detection | |
CN105898278B (en) | A kind of three-dimensional video-frequency conspicuousness detection method based on binocular Multidimensional Awareness characteristic | |
CN110246111A (en) | Based on blending image with reinforcing image without reference stereo image quality evaluation method | |
CN106530336A (en) | Stereo matching algorithm based on color information and graph-cut theory | |
CN114648482A (en) | Quality evaluation method and system for three-dimensional panoramic image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171124 |