CN107358145A - 图像传感器及电子装置 - Google Patents
图像传感器及电子装置 Download PDFInfo
- Publication number
- CN107358145A CN107358145A CN201710359867.XA CN201710359867A CN107358145A CN 107358145 A CN107358145 A CN 107358145A CN 201710359867 A CN201710359867 A CN 201710359867A CN 107358145 A CN107358145 A CN 107358145A
- Authority
- CN
- China
- Prior art keywords
- image
- information
- feature
- fingerprint
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title abstract 5
- 238000009434 installation Methods 0.000 title abstract 2
- 238000000605 extraction Methods 0.000 claims description 78
- 238000012545 processing Methods 0.000 claims description 46
- 238000003860 storage Methods 0.000 claims description 25
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000003909 pattern recognition Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 101100272667 Xenopus laevis ripply2.2 gene Proteins 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000036548 skin texture Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
- G06V40/1359—Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
- G06V40/1376—Matching features related to ridge properties or fingerprint texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/70—Multimodal biometrics, e.g. combining information from different biometric modalities
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明公开一种图像传感器及具有该图像传感器的电子装置。该图像传感器,包括图像采集单元和图像识别装置;所述图像采集单元用于采集图像信息,并将采集到的图像信息传输至所述图像识别装置,该图像识别装置通过第一特征信息和第二特征信息的设置,使得特征比对时,先将第一特征信息与指纹模板中的第一特征信息进行特征比对,获得比对一致的指纹模板;再将第二特征信息与比对一致的指纹模板中的第二特征信息进行特征比对,从而获得识别结果。该图像传感器加快了图像识别速度。
Description
技术领域
本发明涉及生物识别领域,尤其涉及一种图像传感器及电子装置。
背景技术
生物识别技术,尤其是指纹识别,被广泛应用于手机等智能终端上。由于智能终端的设置位置有限,再者进行生物图像感测时,感测面积越大则成本也越高,因此,图像感测面积有一定的限定,以指纹识别为例,目前常用的感应面积是整个手指指纹区域的25%~30%。
然,由于感测面积小,若要保证识别准确率,则必须采集多次进行注册,识别时则需要将待识别的图像信息与注册的所有模板一一比对后,才能获得识别结果。如此,使得图像识别耗时长,不利于用户体验。
发明内容
本发明实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施方式需要提供一种图像传感器及电子装置。
本发明实施方式的一种图像传感器,包括图像采集单元和图像识别装置;所述图像采集单元用于采集图像信息,并将采集到的图像信息传输至所述图像识别装置;
所述图像识别装置包括存储单元、特征提取单元以及特征比对单元;其中,
所述存储单元用于存储已注册的图像模板,所述图像模板包括第一特征信息和第二特征信息;
所述特征提取单元用于对经过图像采集获得的待识别图像进行特征提取,获得第一特征信息和第二特征信息;
所述特征比对单元用于将第一特征信息与所述存储单元存储的图像模板中的第一特征信息进行特征比对,获得比对一致的图像模板;将第二特征信息与比对一致的图像模板中的第二特征信息进行特征比对,获得识别结果。
在某些实施方式中,所述图像识别装置还包括处理电路,用于控制所述特征提取单元和所述特征比对单元进行工作;所述处理电路包括输入接口和输出接口,所述输入接口用于接收图像信息,所述输出接口用于输出所述识别结果。
在某些实施方式中,所述特征提取单元包括第一特征提取单元、第二特征提取单元,所述第一特征提取单元采用预设的第一特征提取规则对待识别图像进行特征提取,获得第一特征信息;所述第二特征提取单元采用预设的第二特征提取规则对待识别图像进行特征提取,获得第二特征信息。
在某些实施方式中,所述图像信息为指纹信息,所述第一特征信息包括指纹的类型、纹路的弯曲程度、和/或纹路的间隔宽度。
在某些实施方式中,所述第二特征信息包括指纹中脊部分和/或谷部分纹路的所有特征点信息。
在某些实施方式中,所述特征比对单元包括第一特征比对单元和第二特征比对单元。第一特征比对单元用于第一特征信息的特征比对,第二特征比对单元用于第二特征信息的特征比对。
在某些实施方式中,所述第一特征信息为对待识别图像进行编码聚类处理获得的编码特征信息。
在某些实施方式中,所述第一特征提取单元包括图像编码模块、特征归类统计模块;图像编码模块用于对待识别图像进行图像编码,获得初始编码特征;特征归类统计模块用于按照预设的编码特征类心对所述初始编码特征进行特征归类,并统计每个类的数目,形成最终的编码特征信息。
在某些实施方式中,所述预设的编码特征类心为预先设置,并存储在所述存储单元中;或者所述预设的编码特征类心通过在线的方式实时更新获得。
在某些实施方式中,所述特征提取单元还用于在进行特征提取之前,还对待识别图像进行预处理,所述预处理包括噪声处理、图像增强处理。
在某些实施方式中,所述图像传感器为生物识别传感器,用于识别生物特征信息。
在某些实施方式中,所述生物特征信息包括:指纹信息、掌纹信息、耳纹信息中的任意一种或几种。
本发明实施方式的一种电子装置,包括上述任一实施方式的图像传感器。
通过新的图像识别技术,使得图像传感器在进行图像识别时,具有如下有点:
(1)通过第一特征信息和第二特征信息的设置,在进行特征比对时,先进行第一特征信息的特征比对,快速过滤不匹配的指纹模板,再进行第二特征信息的特征比对时,就节省了第二特征信息的比对时间,提高了指纹识别速度。
(2)第一特征信息和第二特征信息可以并行进行特征提取,进一步提高了指纹识别速度。
(3)由于第一特征信息的提取速度比第二特征信息的提取速度快,因此可以先进行第一特征信息的比对,待第二特征信息提取后,再并行进行第二特征信息的特征比对,进一步提高了指纹识别速度。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的图像传感器中以指纹识别为例的指纹注册示意图;
图2是本发明实施方式的图像传感器中以指纹识别为例的指纹识别示意图;
图3是本发明实施方式的图像传感器的功能框图;
图4是本发明实施方式的图像识别装置的功能框图;
图5是本发明实施方式的图像传感器进行特征比对时特征信息与指纹模板的比对示意图;
图6是本发明实施方式的图像识别装置中第一特征提取单元的功能框图;
图7是本发明实施方式的图像传感器采集的一种平纹的指纹图像以及按照BSIF编码对其进行编码后获得的编码特征分布示意图;
图8是本发明实施方式的图像传感器采集的一种箩纹的指纹图像以及按照BSIF编码对其进行编码后获得的编码特征分布示意图;
图9是本发明实施方式的图像传感器所应用的电子装置一实施例的平面示意图;
图10是本发明实施方式的图像传感器所应用的电子装置另一实施例的功能框图;
图11是本发明实施方式的图像识别方法的注册过程的流程示意图;
图12是本发明实施方式的图像识别方法中存储的指纹模板示意图;
图13是本发明实施方式的图像识别方法的识别过程一实施例的流程示意图;
图14是本发明实施方式的图像识别方法的识别过程另一实施例的流程示意图;
图15是本发明实施方式的图像识别方法的识别过程又一实施例的流程示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本发明的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本发明。
本发明实施方式中的图像识别,是指利用图像传感器对放置在指定位置的目标物体进行图像采集,该采集到的图像将通过柔性印刷电路板或其他印刷电路传输至处理系统进行图像识别,即识别该图像是否已注册或登记,或者识别用户的身份等等。
请参阅图1及图2,以指纹识别为例,在对指纹图像进行识别之前,必须对用户的指纹图像进行注册。首先用户将需要注册的手指200放置在指定的位置,此时指纹采集单元103对手指的指纹进行采集,获得指纹图像。特征提取单元101则对指纹采集单元103获得的指纹图像进行指纹特征提取,获得指纹特征信息,并形成相应的指纹模板,存储至存储单元102的预定位置。如此重复多次,形成N个相应的指纹模板。需要说明的是,由于指纹采集单元103的感测面积较小,因此同一个指纹要采集多次,才能形成完整的指纹信息。故,假设1个手指采集5次,采集了5个手指,则共产生25个指纹模板。
当用户需要进行指纹识别时,将手指200放置在指定的位置,指纹采集单元103对手指的指纹进行采集,获得指纹图像。特征提取单元101对其进行指纹特征提取,获得待比对的指纹特征信息。特征比对单元104将待比对的指纹特征信息与存储单元102中的所有指纹模板进行一一比对,并输出比对结果,例如识别成功或识别失败。这里的指纹采集单元103可包括光学式指纹采集单元、电容式指纹采集单元、超声波指纹采集单元、射频指纹采集单元等等中的任意一种或几种。
由于待比对的指纹特征信息需要与存储单元102中的所有指纹模板一一进行比对后,才能获得识别结果,因此指纹模板的数量越多,则指纹识别的时间越长,如此使得指纹识别的速度较慢,不利于用户体验。
为了提高图像识别速度,本发明提出了一种新的图像传感器。该图像传感器在进行图像特征提取时,将图像按不同的特征提取规则进行特征提取,以获得不同的特征信息,例如第一特征信息、第二特征信息等等;在特征信息比对时,先将第一特征信息与图像注册信息中的第一特征信息进行比对,若比对一致,再将第二特征信息与该注册信息中的第二特征信息进行比对,最后输出比对结果。由于第一特征信息仅包括图像的少量特征,第二特征信息包括图像的所有特征,因此第一特征信息的比对速度比第二特征信息的比对速度较快,即该图像传感器提高了图像识别速度。该图像信息可包括指纹信息、掌纹信息、耳纹信息以及生物体上其它合适位置的皮肤纹理信息。由于生物体的皮肤纹理、皮层结构具有不同的特性,根据该特性可以识别出不同的生物体。所述生物体例如为人体,但可不限于人体。以下实施方式中,将以指纹识别为例进行描述。
请参阅图3,本发明实施方式的一种图像传感器包括图像采集单元300和图像识别装置100;所述图像采集单元300用于采集图像信息,并将采集到的图像信息传输至所述图像识别装置100。图像识别装置100用于对图像信息进行识别,并输出识别结果,例如识别成功或识别失败。
请参阅图4,本发明实施方式的一种图像识别装置100包括处理电路110、存储单元120、特征提取单元130、特征比对单元140。
处理电路110例如但不局限为微型处理器,具有输入接口111和输出接口112。该输入接口111用于接收一图像采集单元(图未示)采集的图像信息,例如指纹采集单元采集的指纹图像信息。该输入接口111接收到的指纹图像信息可以为模拟信号,也可以为数字信号。若输入接口111接收到的指纹图像信息为模拟信号,则在送入处理电路110时,需要对其进行模数转换,转换成相应的数字信号。输出接口112用于输出处理结果,例如指纹识别成功或指纹识别失败等等,该处理结果可以通过显示驱动电路驱动显示屏进行显示,或者通过指示灯显示,或者通过扬声器进行语音提示。
处理电路110输出相应的指纹图像信息给特征提取单元130,以使特征提取单元130对指纹图像进行特征提取,获得相应的特征信息。该特征信息可包括第一特征信息和第二特征信息,该第一特征信息和第二特征信息为从不同的角度体现指纹特点的特征信息,而且第一特征信息的特征信息量比第二特征信息的特征信息量少。例如,第一特征信息用于整体描述用户的指纹特点,第二特征信息用于精确描述指纹的纹路,包括描述脊部分的纹路的所有特征点信息,由于指纹中谷的部分和脊的部分的位置是交替设置的,因此在确定指纹的脊部分的位置,就可以确定指纹的谷部分的位置。同理,该第一特征信息也可以包括描述谷部分的纹路的所有特征点信息,或者谷部分和脊部分的纹路的所有特征点信息。然,可变更地,所述第一特征信息和第二特征信息也可为其它合适的指纹信息。
相应地,存储单元120中存储的指纹模板中对应包括注册指纹的第一特征信息和第二特征信息。在一些例子中,由于同一手指注册时生成的指纹模板之间差异较小,故而在存储时,可以存储每个指纹模板中相同的部分以及各指纹模板之间存在差异的部分。如此将节省存储空间。另外,所有的指纹模板中仅包含特征信息,通过该特征信息无法获得对应的指纹图像,因此保证了指纹模板的信息安全。
请一并参阅图4与图5,特征比对单元140将第一特征提取单元131提取的第一特征信息与注册的N个指纹模板中的第一特征信息进行比对,获得比对一致的指纹模板,例如M个指纹模板,M<N;再将第二特征提取单元132提取的第二特征信息与比对一致的指纹模板中的第二特征信息进行比对。最后输出比对结果,例如识别成功或识别失败。若第一特征信息与注册的所有指纹模板中的第一特征信息比对后,均未获得比对一致的指纹模板,则直接输出比对结果,即不再对第二特征信息进行比对。
因此,通过第一特征信息的比对,可以快速过滤不匹配的指纹模板,避免了第二特征信息与存储单元120中所有的指纹模板进行比对,从而节省了第二特征信息的比对时间,提高了指纹识别速度。另外,由于第一特征信息的提取和第二特征信息的提取可以并行处理,而且第一特征信息提取速度比第二特征信息的提取速度快,因此可以先进行第一特征信息的比对,待第二特征信息提取后,再进行第二特征信息的比对,从而进一步提高了指纹识别速度。
在一些实施方式中,上述特征提取单元130可包括第一特征提取单元131、第二特征提取单元132。第一特征提取单元131采用预设的第一特征提取规则对指纹信息进行特征提取,获得第一特征信息。该第一特征信息用于整体描述用户的指纹特点,仅包含描述用户指纹特点的少量特征信息。例如,人体的手指指纹可包括3种基本类型:有同心圆或螺旋纹线,称为斗形纹;纹线一边开口的,称为箕形纹;纹形像弓一样,称为弓线纹。而且不同类型的指纹,在纹路的弯曲程度、纹路的间隔宽度等也存在差异。故而第一特征提取单元131在进行提取时,可提取指纹的类型、纹路的弯曲程度、纹路的间隔宽度等第一特征信息。第二特征提取单元132采用预设的第二特征提取规则对指纹信息进行特征提取,获得第二特征信息。第二特征信息用于精确描述指纹的独特性,因此该第二特征信息包含但不局限于采集到的指纹图像中每条纹路的特征点信息,例如每个特征点所在的位置信息以及该特征点的特征值。
当然,在另一些实施方式中,上述特征提取单元130还可以包括第三特征提取单元(图中未示出),该第三特征提取单元采用预设的第三特征提取规则对指纹信息进行特征提取,获得第三特征信息。该第三特征信息用于描述指纹的几个细节特征点,例如分叉点、终止点、中心点、三角点,该第三特征信息的特征信息量比第二特征信息的特征信息量少,但比第一特征信息的特征信息量多。因此,上述特征比对单元140在进行第一特征信息的比对后,获得比对一致的第一指纹模板,再将第三特征信息与比对一致的第一指纹模板中的第三特征信息进行比对,获得比对一致的第二指纹模板,再将第二特征信息与比对一致的第二指纹模板进行比对,获得比对结果,例如识别成功或识别失败。如此,不但可以保证指纹识别的准确度,而且还能加快指纹识别的速度。
进一步地,为了进一步加快特征比对的速度,上述特征比对单元140可以包括第一特征比对单元和第二特征比对单元。第一特征比对单元用于第一特征信息的特征比对,第二特征比对单元用于第二特征信息的特征比对。由于第一特征信息的提取速度比第二特征信息的提取速度快,因此当第一特征信息提取后,第一特征比对单元即可对第一特征信息进行特征比对,以获得比对一致的指纹模板。此时第二特征比对单元可以将第二特征信息与该比对一致的指纹模板进行特征比对,而不用等第一特征信息与所有的指纹模板进行特征比对结束。换句话说,第一特征信息的特征比对与第二特征信息的特征比对也可以并行处理,从而加快了特征比对的速度,即提高了指纹识别速度。
在一些实施方式中,上述第一特征信息为对指纹图像进行编码聚类处理后获得的编码特征信息。对应地,指纹模板中第一特征信息为编码特征信息。
具体地,请参阅图6,第一特征提取单元131可包括图像编码模块1311、特征归类统计模块1312。图像编码模块1311用于对指纹图像进行图像编码,获得编码特征;特征归类统计模块1312用于对编码特征进行特征归类,并统计每个类的数目,形成最终的编码特征信息。
在一些实施方式中,编码方法可包括局部二值模式(Local Binary Pattern,LBP)、局部相位量化(Local Phase Quantization,LPQ)、图像特征值统计(BinarizedStatistical Image Features,BSIF)等方法。当然,可以采用其中一种编码方法进行编码,也可以采用多种编码方法结合的方式进行编码,只要指纹模板中第一特征信息的编码规则与待检测指纹中第一特征信息的编码规则一致即可。
特征归类方法可包括k-means(k均值)、层次聚类、自组织映射(Self-OrganizingMaps,SOM)、模糊C均值(Fuzzy C-means,FCM)聚类等等,聚类数目可为固定值,当然也可以根据实际情况而灵活设置。具体地,特征归类处理时,利用距离度量等方法计算图像编码模块1311获得的编码特征与预设的编码特征类心进行比较,并将编码特征归并到距离最小的那个类。然后特征归类统计模块1312统计每个类的数目,最终获得一个统计直方图,即最终的编码特征。
上述预设的编码特征类心包括特征的聚类中心值或者聚类均值,以及聚类的特征范围值等等。在一些例子中,该预设的编码特征类心为预先计算好,并保存至图像识别装置中,以供特征归类时重复使用。当然,该预设的编码特征类心还可以通过在线的方式实时更新,以对之前设置的编码特征类心进行完善。另外,该预设的编码特征类心还可以通过对注册的指纹模板进行处理获得。例如,对注册的指纹模板中的指纹图像进行图像编码,获得编码特征;然后对编码特征进行特征聚类,获得编码特征类心。由于利用注册的指纹模板处理获得编码特征类心,因此根据该编码特征类心进行特征归类统计所获得的编码特征更接近注册的指纹模板的编码特征,因此进行特征比对时,不但加快了比对速度,而且保证了比对的准确率。
请参阅图7和图8,图7是一个平行纹路的指纹图像,以及对该指纹图像进行BSIF编码后的特征分布;图8是一个弯曲纹路的指纹图像,以及对该指纹图像进行BSIF编码后的特征分布。其中,图7和图8中示出的指纹图像仅整体反映了指纹的特点,即仅包含指纹信息的第一特征信息。从图7和图8中的特征分布可以看出,平行纹路和弯曲纹路的差异明显,因此通过编码特征进行特征比对,进一步提高了比对速度,即指纹识别速度。
为了保证指纹图像的处理效果,在对指纹图像进行提取之前,还可以对指纹图像进行一定的预处理,例如,指纹图像的噪声处理,对指纹图像进行增强处理等等。若指纹图像中存在噪声,则提取特征时会存在毛刺现象,而且会存在很多假的细节点,也就是伪细节点。其中图像的噪声处理可包括空间域的处理和频率域的处理,空间域处理例如求图像像素的平均值或中间值;频率域处理例如低通滤波。增强处理主要是为了突出指纹图像的脊部分和谷部分之间的对比度,例如通过调整图像像素的灰度值,对指纹图像进行锐化处理,增加指纹图像的轮廓及线条的清晰度。当然,还存在其他的处理方式,这里不一一例举。
在一些实施方式中,上述图像识别装置可集成为处理芯片,与图像采集单元分开设置。如此,可以使得图像识别装置的设计可以独立进行,从而降低了设计成本。然,可替换的,上述图像识别装置也可以与图像采集单元一起集成为图像识别芯片,例如指纹识别传感器。如此,该指纹识别传感器通过指纹采集,并在内部进行指纹识别,即使指纹识别传感器应用的终端主系统发生安全威胁,生物信息依然安全,从而保证了生物信息的安全。
上述图像识别装置可应用于智能终端上实现对应的功能,例如通过图像识别装置识别用户身份,识别成功后进行解锁、启动应用程序、网上支付等等。该智能终端可为消费性电子产品或家居式电子产品或车载式电子产品。其中,消费性电子产品如为手机、平板电脑、笔记本电脑、桌面显示器、电脑一体机等各类应用生物识别技术的电子产品。家居式电子产品如为智能门锁、电视、冰箱、穿戴式设备等各类应用生物识别技术的电子产品。车载式电子产品如为车载导航仪、车载DVD等。
该图像识别装置可以与图像采集单元集成为一颗芯片,即图像传感器。例如指纹传感器芯片,集合指纹采集功能和指纹匹配功能;该图像识别装置也可以集成单独的处理芯片,即该芯片内集成有图像识别装置的所有组件或部分组件。
请参阅图9,本发明实施方式的一种电子装置500,其上设置有采集图像信息的图像采集装置501以及上述任一实施方式的图像识别装置100,当然该电子装置也可以设置图像采集功能和图像匹配功能结合的图像识别芯片。该图像采集装置501可为一光电传感模组,也可为一电容式传感模组,当然还可以为摄像装置。当目标物体位于图像采集装置501上时,图像采集装置501采集目标物体的图像信息,例如指纹图像,并将采集到的图像信息传输至图像识别装置100。图像识别装置100对图像信息进行处理后,对图像信息进行识别,并输出识别结果,例如识别成功或识别失败。
由于该图像识别装置100采用了新的识别处理技术,在特征提取时,对图像信息按照不同的角度进行特征提取,获得第一特征信息和第二特征信息,而且第一特征信息的特征信息量比第二特征信息的特征信息量少,因此在进行特征比对时,先将第一特征信息与注册的所有指纹模板进行比对,以获得比对一致的指纹模板,去掉比对不一致的指纹模板;然后再将第二特征信息与比对一致的指纹模板进行比对,从而加快了特征比对的速度,即图像识别速度。
在图9的示例中,电子装置500为手机,手机的正面设置有显示装置400,图像采集装置501或图像识别芯片设置在电子装置500的前盖板下方。然,可变更地,在其它实施方式中,图像采集装置501或图像识别芯片也可设置在显示装置400上。另外,所述图像采集装置501也可集成为图像识别芯片,或者该图像采集装置501还可以和图像识别装置100集成为图像识别芯片,对应设置在电子装置500的正面、背面、以及侧面等合适位置,且,既可曝露出电子装置500的外表面,也可设置在电子装置500内部并邻近外壳。
请参阅图10,在一些实施方式中,图像识别装置应用于智能终端时,也可以利用智能终端已有的结构,再增加图像识别的一些结构即可实现。具体地,该电子装置600包括处理器601、存储器602、显示单元603、用户输入单元604、电源605、通讯单元606。其中存储器602用于存储智能终端600上所有需要存储的数据,例如外部数据以及内部处理数据等等。该存储器602可包括内部存储单元和外部存储单元。显示单元603包括但不局限于LCD、TFT-LCD、OLED、柔性显示器等等。用户输入单元604可以根据用户输入的命令生成输入数据以控制智能终端600的各种操作。用户输入单元604允许用户输入各种类型的信息,并且可以包括按键、锅仔片、触摸板(例如,检测由于被接触而导致的电阻、压力、电容等变化的触敏组件)、滚轮、摇杆等等。特别地,当触摸板以层地形式叠加至显示单元603上时,可以形成触摸屏。该用户输入单元604中的按键可包括设置于触摸板上的虚拟按键,也可以设置在非显示区域的实体按键,例如Home按键、电源按键等等。电源605用于提供智能终端工作所需的工作电源,以及提供维持智能终端待机状态所需的待机电源。通讯单元606可以包括通讯接口,例如USB、Type-C等;当然还可包括无线通讯接口,例如GPRS、WCDMA、wifi、射频、蓝牙、红外等。需要说明的是,图10仅例举了该电子装置600的部分组件,其还可以包括其他的功能组件,为实现使用者需要的功能,例如摄像头、麦克风、扬声器等。
当然,为了实现图像识别功能,该电子装置600上还设置图像采集装置601以及图像识别装置,该图像识别装置的结构与上述实施方式的图像识别装置100的结构类似,只是图像识别装置100中的处理电路110和存储单元120与电子装置600中的处理器601和存储器602共用,而图像识别装置100的其他结构可以通过软件程序,例如指令代码的形式,存储在存储器602中或单独的存储介质,供处理器601调用,以实现图像识别功能。如此,该图像识别装置应用于智能终端时,可以利用智能终端的已有结构,只需再增加图像识别的软件结构即可,从而大大降低了图像识别的制作成本。
上述图像采集装置601可为一光电传感模组,也可为一电容式传感模组,当然还可以为摄像装置。该图像采集装置601在电子装置600的设置结构可参照前面一实施方式为例,在此不再赘述。当目标物体位于图像采集装置601上时,图像采集装置601采集目标物体的图像信息,例如指纹图像,并将采集到的图像信息传输至图像识别装置602。图像识别装置602对图像信息进行处理后,对图像信息进行识别,并输出识别结果,例如识别成功或识别失败。
由于该图像识别装置采用了新的识别处理技术,在特征提取时,对图像信息按照不同的角度进行特征提取,获得第一特征信息和第二特征信息,而且第一特征信息的特征信息量比第二特征信息的特征信息量少,因此在进行特征比对时,先将第一特征信息与注册的所有指纹模板进行比对,以获得比对一致的指纹模板,去掉比对不一致的指纹模板;然后再将第二特征信息与比对一致的指纹模板进行比对,从而加快了特征比对的速度,即图像识别速度。
上述实施方式中描述的实施例仅仅是示意性的,例如各单元的划分仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如多个单元或组件可以结合,或者一些特征可以忽略,或不执行。另外,上述实施方式中的各功能单元可以全部集成在一个处理单元,也可以两个或两个以上的单元集成在一起。上述集成的单元可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述实施方式中集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施方式的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来。该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一智能终端(消费性电子产品、家居式电子产品、或车载式电子产品)执行本发明各个实施例所述方法的全部或部分。
本发明实施方式的一种图像识别方法可包括注册过程和识别过程。在注册过程中,使用者注册自己的图像信息,例如指纹信息,该注册的指纹信息将通过指纹模板的形式进行存储,以供识别过程使用。识别过程中,将采集到的待检测的指纹图像与存储的指纹模板进行特征比对,并输出识别结果,例如识别成功或识别失败等。
请参阅图11,在一些实施方式中,注册过程具体包括:
步骤S101,获取待注册的指纹图像;
该待注册的指纹图像通过图像传感器采集获得,以指纹传感器为例,当用户的手指位于指纹传感器上,指纹传感器将采集手指的指纹图像,并将采集的指纹图像传输至指纹识别系统。指纹识别系统100的输入接口111可通过柔性印刷电路板或其他的电路板与指纹传感器电性连接。
步骤S102,对获取的指纹图像进行特征提取,获取第一特征信息和第二特征信息;
该第一特征信息和第二特征信息从不同的角度来体现指纹特点,而且第一特征信息的特征信息量比第二特征信息的特征信息量少。因此,按照不同的特征提取规则对获取的指纹图像进行特征提取,可获得第一特征信息和第二特征信息。第一特征信息的提取和第二特征信息的提取可先后进行,也可以并行处理。而且,并行处理特征信息的提取,可以加快特征提取速度。
具体地,该第一特征信息用于整体描述用户的指纹特点,仅包含描述用户指纹特点的少量特征信息。例如,人体的手指指纹可包括3种基本类型:有同心圆或螺旋纹线,称为斗形纹;纹线一边开口的,称为箕形纹;纹形像弓一样,称为弓线纹。而且不同类型的指纹,在纹路的弯曲程度、纹路的间隔宽度等也存在差异。故而在进行第一特征信息提取时,可提取指纹的类型、纹路的弯曲程度、纹路的间隔宽度等。第二特征信息用于精确描述指纹的独特性,则包含指纹信息的全部特征信息,例如整个指纹的纹路。故而在进行第二特征信息提取时,将提取整个指纹的纹路信息。
当然,这里并不限定包括第一特征信息和第二特征信息,在其他例子中,也可以根据需要提取第三特征信息,第四特征信息等等。
步骤S103,根据第一特征信息和第二特征信息,形成相应的指纹模板;即每个指纹模板中均包括对应的第一特征信息和第二特征信息。
步骤S104,判断注册采集次数是否达到预设阈值;是则执行步骤S105,否则返回执行步骤S101;
为了保证指纹图像的完整、准确地采集,需要采集多次,一些实施方式中,设定采集至少3次,即预设阈值为3。需要说明的是,每次采集都是有效采集,即每次采集的指纹图像要满足清晰度、手指扫描位置等要求。若当前采集的指纹图像不符合要求,例如手指移动造成采集图像模糊,则放弃当前采集的图像,提示用户重新进行指纹图像的采集。
步骤S105,将所有的指纹模板进行存储。
待注册采集次数达到预设阈值,则将注册采集形成的所有指纹模板进行存储。在一些例子中,由于同一手指注册时生成的指纹模板之间差异较小,故而在存储时,可以存储每个指纹模板中相同的部分以及各指纹模板之间存在差异的部分。如此将节省存储空间。另外,所有的指纹模板中仅包含特征信息,通过该特征信息无法获得对应的指纹图像,因此保证了指纹模板的信息安全。
当存在多个手指注册时,为区分该多个手指,可以对所有的指纹模板进行标识。请参阅图12,目前应用于手机的指纹识别,可注册采集5个手指,例如手指A、手指B、手指C、手指D、手指E。每个注册的手指均具有对应的指纹模板库,即每个指纹模板具有对应的手指标识,而且每个对应的指纹模板库具有多个指纹模板。以手指A为例,该手指A对应的指纹模板包括模板1A、模板2A、模板3A。
请参阅图13,在一些实施方式中,识别过程具体可包括:
步骤S201,获取待识别的指纹图像;
该待识别的指纹图像通过图像传感器采集获得,以指纹传感器为例,当用户的手指位于指纹传感器上,指纹传感器将采集手指的指纹图像,并将采集的指纹图像输出至指纹识别系统。指纹识别系统100的输入接口111可通过柔性印刷电路板或其他的电路板与指纹传感器电性连接。
步骤S202,对所获取的指纹图像进行特征提取,获得第一特征信息和第二特征信息;
该第一特征信息和第二特征信息从不同的角度来体现指纹特点,而且第一特征信息的特征信息量比第二特征信息的特征信息量少。因此,按照不同的特征提取规则对获取的指纹图像进行特征提取,可获得第一特征信息和第二特征信息。第一特征信息的提取和第二特征信息的提取可先后进行,也可以并行处理。而且,并行处理特征信息的提取,可以加快特征提取速度。
具体地,该第一特征信息用于整体描述用户的指纹特点,仅包含描述用户指纹特点的少量特征信息。例如,人体的手指指纹可包括3种基本类型:有同心圆或螺旋纹线,称为斗形纹;纹线一边开口的,称为箕形纹;纹形像弓一样,称为弓线纹。而且不同类型的指纹,在纹路的弯曲程度、纹路的间隔宽度等也存在差异。故而在进行第一特征信息提取时,可提取指纹的类型、纹路的弯曲程度、纹路的间隔宽度等。第二特征信息用于精确描述指纹的独特性,则包含指纹信息的全部特征信息,例如整个指纹的纹路。故而在进行第二特征信息提取时,将提取整个指纹的纹路信息。
步骤S203,将第一特征信息与注册的所有指纹模板中的第一特征信息进行比对,获得比对一致的指纹模板;
步骤S204,将第二特征信息与比对一致的指纹模板中的第二特征信息进行比对,获得比对结果。
在一些例子中,可以待步骤S203中第一特征信息跟所有的指纹模板比对结束后,再执行步骤S204。再另一些例子中,可以在步骤S203中获得比对一致的指纹模板时,就并行执行步骤S204,当第二特征信息比对成功后,即可停止识别,如此可以提前获得比对结果,加快识别速度。
进一步地,上述第一特征信息为对指纹图像进行编码聚类处理后获得的编码特征信息。对应地,指纹模板中第一特征信息为编码特征信息。请参阅图14,识别过程具体可包括:
步骤S301,获取待识别的指纹图像;
步骤S302,对所获取的指纹图像进行特征提取,获得编码特征信息和第二特征信息;
步骤S303,将编码特征信息与注册的所有指纹模板中的编码特征信息进行比对,获得比对一致的指纹模板;
步骤S304,将第二特征信息与比对一致的指纹模板中的第二特征信息进行比对,获得比对结果。
上述实施方式中,获得编码特征信息的过程具体可包括:对指纹图像进行图像编码,获得初始编码特征;对初始编码特征进行特征归类,并统计每个类的数目,形成最终的编码特征信息。
在一些实施方式中,编码方法可包括局部二值模式(Local Binary Pattern,LBP)、局部相位量化(Local Phase Quantization,LPQ)、图像特征值统计(BinarizedStatistical Image Features,BSIF)等方法。当然,可以采用其中一种编码方法进行编码,也可以采用多种编码方法结合的方式进行编码,只要指纹模板中第一特征信息的编码规则与待检测指纹中第一特征信息的编码规则一致即可。
特征归类方法可包括k-means(k均值)、层次聚类、自组织映射(Self-OrganizingMaps,SOM)、模糊C均值(Fuzzy C-means,FCM)聚类等等,聚类数目可为固定值,当然也可以根据实际情况而灵活设置。具体地,特征归类处理时,利用距离度量等方法计算初始编码特征与预设的编码特征类心进行比较,并将编码特征归并到距离最小的那个类。然后统计每个类的数目,最终获得一个统计直方图,即最终的编码特征。
上述预设的编码特征类心包括特征的聚类中心值或者聚类均值,以及聚类的特征范围值等等。在一些例子中,该预设的编码特征类心为预先计算好,并保存至图像识别装置中,以供特征归类时重复使用。当然,该预设的编码特征类心还可以通过在线的方式实时更新,以对之前设置的编码特征类心进行完善。另外,该预设的编码特征类心还可以通过对注册的指纹模板进行处理获得。例如,对注册的指纹模板中的指纹图像进行图像编码,获得编码特征;然后对编码特征进行特征聚类,获得编码特征类心。由于利用注册的指纹模板处理获得编码特征类心,因此根据该编码特征类心进行特征归类统计所获得的编码特征更接近注册的指纹模板的编码特征,因此进行特征比对时,不但加快了比对速度,而且保证了比对的准确率。
进一步地,请参阅图15,在一些实施方式中,步骤S202之前还可包括:
步骤S205,对获取的指纹图像进行预处理。
为了保证指纹图像的处理效果,在对指纹图像进行提取之前,还可以对指纹图像进行一定的预处理,例如,指纹图像的噪声处理,对指纹图像进行增强处理等等。若指纹图像中存在噪声,则提取特征时会存在毛刺现象,而且会存在很多假的细节点,也就是伪细节点。其中图像的噪声处理可包括空间域的处理和频率域的处理,空间域处理例如求图像像素的平均值或中间值;频率域处理例如低通滤波。增强处理主要是为了突出指纹图像的脊部分和谷部分之间的对比度,例如通过调整图像像素的灰度值,对指纹图像进行锐化处理,增加指纹图像的轮廓及线条的清晰度。当然,还存在其他的处理方式,这里不一一例举。
本领域技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储单元包括移动存储设备、ROM、RAM、磁碟或光盘等各种可以存储程序代码的介质。
需要指出的是,上述例子是为了方便理解本发明实施方式而作出的一些例子,而不应理解为对本发明保护范围的限制。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。
Claims (13)
1.一种图像传感器,其特征在于,包括图像采集单元和图像识别装置;所述图像采集单元用于采集图像信息,并将采集到的图像信息传输至所述图像识别装置;
所述图像识别装置包括存储单元、特征提取单元以及特征比对单元;其中,
所述存储单元用于存储已注册的图像模板,所述图像模板包括第一特征信息和第二特征信息;
所述特征提取单元用于对经过图像采集获得的待识别图像进行特征提取,获得第一特征信息和第二特征信息;
所述特征比对单元用于将第一特征信息与所述存储单元存储的图像模板中的第一特征信息进行特征比对,获得比对一致的图像模板;将第二特征信息与比对一致的图像模板中的第二特征信息进行特征比对,获得识别结果。
2.如权利要求1所述的图像传感器,其特征在于,所述图像识别装置还包括处理电路,用于控制所述特征提取单元和所述特征比对单元进行工作;所述处理电路包括输入接口和输出接口,所述输入接口用于接收图像信息,所述输出接口用于输出所述识别结果。
3.如权利要求1所述的图像传感器,其特征在于,所述特征提取单元包括第一特征提取单元、第二特征提取单元,所述第一特征提取单元采用预设的第一特征提取规则对待识别图像进行特征提取,获得第一特征信息;所述第二特征提取单元采用预设的第二特征提取规则对待识别图像进行特征提取,获得第二特征信息。
4.如权利要求3所述的图像传感器,其特征在于,所述图像信息为指纹信息,所述第一特征信息包括指纹的类型、纹路的弯曲程度、和/或纹路的间隔宽度。
5.如权利要求4所述的图像传感器,其特征在于,所述第二特征信息包括指纹中脊部分和/或谷部分纹路的所有特征点信息。
6.如权利要求3所述的图像传感器,其特征在于,所述特征比对单元包括第一特征比对单元和第二特征比对单元。第一特征比对单元用于第一特征信息的特征比对,第二特征比对单元用于第二特征信息的特征比对。
7.如权利要求1所述的图像传感器,其特征在于,所述第一特征信息为对待识别图像进行编码聚类处理获得的编码特征信息。
8.如权利要求3所述的图像传感器,其特征在于,所述第一特征提取单元包括图像编码模块、特征归类统计模块;图像编码模块用于对待识别图像进行图像编码,获得初始编码特征;特征归类统计模块用于按照预设的编码特征类心对所述初始编码特征进行特征归类,并统计每个类的数目,形成最终的编码特征信息。
9.如权利要求8所述的图像传感器,其特征在于,所述预设的编码特征类心为预先设置,并存储在所述存储单元中;或者所述预设的编码特征类心通过在线的方式实时更新获得。
10.如权利要求1所述的图像传感器,其特征在于,所述特征提取单元还用于在进行特征提取之前,还对待识别图像进行预处理,所述预处理包括噪声处理、图像增强处理。
11.如权利要求1所述的图像传感器,其特征在于,所述图像传感器为生物识别传感器,用于识别生物特征信息。
12.如权利要求11所述的图像传感器,其特征在于,所述生物特征信息包括:指纹信息、掌纹信息、耳纹信息中的任意一种或几种。
13.一种电子装置,其特征在于,包括权利要求1-12任一项所述的图像传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710359867.XA CN107358145A (zh) | 2017-05-20 | 2017-05-20 | 图像传感器及电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710359867.XA CN107358145A (zh) | 2017-05-20 | 2017-05-20 | 图像传感器及电子装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107358145A true CN107358145A (zh) | 2017-11-17 |
Family
ID=60272167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710359867.XA Pending CN107358145A (zh) | 2017-05-20 | 2017-05-20 | 图像传感器及电子装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107358145A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107278308A (zh) * | 2017-05-20 | 2017-10-20 | 深圳信炜科技有限公司 | 图像识别方法、图像识别装置、电子装置及计算机存储介质 |
CN107967469A (zh) * | 2018-01-24 | 2018-04-27 | 四川政安通科技有限公司 | 结合掌静脉的指纹采样方法 |
CN111860279A (zh) * | 2020-07-14 | 2020-10-30 | 武汉企秀网络科技有限公司 | 图像识别方法及装置、计算机存储介质 |
CN112001233A (zh) * | 2020-07-01 | 2020-11-27 | 义隆电子股份有限公司 | 生物特征的辨识系统及辨识方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931789A (zh) * | 2009-06-26 | 2010-12-29 | 上海宝康电子控制工程有限公司 | 关键区域中的高清晰人像自动记录及比对系统及其方法 |
CN106096361A (zh) * | 2016-05-31 | 2016-11-09 | 广东欧珀移动通信有限公司 | 一种指纹解锁方法及移动终端 |
CN106096360A (zh) * | 2016-05-31 | 2016-11-09 | 广东欧珀移动通信有限公司 | 一种解锁控制方法及终端设备 |
CN106202071A (zh) * | 2015-04-29 | 2016-12-07 | 腾讯科技(深圳)有限公司 | 账户信息获取的方法、终端、服务器和系统 |
US20160358010A1 (en) * | 2015-06-08 | 2016-12-08 | Crowd IP Box UG (haftungsbeschränkt) | Transformed Representation for Fingerprint Data with High Recognition Accuracy |
CN106682589A (zh) * | 2016-12-06 | 2017-05-17 | 深圳市纽贝尔电子有限公司 | 人脸识别及监狱点名系统 |
-
2017
- 2017-05-20 CN CN201710359867.XA patent/CN107358145A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931789A (zh) * | 2009-06-26 | 2010-12-29 | 上海宝康电子控制工程有限公司 | 关键区域中的高清晰人像自动记录及比对系统及其方法 |
CN106202071A (zh) * | 2015-04-29 | 2016-12-07 | 腾讯科技(深圳)有限公司 | 账户信息获取的方法、终端、服务器和系统 |
US20160358010A1 (en) * | 2015-06-08 | 2016-12-08 | Crowd IP Box UG (haftungsbeschränkt) | Transformed Representation for Fingerprint Data with High Recognition Accuracy |
CN106096361A (zh) * | 2016-05-31 | 2016-11-09 | 广东欧珀移动通信有限公司 | 一种指纹解锁方法及移动终端 |
CN106096360A (zh) * | 2016-05-31 | 2016-11-09 | 广东欧珀移动通信有限公司 | 一种解锁控制方法及终端设备 |
CN106682589A (zh) * | 2016-12-06 | 2017-05-17 | 深圳市纽贝尔电子有限公司 | 人脸识别及监狱点名系统 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107278308A (zh) * | 2017-05-20 | 2017-10-20 | 深圳信炜科技有限公司 | 图像识别方法、图像识别装置、电子装置及计算机存储介质 |
CN107967469A (zh) * | 2018-01-24 | 2018-04-27 | 四川政安通科技有限公司 | 结合掌静脉的指纹采样方法 |
CN107967469B (zh) * | 2018-01-24 | 2021-11-05 | 山东承势电子科技有限公司 | 指纹采样方法 |
CN112001233A (zh) * | 2020-07-01 | 2020-11-27 | 义隆电子股份有限公司 | 生物特征的辨识系统及辨识方法 |
CN111860279A (zh) * | 2020-07-14 | 2020-10-30 | 武汉企秀网络科技有限公司 | 图像识别方法及装置、计算机存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107358144A (zh) | 图像识别系统及电子装置 | |
WO2018213946A1 (zh) | 图像识别方法、图像识别装置、电子装置及计算机存储介质 | |
US10970516B2 (en) | Systems and methods for biometric recognition | |
US10127439B2 (en) | Object recognition method and apparatus | |
CN105868613A (zh) | 一种生物特征识别方法、装置和移动终端 | |
KR101506105B1 (ko) | 화상 대조 장치, 화상 처리 시스템, 화상 대조 프로그램이 기록된 기록 매체, 및 화상 대조 방법 | |
US20180004924A1 (en) | Systems and methods for detecting biometric template aging | |
WO2018143873A1 (en) | Method for authenticating a finger of a user of an electronic device | |
US20180046848A1 (en) | Method of recognizing fingerprints, apparatus and terminal devices | |
CN107358145A (zh) | 图像传感器及电子装置 | |
WO2016032652A1 (en) | Finger/non-finger determination for acoustic biometric sensors | |
EP3186748A1 (en) | Air/object determination for biometric sensors | |
CN110688973B (zh) | 设备控制方法及相关产品 | |
CN111201537A (zh) | 在指纹分析中通过机器学习来区分活体手指与欺骗手指 | |
US20170091521A1 (en) | Secure visual feedback for fingerprint sensing | |
Kaur et al. | Robust iris recognition using moment invariants | |
El_Rahman | Multimodal biometric systems based on different fusion levels of ECG and fingerprint using different classifiers | |
CN208689589U (zh) | 图像识别系统及电子装置 | |
Abdullah et al. | Smart card with iris recognition for high security access environment | |
CN107408208B (zh) | 用于对用户的生物测量进行分析的方法和指纹感测系统 | |
WO2019196075A1 (zh) | 电子设备及其面部识别方法 | |
Nagwanshi et al. | Estimation of centroid, ensembles, anomaly and association for the uniqueness of human footprint features | |
CN202976102U (zh) | 身份识别装置 | |
CN109145845B (zh) | 住宅权限电子分辨方法 | |
US11216681B2 (en) | Fake finger detection based on transient features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171117 |