Nothing Special   »   [go: up one dir, main page]

CN107378687A - A kind of large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding - Google Patents

A kind of large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding Download PDF

Info

Publication number
CN107378687A
CN107378687A CN201710677052.6A CN201710677052A CN107378687A CN 107378687 A CN107378687 A CN 107378687A CN 201710677052 A CN201710677052 A CN 201710677052A CN 107378687 A CN107378687 A CN 107378687A
Authority
CN
China
Prior art keywords
grinding
mrow
msub
grinding wheel
aspheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710677052.6A
Other languages
Chinese (zh)
Other versions
CN107378687B (en
Inventor
刘立飞
张飞虎
付鹏强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201710677052.6A priority Critical patent/CN107378687B/en
Publication of CN107378687A publication Critical patent/CN107378687A/en
Application granted granted Critical
Publication of CN107378687B publication Critical patent/CN107378687B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,本发明涉及大口径反射镜迭代预补偿磨削方法。本发明为了解决现有技术是在固定名义磨削深度的情况下通过多次更换砂轮反复磨削来达到目标面形精度,导致砂轮损耗严重、面形精度差低以及磨削效率低的问题。本发明包括:一:建立砂轮磨削比G关于磨削参数的预测模型;二:建立磨削过程中砂轮磨削点处径向尺寸磨损量预测模型;三:建立非球面面形误差预测模型;四:通过迭代预补偿法计算非球面母线上各点磨削面形误差值,直至满足要求;步骤五:记录迭代过程中各接触点处名义磨削深度最终预测值,进行数控磨削加工编程及后续加工。本发明用于光学非球面反射镜磨削加工技术领域。

An iterative pre-compensation grinding method for a large-diameter reflector based on grinding wheel wear prediction, and the invention relates to an iterative pre-compensation grinding method for a large-diameter reflector. The present invention aims to solve the problems in the prior art that the target surface accuracy is achieved through repeated grinding with multiple replacements of the grinding wheel under the condition of a fixed nominal grinding depth, resulting in serious wear of the grinding wheel, poor surface accuracy and low grinding efficiency. The present invention includes: 1. Establishing a prediction model of grinding wheel grinding ratio G on grinding parameters; 2. Establishing a prediction model of radial dimension wear at the grinding point of the grinding wheel during the grinding process; 3. Establishing a prediction model of aspheric surface shape error ; 4: Calculate the error value of the grinding surface shape at each point on the aspheric generatrix through the iterative pre-compensation method until the requirements are met; Step 5: Record the final predicted value of the nominal grinding depth at each contact point during the iterative process, and perform CNC grinding programming and subsequent processing. The invention is used in the technical field of grinding of optical aspheric mirrors.

Description

一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法An Iterative Pre-Compensation Grinding Method for Large-aperture Mirrors Based on Grinding Wheel Wear Prediction

技术领域technical field

本发明涉及光学非球面反射镜磨削加工技术领域,特别涉及大口径反射镜迭代预补偿磨削方法。The invention relates to the technical field of grinding of optical aspheric mirrors, in particular to an iterative pre-compensation grinding method for large-diameter mirrors.

背景技术Background technique

随着宇航空间技术的迅速发展,人类对宇宙及太空的深远探索越来越频繁,对空间光学系统有了更高精度的需求,光学反射镜是空间光学设备(如空间望远镜等)关键部件,对反射镜基体的精度、稳定性及寿命等的要求更是越来越高,对材料性能要求更加苛刻,目前的空间镜片材料主要采用硅、光学玻璃、SiC陶瓷等,SiC陶瓷具有比强度、高比刚度、高耐腐蚀及高尺寸稳定性等优点,在航空航天光学系统反射镜中的应用越来越广泛,SiC陶瓷反射镜口径也越来越大,且由于它们较高的硬脆特性,使得超精密磨料加工成为当前这些空间镜片材料主要加工手段,高精度磨削成形在磨料加工过程中具有较高的去除效率,成为提高大镜加工效率和加工精度起着非常关键的作用。With the rapid development of aerospace technology, the far-reaching exploration of the universe and space by humans has become more and more frequent, and there is a demand for higher precision in space optical systems. Optical mirrors are key components of space optical equipment (such as space telescopes, etc.). The requirements for the accuracy, stability and life of the mirror substrate are getting higher and higher, and the requirements for material performance are more stringent. The current space lens materials mainly use silicon, optical glass, SiC ceramics, etc. SiC ceramics have specific strength, With the advantages of high specific stiffness, high corrosion resistance and high dimensional stability, it is more and more widely used in aerospace optical system mirrors, and the caliber of SiC ceramic mirrors is also increasing, and because of their high hardness and brittle characteristics , so that ultra-precision abrasive processing has become the main processing method for these space lens materials. High-precision grinding and forming have a high removal efficiency in the abrasive processing process, which plays a very key role in improving the processing efficiency and processing accuracy of large mirrors.

由于由于SiC陶瓷具有高硬度高脆性的材料特性,在大口径反射镜加工过程中普通的陶瓷基金刚石砂轮磨损非常严重,在一次磨削成形过程中金刚石砂轮的径向磨损量高达数十微米,且需要频繁更换砂轮,使得非球面磨削面形误差大、磨削效率低。因此,需要设计开发具有较长使用寿命的砂轮及满足大口径SiC陶瓷反射镜磨削加工的新工艺、新方法。使大口径SiC陶瓷磨削过程中可以避免频繁更换砂轮,达到一片砂轮一次磨削即可完成非球面成形且具有较高面形精度的目的。Due to the material characteristics of high hardness and high brittleness of SiC ceramics, the wear of ordinary ceramic-based diamond grinding wheels is very serious during the processing of large-diameter mirrors. And the grinding wheel needs to be replaced frequently, which makes the aspherical grinding surface shape error large and the grinding efficiency low. Therefore, it is necessary to design and develop a grinding wheel with a long service life and a new process and method for grinding large-diameter SiC ceramic mirrors. In the grinding process of large-diameter SiC ceramics, frequent replacement of grinding wheels can be avoided, and the aspheric surface can be formed by one grinding wheel with high surface accuracy.

传统的非球面磨削一般采用陶瓷基金刚石砂轮进行磨削,由于陶瓷结合剂具有非常高的脆性,磨削过程中基体磨损快,砂轮尺寸及形状精度磨损严重,而金属结合剂砂轮因其具有磨粒把持力强、结合强度高、耐磨性好、能承受较大的磨削压力等特点,具有较长的使用寿命,可以用于大口径SiC陶瓷反射镜磨削过程。且金属结合剂金刚石砂轮可以使用ELID在线电解修锐技术,可以使砂轮在磨削过程中保持较高的锋锐度,以获得良好稳定的加工质量。Traditional aspheric grinding generally uses vitrified diamond grinding wheels for grinding. Due to the high brittleness of vitrified bonds, the substrate wears quickly during the grinding process, and the size and shape accuracy of the grinding wheels are severely worn. It has the characteristics of strong abrasive grain holding force, high bonding strength, good wear resistance, and can withstand high grinding pressure. It has a long service life and can be used in the grinding process of large-diameter SiC ceramic mirrors. And the metal-bonded diamond grinding wheel can use ELID online electrolytic sharpening technology, which can keep the grinding wheel at a high sharpness during the grinding process, so as to obtain good and stable processing quality.

大口径SiC陶瓷反射镜磨削过程中砂轮磨损是不可避免的,且非球面磨削砂轮从非球面中心沿母线方向向边缘移动时材料去除量逐渐增大,导致砂轮磨损不均匀,面形误差也存在较大区别,传统磨削是在固定名义磨削深度的情况下通过多次更换砂轮反复磨削来达到目标面形精度,砂轮损耗严重,面形精度差,磨削效率低,因此,亟需对大口径非球面磨削加工方法及工艺进行优化和改进。Grinding wheel wear is unavoidable in the grinding process of large-diameter SiC ceramic mirrors, and the amount of material removal gradually increases when the aspheric grinding wheel moves from the center of the aspheric surface along the direction of the generatrix to the edge, resulting in uneven wear of the grinding wheel and surface shape errors. There is also a big difference. In traditional grinding, the target surface accuracy is achieved by repeated grinding with multiple replacements of the grinding wheel under the condition of a fixed nominal grinding depth. The wear of the grinding wheel is serious, the surface accuracy is poor, and the grinding efficiency is low. Therefore, It is urgent to optimize and improve the large-diameter aspheric grinding method and process.

发明内容Contents of the invention

本发明的目的是为了解决现有技术是在固定名义磨削深度的情况下通过多次更换砂轮反复磨削来达到目标面形精度,导致砂轮损耗严重、面形精度差低以及磨削效率低的问题,而提出一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法。The purpose of the present invention is to solve the problem that in the prior art, the target surface accuracy is achieved by repeatedly replacing the grinding wheel and grinding repeatedly under the condition of a fixed nominal grinding depth, resulting in serious wear of the grinding wheel, poor surface accuracy and low grinding efficiency. In this paper, an iterative pre-compensation grinding method for large-aperture mirrors based on grinding wheel wear prediction is proposed.

一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法包括以下步骤:An iterative precompensation grinding method for large-aperture mirrors based on grinding wheel wear prediction includes the following steps:

本发明方法是在仅考虑有与砂轮尺寸磨损引起的非球面磨削面形误差的基础上实施的。本发明方法通过金刚石砂轮基础磨削磨损实验建立砂轮圆弧轮廓尺寸磨损预测模型,进而根据磨削原理及磨削过程中砂轮-工件几何接触模型建立一次磨削过程中非球面母线上各点的面形误差预测模型;将预测面形误差通过变换改变对应点处的名义磨削深度,并依据修正后的名义磨削深度对非球面磨削面形误差重新预测,以此方式对对应磨削点处的名义磨削深度进行多次迭代修正,直到预测非球面磨削面形误差最大值小于面形误差允许值。本发明方法以使用寿命长金属结合剂金刚石砂轮作为磨削工具,不进行大口径非球面磨削即可提出满足面形误差要求的砂轮磨削轨迹,避免了重复更换砂轮操作,提高了非球面磨削精度和磨削效率。The method of the present invention is implemented on the basis of only considering the aspheric grinding surface shape error caused by the size wear of the grinding wheel. The method of the present invention establishes the wear prediction model of the arc profile size of the grinding wheel through the basic grinding wear experiment of the diamond grinding wheel, and then establishes the parameters of each point on the aspheric generatrix in the grinding process according to the grinding principle and the grinding wheel-workpiece geometric contact model in the grinding process. Surface error prediction model; the predicted surface error is transformed to change the nominal grinding depth at the corresponding point, and the aspherical grinding surface error is re-predicted according to the corrected nominal grinding depth, in this way the corresponding grinding The nominal grinding depth at the point is corrected iteratively until the maximum value of the predicted aspheric grinding surface error is less than the allowable value of the surface error. The method of the invention uses a metal bond diamond grinding wheel with a long service life as a grinding tool, and can propose a grinding wheel grinding track that meets the surface shape error without performing large-diameter aspheric surface grinding, thereby avoiding repeated operations of replacing the grinding wheel and improving the aspheric surface Grinding accuracy and grinding efficiency.

步骤一:使用金属结合剂圆弧面金刚石砂轮进行磨削实验,利用回归分析法建立砂轮磨削比G关于磨削参数的预测模型;Step 1: Carry out a grinding experiment with a metal-bonded arc-shaped diamond grinding wheel, and use regression analysis to establish a prediction model for grinding wheel grinding ratio G on grinding parameters;

其中αp为磨削深度,vs为砂轮线速度,vw为砂轮进给速度,k、a、b、c为常数,磨削参数是指αp、vs和vwAmong them, α p is the grinding depth, v s is the linear speed of the grinding wheel, v w is the feed speed of the grinding wheel, k, a, b, c are constants, and the grinding parameters refer to α p , v s and v w ;

步骤二:根据非球面母线表达式,结合非球面材料磨削去除体积与砂轮体积磨损量的关系,建立磨削过程中砂轮磨削点处径向尺寸磨损量预测模型;Step 2: According to the expression of the generatrix of the aspheric surface, combined with the relationship between the grinding removal volume of the aspheric surface material and the volumetric wear of the grinding wheel, a prediction model for the radial dimension wear at the grinding point of the grinding wheel during the grinding process is established;

Δrx=f(αp,vs,vw,R,r,Vw)Δr x =f(α p ,v s ,v w ,R,r,V w )

其中R为砂轮基圆半径,r为砂轮圆弧面半径,Vw为非球面磨削去除体积;Where R is the radius of the base circle of the grinding wheel, r is the radius of the arc surface of the grinding wheel, and V w is the volume removed by aspheric grinding;

步骤三:利用步骤二建立的砂轮径向尺寸磨损量预测模型,根据非球面母线上面形误差与砂轮径向尺寸磨损量几何关系,建立非球面面形误差预测模型;Step 3: Utilize the prediction model for the wear amount of the radial dimension of the grinding wheel established in step 2, and establish an aspherical surface shape error prediction model according to the geometric relationship between the upper shape error of the aspheric generatrix and the wear amount of the radial dimension of the grinding wheel;

步骤四:利用步骤三中建立的面形误差预测模型,计算非球面母线上各点的磨削面形误差值,在非球面上建立笛卡尔坐标系,以非球面回转中心为z轴,沿母线水平方向为x轴,若x坐标点(接触点)的磨削面形误差值大于目标面形误差值,则对x坐标点的名义磨削深度进行迭代预补偿处理,并计算迭代预补偿后该点的面形误差值,直至该点面形误差计算值小于目标面形误差值,进行x+1坐标点的处理;若x坐标点的磨削面形误差值小于等于目标面形误差值,则进行x+1坐标点的处理,直至非球面母线上所有点的磨削面形误差值均小于等于目标面形误差值为止;Step 4: Using the surface shape error prediction model established in step 3, calculate the grinding surface shape error value of each point on the aspheric surface generatrix, establish a Cartesian coordinate system on the aspheric surface, take the center of rotation of the aspheric surface as the z-axis, and move along the The horizontal direction of the bus is the x-axis. If the grinding surface error value of the x-coordinate point (contact point) is greater than the target surface-shape error value, iterative pre-compensation is performed on the nominal grinding depth of the x-coordinate point and the iterative pre-compensation is calculated. After the surface shape error value of this point, until the calculated value of the surface shape error at this point is less than the target surface shape error value, the processing of the x+1 coordinate point is carried out; if the grinding surface shape error value of the x coordinate point is less than or equal to the target surface shape error value, then process the x+1 coordinate point until the grinding surface shape error values of all points on the aspheric generatrix are less than or equal to the target surface shape error value;

步骤五:记录迭代过程中各接触点处名义磨削深度最终预测值,进行数控磨削加工编程及后续加工。Step 5: Record the final predicted value of the nominal grinding depth at each contact point during the iterative process, and perform CNC grinding programming and subsequent processing.

本发明的有益效果为:The beneficial effects of the present invention are:

采用金属结合剂金刚石砂轮,有效提高了砂轮使用寿命,同时,为砂轮的在线电解修整提供可能;通过普通磨削实验得到圆弧砂轮轮廓尺寸磨损模型,用于非球面磨削面形误差预测,本发明方法可以在大口径非球面磨削前依据本发明提供的理论模型确定砂轮实时磨削点的名义磨削深度和运动轨迹,使用金属结合剂金刚石砂轮实现非球面面形的一次磨削成形,避免了砂轮更换和反复磨削的过程,提高了磨削面形精度和磨削加工效率。本发明首次提出以迭代的方式对不同砂轮-工件接触点名义磨削深度进行预补偿(即采用非球面母线上各点变名义磨削深度),提出变名义磨削深度磨削方法,避免了以往频繁更换砂轮及多次磨削过程,简化了非球面磨削工艺过程,大口径反射镜磨削效率可提高3到5倍。The use of metal-bonded diamond grinding wheels effectively improves the service life of the grinding wheel, and at the same time provides the possibility for online electrolytic dressing of the grinding wheel; through ordinary grinding experiments, the wear model of the contour size of the arc grinding wheel is obtained, which is used for the prediction of the aspheric grinding surface shape error, The method of the present invention can determine the nominal grinding depth and motion track of the real-time grinding point of the grinding wheel according to the theoretical model provided by the present invention before grinding the large-diameter aspheric surface, and use the metal bond diamond grinding wheel to realize the primary grinding and forming of the aspherical surface , avoiding the process of grinding wheel replacement and repeated grinding, improving the grinding surface shape accuracy and grinding efficiency. The present invention proposes to pre-compensate the nominal grinding depths of different grinding wheel-workpiece contact points in an iterative manner for the first time (that is, adopting various points on the aspheric surface generatrix to change the nominal grinding depths), and proposes a method of changing the nominal grinding depths, which avoids the In the past, frequent replacement of grinding wheels and multiple grinding processes have simplified the aspheric grinding process, and the grinding efficiency of large-diameter mirrors can be increased by 3 to 5 times.

附图说明Description of drawings

图1为本发明中使用的金属结合剂金刚石砂轮轮廓及尺寸磨损示意图。其中,r为砂轮圆弧半径,R为砂轮基圆半径,Δr为砂轮圆弧半径磨损量,O(x0,z0)为砂轮回转中心。Fig. 1 is the schematic diagram of profile and size wear of the metal bond diamond grinding wheel used in the present invention. Among them, r is the arc radius of the grinding wheel, R is the radius of the base circle of the grinding wheel, Δr is the wear amount of the arc radius of the grinding wheel, and O(x 0 , z 0 ) is the center of rotation of the grinding wheel.

图2为本发明流程图。Fig. 2 is a flowchart of the present invention.

具体实施方式detailed description

具体实施方式一:如图2所示,一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法包括以下步骤:Specific embodiment one: as shown in Figure 2, a kind of iterative pre-compensation grinding method for large-diameter mirrors based on grinding wheel wear prediction includes the following steps:

首先建立金属结合剂金刚石砂轮尺寸磨损预测模型,根据非球面反射镜镜体材料-SiC陶瓷材料特性选择金属结合剂圆弧面金刚石砂轮,其结合剂结合强度高,可以有效提高砂轮使用寿命,在此基础上确定砂轮组织参数及形状参数;利用磨削比原理,使用金属结合剂金刚石砂轮进行磨削实验,确定砂轮尺寸磨损量与磨削去除材料体积及磨削工艺参数的关系模型,用于预测不同磨削参数及材料去除量条件下砂轮尺寸磨损量。大口径一般指1.5m以上。Firstly, the size and wear prediction model of metal bonded diamond grinding wheel is established, and the metal bonded arc-shaped diamond grinding wheel is selected according to the characteristics of the aspheric mirror body material-SiC ceramic material. The bonding strength of the bond is high, which can effectively improve the service life of the grinding wheel. On this basis, the organizational parameters and shape parameters of the grinding wheel are determined; using the principle of grinding ratio, the metal bonded diamond grinding wheel is used for grinding experiments to determine the relationship model between the size of the grinding wheel, the volume of material removed by grinding, and the grinding process parameters. Predict wheel size wear for different grinding parameters and material removal. Large diameter generally refers to more than 1.5m.

步骤一:使用金属结合剂圆弧面金刚石砂轮进行磨削实验,利用回归分析法建立砂轮磨削比G关于磨削参数的预测模型;Step 1: Carry out a grinding experiment with a metal-bonded arc-shaped diamond grinding wheel, and use regression analysis to establish a prediction model for grinding wheel grinding ratio G on grinding parameters;

其中αp为磨削深度,vs为砂轮线速度,vw为砂轮进给速度,k、a、b、c为常数,通过磨削实验及回归分析确定。Among them, α p is the grinding depth, v s is the linear speed of the grinding wheel, v w is the feed speed of the grinding wheel, k, a, b, c are constants, which are determined through grinding experiments and regression analysis.

设计金属结合剂圆弧金刚石砂轮,砂轮组织参数及轮廓参数,砂轮形状如图1所示。Design the metal bond arc diamond grinding wheel, the structure parameters and contour parameters of the grinding wheel, and the shape of the grinding wheel is shown in Figure 1.

步骤二:根据非球面母线表达式,结合非球面材料磨削去除体积与砂轮体积磨损量的关系,建立磨削过程中砂轮磨削点处径向尺寸磨损量预测模型;Step 2: According to the expression of the generatrix of the aspheric surface, combined with the relationship between the grinding removal volume of the aspheric surface material and the volumetric wear of the grinding wheel, a prediction model for the radial dimension wear at the grinding point of the grinding wheel during the grinding process is established;

Δrx=f(αp,vs,vw,R,r,Vw)Δr x =f(α p ,v s ,v w ,R,r,V w )

其中R为砂轮基圆半径,r为砂轮圆弧面半径,Vw为非球面磨削去除体积;Where R is the radius of the base circle of the grinding wheel, r is the radius of the arc surface of the grinding wheel, and V w is the volume removed by aspheric grinding;

步骤三:利用步骤二建立的砂轮径向尺寸磨损量预测模型,根据非球面母线上面形误差与砂轮径向尺寸磨损量几何关系,建立非球面面形误差预测模型;Step 3: Utilize the prediction model for the wear amount of the radial dimension of the grinding wheel established in step 2, and establish an aspherical surface shape error prediction model according to the geometric relationship between the upper shape error of the aspheric generatrix and the wear amount of the radial dimension of the grinding wheel;

步骤四:利用步骤三中建立的面形误差预测模型,计算非球面母线上各点的磨削面形误差值,在非球面上建立笛卡尔坐标系,以非球面回转中心为z轴,沿母线水平方向为x轴,若x坐标点(接触点)的磨削面形误差值大于目标面形误差值,则对x坐标点的名义磨削深度进行迭代预补偿处理,并计算迭代预补偿后该点的面形误差值,直至该点面形误差计算值小于目标面形误差值,进行x+1坐标点的处理;若x坐标点的磨削面形误差值小于等于目标面形误差值,则进行x+1坐标点的处理,直至非球面母线上所有点的磨削面形误差值均小于等于目标面形误差值为止;Step 4: Using the surface shape error prediction model established in step 3, calculate the grinding surface shape error value of each point on the aspheric surface generatrix, establish a Cartesian coordinate system on the aspheric surface, take the center of rotation of the aspheric surface as the z-axis, and move along the The horizontal direction of the bus is the x-axis. If the grinding surface error value of the x-coordinate point (contact point) is greater than the target surface-shape error value, iterative pre-compensation is performed on the nominal grinding depth of the x-coordinate point and the iterative pre-compensation is calculated. After the surface error value of the point, until the calculated value of the point surface error is less than the target surface error value, the processing of the x+1 coordinate point is performed; if the grinding surface error value of the x coordinate point is less than or equal to the target surface error value value, then process the x+1 coordinate point until the grinding surface shape error values of all points on the aspheric generatrix are less than or equal to the target surface shape error value;

步骤五:记录迭代过程中各接触点处名义磨削深度最终预测值,进行数控磨削加工编程及后续加工。Step 5: Record the final predicted value of the nominal grinding depth at each contact point during the iterative process, and perform CNC grinding programming and subsequent processing.

本发明提供了一种大口径超硬材料反射镜磨削砂轮运动轨迹规划及实时磨削点名义磨削深度迭代预测方法。本发明方法在仅考虑砂轮尺寸磨损对非球面反射镜磨削面形误差的影响的基础上,首先通过理论和实验研究建立相同磨削条件下圆弧金刚石砂轮形状及尺寸磨损量关于磨削参数的预测模型,通过理论分析非球面母线方向不同磨削点处砂轮尺寸磨损量与面形误差的关系,建立实时砂轮-工件磨削接触点处由砂轮尺寸磨损引起的面形误差预测模型,以目标面形误差为标准,通过一定的转换模型将预测面形误差迭加到实时磨削点处的名义磨削深度上,最终在满足非球面各点处的非球面磨削面形误差均小于目标面形误差时停止迭代,确定实际磨削过程中的不同磨削点名义磨削深度并以此为基础规划砂轮回转中心运动轨迹。本发明方法可以在不实施大口径非球面磨削的基础上确定砂轮实时磨削点的名义磨削深度和运动轨迹,选择金属结合剂金刚石砂轮作为磨削工具以实现面形的一次成形,提高了磨削面形精度和磨削加工效率。The invention provides a large-diameter superhard material reflector grinding wheel motion track planning and real-time grinding point nominal grinding depth iterative prediction method. The method of the present invention is on the basis of only considering the impact of grinding wheel size wear on the aspheric reflector grinding surface shape error, first establishes the arc diamond grinding wheel shape and size wear amount on the grinding parameters under the same grinding conditions through theoretical and experimental research. Through the theoretical analysis of the relationship between the size wear of the grinding wheel and the surface shape error at different grinding points in the direction of the aspheric generatrix, a real-time prediction model of the surface shape error caused by the grinding wheel size wear at the grinding wheel-workpiece contact point is established. The target surface shape error is the standard, and the predicted surface shape error is superimposed on the nominal grinding depth at the real-time grinding point through a certain conversion model, and finally the aspheric grinding surface shape error at each point that satisfies the aspheric surface is less than The iteration is stopped when the target surface shape error is reached, the nominal grinding depth of different grinding points in the actual grinding process is determined, and the trajectory of the grinding wheel rotation center is planned based on this. The method of the present invention can determine the nominal grinding depth and motion trajectory of the real-time grinding point of the grinding wheel on the basis of not implementing large-diameter aspherical surface grinding, and select the metal bond diamond grinding wheel as the grinding tool to realize the one-time forming of the surface shape, and improve the Improve the grinding surface accuracy and grinding efficiency.

具体实施方式二:本实施方式与具体实施方式一不同的是:所述步骤三中建立磨削过程中非球面母线上砂轮与工件接触点的面形误差预测模型具体为:Specific embodiment two: the difference between this embodiment and specific embodiment one is: the surface shape error prediction model of the contact point between the grinding wheel and the workpiece on the aspheric generatrix in the grinding process is established in the step three, specifically:

其中Ex为非球面母线上距离回转中心x坐标点处的非球面磨削面形误差,用非球面检测矢量高与非球面理想矢量高的差值表示,βx为非球面母线上距离回转中心x点处的切线倾斜角度。Where E x is the aspheric grinding surface shape error at the x coordinate point on the aspheric generatrix from the center of gyration, expressed by the difference between the aspheric surface detection vector height and the aspheric ideal vector height, β x is the distance rotation on the aspheric surface generatrix Tangent tilt angle at center x point.

在金刚石砂轮尺寸磨损预测模型的基础上,给出回转非球面反射镜母线表达式,初始磨削参数工艺参数,依据磨削原理、非球面轮廓模型及砂轮-工件接触几何关系模型,分析磨削过程中砂轮-工件接触点处材料磨削去除体积、磨削工艺参数与砂轮尺寸磨损量的关系,建立磨削过程中非球面母线上砂轮-工件接触点的面形误差预测模型。On the basis of the diamond grinding wheel size and wear prediction model, the generatrix expression of the rotary aspheric mirror, the initial grinding parameters and process parameters are given, and the grinding is analyzed based on the grinding principle, aspheric surface profile model and the contact geometric relationship model between the grinding wheel and the workpiece. During the grinding process, the relationship between the material removal volume at the grinding wheel-workpiece contact point, the grinding process parameters and the wear amount of the grinding wheel is established, and the surface shape error prediction model of the grinding wheel-workpiece contact point on the aspheric generatrix during the grinding process is established.

其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in Embodiment 1.

具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述步骤四中若x坐标点的磨削面形误差值大于目标面形误差值,则对x坐标点的名义磨削深度进行迭代预补偿处理的具体过程为:Specific embodiment three: the difference between this embodiment and specific embodiment one or two is: if the grinding surface shape error value of the x coordinate point is greater than the target surface shape error value in the step 4, then the nominal grinding surface of the x coordinate point The specific process of iterative precompensation processing for cutting depth is as follows:

通过增加磨削点的名义磨削深度补偿由于砂轮磨损引起的非球面面形误差,将x坐标点的磨削面形误差值经过转换后迭加到名义磨削深度上,并以迭加后的新的名义磨削深度进行磨削,计算迭代预补偿后的面形误差值;经过多次迭代预补偿直至x坐标点的磨削面形误差预测值小于目标面形误差值时,x坐标点名义磨削深度迭加结束,记录此时x点处的名义磨削深度αpx(n)及迭代次数n,进行x+1坐标点名义磨削深度的迭加计算;By increasing the nominal grinding depth of the grinding point to compensate the aspheric surface error caused by the wear of the grinding wheel, the grinding surface error value of the x-coordinate point is converted and superimposed on the nominal grinding depth, and the superposition is Grinding at the new nominal grinding depth, and calculating the surface error value after iterative pre-compensation; after multiple iterations of pre-compensation until the predicted value of the grinding surface error at the x coordinate point is less than the target surface error value, the x coordinate When the superposition of the nominal grinding depth at point x is over, record the nominal grinding depth α px(n) and the number of iterations n at point x at this time, and perform the superposition calculation of the nominal grinding depth of the x+1 coordinate point;

迭加后的名义磨削深度表达式如下:The nominal grinding depth expression after superposition is as follows:

αpx(n)=αpx(n-1)x(n-1)(n≥2)α px(n) =α px(n-1)x(n-1) (n≥2)

其中εx(n-1)为x坐标点第n-1次迭代后得到的磨削面形误差计算值,αpx(1)=αp Where ε x(n-1) is the calculated value of the grinding surface shape error obtained after the n-1 iteration of the x coordinate point, α px(1) = α p ,

其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2.

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述名义磨削深度的迭代过程中,x坐标点第n次迭代后的预测非球面面形误差由如下所示的方程式表示:Specific Embodiment 4: The difference between this embodiment and one of specific embodiments 1 to 3 is that: in the iterative process of the nominal grinding depth, the predicted aspheric surface shape error after the nth iteration of the x coordinate point is as follows The equation says:

其中,为在x坐标点处名义磨削深度为αpx(n)时面形误差的预测值,即:为前n-1次迭代计算得出的面形误差的和。in, is the predicted value of the surface shape error when the nominal grinding depth at the x coordinate point is α px(n) , that is: Sum of surface shape errors computed for the first n-1 iterations.

通过本发明方法得到的非球面不同磨削接触点处的名义磨削深度αpx(n)和迭代次数n均不相同。The nominal grinding depth α px(n) and the number of iterations n at different grinding contact points of the aspheric surface obtained by the method of the present invention are all different.

其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in Embodiments 1 to 3.

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述步骤五中确定的砂轮回转中心在磨削过程中的移动轨迹具体为:Embodiment 5: This embodiment differs from Embodiment 1 to Embodiment 4 in that: the movement track of the center of rotation of the grinding wheel determined in step 5 during the grinding process is specifically:

其中x0为砂轮回转中心x轴坐标值,z0为砂轮回转中心z轴坐标值。Among them, x 0 is the x-axis coordinate value of the grinding wheel rotation center, and z 0 is the z-axis coordinate value of the grinding wheel rotation center.

其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as one of the specific embodiments 1 to 4.

本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention.

Claims (5)

1.一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,其特征在于:所述基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法包括以下步骤:1. a large-diameter mirror iterative pre-compensation grinding method based on emery wheel wear prediction, is characterized in that: the large-diameter mirror iterative pre-compensation grinding method based on emery wheel wear prediction comprises the following steps: 步骤一:使用金属结合剂圆弧面金刚石砂轮进行磨削实验,利用回归分析法建立砂轮磨削比G关于磨削参数的预测模型;Step 1: Carry out a grinding experiment with a metal-bonded arc-shaped diamond grinding wheel, and use regression analysis to establish a prediction model for grinding wheel grinding ratio G on grinding parameters; <mrow> <mi>G</mi> <mo>=</mo> <mi>k</mi> <mo>&amp;CenterDot;</mo> <msubsup> <mi>&amp;alpha;</mi> <mi>p</mi> <mi>a</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>v</mi> <mi>w</mi> <mi>c</mi> </msubsup> </mrow> <mrow><mi>G</mi><mo>=</mo><mi>k</mi><mo>&amp;CenterDot;</mo><msubsup><mi>&amp;alpha;</mi><mi>p</mi><mi>a</mi></msubsup><mo>&amp;CenterDot;</mo><msubsup><mi>v</mi><mi>s</mi><mi>b</mi></msubsup><mo>&amp;CenterDot;</mo><msubsup><mi>v</mi><mi>w</mi><mi>c</mi></msubsup></mrow> 其中αp为磨削深度,vs为砂轮线速度,vw为砂轮进给速度,k、a、b、c为常数;Among them, α p is the grinding depth, v s is the linear speed of the grinding wheel, v w is the feed speed of the grinding wheel, and k, a, b, c are constants; 步骤二:根据非球面母线表达式,结合非球面材料磨削去除体积与砂轮体积磨损量的关系,建立磨削过程中砂轮磨削点处径向尺寸磨损量预测模型;Step 2: According to the expression of the generatrix of the aspheric surface, combined with the relationship between the grinding removal volume of the aspheric surface material and the volumetric wear of the grinding wheel, a prediction model for the radial dimension wear at the grinding point of the grinding wheel during the grinding process is established; Δrx=f(αp,vs,vw,R,r,Vw)Δr x =f(α p ,v s ,v w ,R,r,V w ) 其中R为砂轮基圆半径,r为砂轮圆弧面半径,Vw为非球面磨削去除体积;Where R is the radius of the base circle of the grinding wheel, r is the radius of the arc surface of the grinding wheel, and V w is the volume removed by aspheric grinding; 步骤三:利用步骤二建立的砂轮径向尺寸磨损量预测模型,根据非球面母线上面形误差与砂轮径向尺寸磨损量几何关系,建立非球面面形误差预测模型;Step 3: Utilize the prediction model for the wear amount of the radial dimension of the grinding wheel established in step 2, and establish an aspherical surface shape error prediction model according to the geometric relationship between the upper shape error of the aspheric generatrix and the wear amount of the radial dimension of the grinding wheel; 步骤四:利用步骤三中建立的面形误差预测模型,计算非球面母线上各点的磨削面形误差值,在非球面上建立笛卡尔坐标系,以非球面回转中心为z轴,沿母线水平方向为x轴,若x坐标点的磨削面形误差值大于目标面形误差值,则对x坐标点的名义磨削深度进行迭代预补偿处理,并计算迭代预补偿后该点的面形误差值,直至该点面形误差计算值小于目标面形误差值,进行x+1坐标点的处理;若x坐标点的磨削面形误差值小于等于目标面形误差值,则进行x+1坐标点的处理,直至非球面母线上所有点的磨削面形误差值均小于等于目标面形误差值为止;Step 4: Using the surface shape error prediction model established in step 3, calculate the grinding surface shape error value of each point on the aspheric surface generatrix, establish a Cartesian coordinate system on the aspheric surface, take the center of rotation of the aspheric surface as the z-axis, and move along the The horizontal direction of the bus is the x-axis. If the error value of the ground surface shape of the x-coordinate point is greater than the target surface shape error value, iterative pre-compensation is performed on the nominal grinding depth of the x-coordinate point, and the value of the point after iterative pre-compensation is calculated. Surface error value, until the calculated value of the point surface error is less than the target surface error value, the processing of the x+1 coordinate point is performed; if the grinding surface error value of the x coordinate point is less than or equal to the target surface error value, then proceed The x+1 coordinate point is processed until the grinding surface shape error value of all points on the aspheric generatrix is less than or equal to the target surface shape error value; 步骤五:记录迭代过程中各接触点处名义磨削深度最终预测值,确定的砂轮回转中心在磨削过程中的移动轨迹,进行数控磨削加工编程及后续加工。Step 5: Record the final predicted value of the nominal grinding depth at each contact point during the iterative process, the determined movement track of the grinding wheel rotation center during the grinding process, and perform CNC grinding programming and subsequent processing. 2.根据权利要求1所述的一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,其特征在于:所述步骤三中建立磨削过程中非球面母线上砂轮与工件接触点的面形误差预测模型具体为:2. A kind of iterative pre-compensation grinding method for large-diameter mirrors based on grinding wheel wear prediction according to claim 1, characterized in that: the contact point between the grinding wheel and the workpiece on the aspheric generatrix of the grinding process is established in the step 3 The surface shape error prediction model is specifically: <mrow> <msub> <mi>E</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;r</mi> <mi>x</mi> </msub> </mrow> <mrow> <msub> <mi>cos&amp;beta;</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mrow><msub><mi>E</mi><mi>x</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>&amp;Delta;r</mi><mi>x</mi></msub></mrow><mrow><msub><mi>cos&amp;beta;</mi><mi>x</mi></msub></mrow></mfrac></mrow> 其中Ex为非球面母线上距离回转中心x坐标点处的非球面磨削面形误差,βx为非球面母线上距离回转中心x点处的切线倾斜角度。Where E x is the aspheric grinding surface shape error at the x coordinate point on the aspheric generatrix from the center of gyration, and β x is the tangent inclination angle on the aspheric generatrix at the point x from the center of gyration. 3.根据权利要求2所述的一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,其特征在于:所述步骤四中若x坐标点的磨削面形误差值大于目标面形误差值,则对x坐标点的名义磨削深度进行迭代预补偿处理的具体过程为:3. A kind of iterative pre-compensation grinding method for large-diameter mirrors based on grinding wheel wear prediction according to claim 2, characterized in that: in said step 4, if the grinding surface shape error value of the x coordinate point is greater than the target surface The shape error value, the specific process of iterative pre-compensation for the nominal grinding depth of the x-coordinate point is: 通过增加磨削点的名义磨削深度补偿砂轮磨损引起的非球面面形误差,将x坐标点的磨削面形误差值迭加到名义磨削深度上,并以迭加后的新的名义磨削深度进行磨削,计算迭代预补偿后的面形误差值;经过迭代预补偿直至x坐标点的磨削面形误差预测值小于目标面形误差值时,x坐标点名义磨削深度迭加结束,记录此时x点处的名义磨削深度αpx(n)及迭代次数n,n≥2,进行x+1坐标点名义磨削深度的迭加计算;By increasing the nominal grinding depth of the grinding point to compensate for the aspherical surface error caused by the wear of the grinding wheel, superimpose the grinding surface error value of the x coordinate point on the nominal grinding depth, and use the superimposed new nominal Grinding at the grinding depth, calculate the surface error value after iterative pre-compensation; after iterative pre-compensation until the predicted value of the grinding surface error at the x coordinate point is less than the target surface error value, the nominal grinding depth at the x coordinate point is iterated At the end of the addition, record the nominal grinding depth α px(n) at point x and the number of iterations n, n≥2, and perform superposition calculation of the nominal grinding depth at x+1 coordinate point; 迭加后的名义磨削深度表达式如下:The nominal grinding depth expression after superposition is as follows: αpx(n)=αpx(n-1)x(n-1) α px(n) = α px(n-1)x(n-1) 其中εx(n-1)为x坐标点第n-1次迭代后得到的磨削面形误差计算值。Where ε x(n-1) is the calculated value of the grinding surface shape error obtained after the n-1 iteration of the x coordinate point. 4.根据权利要求3所述的一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,其特征在于:所述名义磨削深度的迭代过程中,x坐标点第n次迭代后的预测非球面面形误差由如下所示的方程式表示:4. A kind of iterative precompensation grinding method for large-diameter mirrors based on grinding wheel wear prediction according to claim 3, characterized in that: in the iterative process of the nominal grinding depth, after the nth iteration of the x coordinate point The predicted aspheric shape error for is expressed by the equation shown below: <mrow> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>p</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </msub> </mrow> <mrow><msub><mi>&amp;epsiv;</mi><mrow><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><msub><mi>E</mi><mrow><mi>x</mi><mrow><mo>(</mo><msub><mi>&amp;alpha;</mi><mrow><mi>p</mi><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msub><mo>)</mo></mrow></mrow></msub><mo>-</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></munderover><msub><mi>&amp;epsiv;</mi><mrow><mi>x</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></msub></mrow> 其中,为在x坐标点处名义磨削深度为αpx(n)时面形误差的预测值,即: 为前n-1次迭代计算得出的面形误差的和。in, is the predicted value of the surface shape error when the nominal grinding depth at the x coordinate point is α px(n) , that is: Sum of surface shape errors computed for the first n-1 iterations. 5.根据权利要求4所述的一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法,其特征在于:所述步骤五中确定的砂轮回转中心在磨削过程中的移动轨迹具体为:5. A kind of iterative pre-compensation grinding method for large-diameter mirrors based on grinding wheel wear prediction according to claim 4, characterized in that: the moving track of the grinding wheel center of rotation determined in the step 5 in the grinding process is specific for: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>&amp;Delta;r</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>p</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>w</mi> </msub> <mo>,</mo> <msub> <mi>V</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>,</mo> <msub> <mi>&amp;Delta;r</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>p</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>s</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>w</mi> </msub> <mo>,</mo> <msub> <mi>V</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mi>&amp;Delta;r</mi><mi>x</mi></msub><mo>,</mo><msub><mi>&amp;beta;</mi><mi>x</mi></msub><mo>,</mo><msub><mi>&amp;alpha;</mi><mrow><mi>p</mi><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msub><mo>,</mo><msub><mi>v</mi><mi>s</mi></msub><mo>,</mo><msub><mi>v</mi><mi>w</mi></msub><mo>,</mo><msub><mi>V</mi><mi>w</mi></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>z</mi><mn>0</mn></msub><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><msub><mi>&amp;Delta;r</mi><mi>x</mi></msub><mo>,</mo><msub><mi>&amp;beta;</mi><mi>x</mi></msub><mo>,</mo><msub><mi>&amp;alpha;</mi><mrow><mi>p</mi><mi>x</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msub><mo>,</mo><msub><mi>v</mi><mi>s</mi></msub><mo>,</mo><msub><mi>v</mi><mi>w</mi></msub><mo>,</mo><msub><mi>V</mi><mi>w</mi></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced> 其中x0为砂轮回转中心x轴坐标值,z0为砂轮回转中心z轴坐标值。Among them, x 0 is the x-axis coordinate value of the grinding wheel rotation center, and z 0 is the z-axis coordinate value of the grinding wheel rotation center.
CN201710677052.6A 2017-08-09 2017-08-09 Large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding Active CN107378687B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710677052.6A CN107378687B (en) 2017-08-09 2017-08-09 Large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710677052.6A CN107378687B (en) 2017-08-09 2017-08-09 Large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding

Publications (2)

Publication Number Publication Date
CN107378687A true CN107378687A (en) 2017-11-24
CN107378687B CN107378687B (en) 2019-03-12

Family

ID=60354362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710677052.6A Active CN107378687B (en) 2017-08-09 2017-08-09 Large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding

Country Status (1)

Country Link
CN (1) CN107378687B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109093454A (en) * 2018-10-15 2018-12-28 北京工业大学 A kind of thinned sub-surface damage depth fast evaluation method of Silicon Wafer
CN109249284A (en) * 2018-10-15 2019-01-22 基准精密工业(惠州)有限公司 Tool sharpening parameter compensation device and method
CN109483365A (en) * 2018-12-04 2019-03-19 天津津航技术物理研究所 A kind of calcium fluoride material ladder revolution non-spherical lens processing method
CN111638682A (en) * 2020-05-26 2020-09-08 四川新迎顺信息技术股份有限公司 Compensation method for grinding rear cutter face of peripheral tooth spiral blade by using worn grinding wheel
CN113275977A (en) * 2021-06-07 2021-08-20 中国工程物理研究院激光聚变研究中心 Method for determinacy compensating shape error of guide rail of aspheric optical element processing machine tool
CN118060977A (en) * 2023-07-31 2024-05-24 三力五金机械制品(深圳)有限公司 Aspheric optical lens fine grinding self-adaptive compensation method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088705A (en) * 2007-02-14 2007-12-19 长春设备工艺研究所 Efficient numerically controlled polishing process and apparatus for great aperture aspherical optical elements
CN102390045A (en) * 2011-07-01 2012-03-28 南京航空航天大学 Grinding tool capable of actively compensating surface shape abrasion errors and compensating method thereof
CN103862380A (en) * 2014-03-26 2014-06-18 上海交通大学 Analyzing and compensating system for optical mirror face few-axle grinding inclining cambered face grinding wheel errors
CN105014503A (en) * 2015-05-19 2015-11-04 上海交通大学 Precise grinding method for large-caliber axisymmetric aspheric surfaces
US20160008942A1 (en) * 2013-04-02 2016-01-14 Rodenstock Gmbh Creation of microstructured spectacle lenses in prescription lens production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088705A (en) * 2007-02-14 2007-12-19 长春设备工艺研究所 Efficient numerically controlled polishing process and apparatus for great aperture aspherical optical elements
CN102390045A (en) * 2011-07-01 2012-03-28 南京航空航天大学 Grinding tool capable of actively compensating surface shape abrasion errors and compensating method thereof
US20160008942A1 (en) * 2013-04-02 2016-01-14 Rodenstock Gmbh Creation of microstructured spectacle lenses in prescription lens production
CN103862380A (en) * 2014-03-26 2014-06-18 上海交通大学 Analyzing and compensating system for optical mirror face few-axle grinding inclining cambered face grinding wheel errors
CN105014503A (en) * 2015-05-19 2015-11-04 上海交通大学 Precise grinding method for large-caliber axisymmetric aspheric surfaces

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109093454A (en) * 2018-10-15 2018-12-28 北京工业大学 A kind of thinned sub-surface damage depth fast evaluation method of Silicon Wafer
CN109249284A (en) * 2018-10-15 2019-01-22 基准精密工业(惠州)有限公司 Tool sharpening parameter compensation device and method
CN109093454B (en) * 2018-10-15 2020-09-25 北京工业大学 A rapid assessment method for subsurface damage depth of silicon wafer thinning
CN109483365A (en) * 2018-12-04 2019-03-19 天津津航技术物理研究所 A kind of calcium fluoride material ladder revolution non-spherical lens processing method
CN109483365B (en) * 2018-12-04 2020-09-08 天津津航技术物理研究所 Method for processing calcium fluoride material step rotary aspheric lens
CN111638682A (en) * 2020-05-26 2020-09-08 四川新迎顺信息技术股份有限公司 Compensation method for grinding rear cutter face of peripheral tooth spiral blade by using worn grinding wheel
CN111638682B (en) * 2020-05-26 2023-04-28 四川新迎顺信息技术股份有限公司 A Compensation Method for Grinding the Flank Surface of Peripheral Tooth Helical Edge Using Abrasive Grinding Wheel
CN113275977A (en) * 2021-06-07 2021-08-20 中国工程物理研究院激光聚变研究中心 Method for determinacy compensating shape error of guide rail of aspheric optical element processing machine tool
CN118060977A (en) * 2023-07-31 2024-05-24 三力五金机械制品(深圳)有限公司 Aspheric optical lens fine grinding self-adaptive compensation method and device
CN118060977B (en) * 2023-07-31 2024-08-06 三力五金机械制品(深圳)有限公司 Aspheric optical lens fine grinding self-adaptive compensation method and device

Also Published As

Publication number Publication date
CN107378687B (en) 2019-03-12

Similar Documents

Publication Publication Date Title
CN107378687B (en) Large caliber reflecting mirror iteration based on abrasion of grinding wheel prediction pre-compensates for method for grinding
Beaucamp et al. Shape adaptive grinding of CVD silicon carbide
Yuan et al. Review on the progress of ultra-precision machining technologies
CN109968204B (en) An adaptive compensation method for CNC grinding shape error for mutual wear of grinding wheel workpieces
CN104741994A (en) Precise curved-surface grinding method for grinding wheel with any curved surface
Huang et al. Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts
CN102794688A (en) Reconstructing few-shaft ultra-precise large-size optical mirror grinding system
CN106514494B (en) A kind of ball-end grinding wheel precise dressing method based on Bi_arc fitting error compensation
CN1822919A (en) Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces
CN105397609B (en) A method for modifying the shape of a high-precision plane of an optical part
CN104044075B (en) Adopt the method rotating green silicon carbide frotton finishing resin basic circle arc diamond grindin g wheel
CN105643394A (en) High-efficiency and high-precision advanced manufacturing technology process for medium or large caliber aspherical optical element
CN107598715A (en) Large-caliber special-shaped plane machining method
Shimeng et al. Profile error compensation in precision grinding of ellipsoid optical surface
CN103481124B (en) A Diamond Grinding Method Based on Complicated Trajectories
CN104385083B (en) Cup emery wheel variable location basic circle convex surface workpiece grinding processing method
Stowers et al. Review of precision surface generating processes and their potential application to the fabrication of large optical components
CN106002635A (en) Diamond ball end grinding wheel precision in-place truing device and method based on green silicon carbide disc
CN106625036B (en) Axisymmetric continuous surface resin base diamond grinding wheel superfine grinding method
CN104385084B (en) Five-axis grinding method for variably-formed base circle planar envelope convex surface workpiece
CN102756335A (en) High-precision efficient stepped grinding wheel dresser
Chen et al. Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels
CN112658812B (en) A CCOS shear thickening polishing method
Yang et al. Introduction to precision machines
Yu et al. On a novel lapping method for RB-SiC ceramic materials by integration of fixed-abrasive with even-sprayed micro-droplets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant