CN107220962A - A kind of image detecting method and device of tunnel crackle - Google Patents
A kind of image detecting method and device of tunnel crackle Download PDFInfo
- Publication number
- CN107220962A CN107220962A CN201710227430.0A CN201710227430A CN107220962A CN 107220962 A CN107220962 A CN 107220962A CN 201710227430 A CN201710227430 A CN 201710227430A CN 107220962 A CN107220962 A CN 107220962A
- Authority
- CN
- China
- Prior art keywords
- image
- crack
- saliency map
- value
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 208000037656 Respiratory Sounds Diseases 0.000 title 1
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 230000002146 bilateral effect Effects 0.000 claims abstract description 33
- 238000001914 filtration Methods 0.000 claims abstract description 27
- 230000000007 visual effect Effects 0.000 claims abstract description 17
- 230000003044 adaptive effect Effects 0.000 claims abstract description 9
- 230000011218 segmentation Effects 0.000 claims description 30
- 238000010276 construction Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000004927 fusion Effects 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000003709 image segmentation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- HUPNQNOWXCVQSW-UHFFFAOYSA-N 2h-pyran-4-carboxamide Chemical compound NC(=O)C1=CCOC=C1 HUPNQNOWXCVQSW-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0008—Industrial image inspection checking presence/absence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20028—Bilateral filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种隧道裂纹的图像检测方法和装置。该方法包括:对隧道裂纹的待检测图像进行双边滤波处理,得到滤波后图像;利用视觉显著性模型分别构建滤波后图像的亮度显著图和滤波后图像的纹理显著图;融合亮度显著图和纹理显著图,得到融合显著图;通过自适应阈值算法分割融合显著图,得到裂纹区域图像;在判定裂纹区域图像的裂纹为真实裂纹时,获得裂纹区域图像的裂纹参数。根据本发明实施例提供的图像检测方法,可以对连续性差、对比度低的裂纹进行有效检测。
The invention discloses an image detection method and device for tunnel cracks. The method includes: performing bilateral filtering on the image to be detected of the tunnel crack to obtain the filtered image; using a visual saliency model to respectively construct a luminance saliency map of the filtered image and a texture saliency map of the filtered image; fusing the luminance saliency map and the texture The saliency map is obtained to obtain a fused saliency map; the fused saliency map is segmented by an adaptive threshold algorithm to obtain a crack area image; when the crack in the crack area image is determined to be a real crack, the crack parameters of the crack area image are obtained. According to the image detection method provided by the embodiment of the present invention, cracks with poor continuity and low contrast can be effectively detected.
Description
技术领域technical field
本发明涉及图像处理和识别技术领域,尤其涉及一种隧道裂纹的图像检测方法和装置。The invention relates to the technical field of image processing and identification, in particular to an image detection method and device for tunnel cracks.
背景技术Background technique
随着数码相机、摄像头、超高速扫描仪等图像获取设备的广泛应用,工业化生产技术水平和生产效率的不断提高,对与之配套的生产检测能力也有着越来越高的要求。图像处理技术的日益发展,图像检测技术广泛运用在工业生产过程检测、日常生活安全检测等领域,极大的提升了企业的生产效率和人们的生活水平。With the wide application of image acquisition equipment such as digital cameras, video cameras, and ultra-high-speed scanners, and the continuous improvement of industrial production technology and production efficiency, there are also higher and higher requirements for the supporting production and testing capabilities. With the increasing development of image processing technology, image detection technology is widely used in industrial production process detection, daily life safety detection and other fields, which greatly improves the production efficiency of enterprises and people's living standards.
在图像处理和识别的技术领域中,一般地,工业安全的检测通常采用图像分割方法对图像中的特定区域进行检测和识别。现有的图像分割方法主要利用感兴趣区域和背景区域的整体灰度差异,选取适当的阈值分割图像得到感兴趣区域。在光照不均匀或者待检测区域和背景区域灰度差别较小时往往不能准确地分割出感兴趣区域。In the technical field of image processing and recognition, in general, the detection of industrial safety usually uses an image segmentation method to detect and recognize a specific area in the image. The existing image segmentation methods mainly use the overall gray level difference between the region of interest and the background region, and select an appropriate threshold to segment the image to obtain the region of interest. When the illumination is uneven or the gray level difference between the area to be detected and the background area is small, it is often impossible to accurately segment the area of interest.
发明内容Contents of the invention
本发明实施例提供一种隧道裂纹的图像检测方法和装置,可以对连续性差、对比度低的裂纹进行有效检测。Embodiments of the present invention provide an image detection method and device for tunnel cracks, which can effectively detect cracks with poor continuity and low contrast.
根据本发明实施例的一方面,提供一种隧道裂纹的图像检测方法,该图像检测方法包括:对隧道裂纹的待检测图像进行双边滤波处理,得到滤波后图像;利用视觉显著性模型分别构建滤波后图像的亮度显著图和滤波后图像的纹理显著图;融合亮度显著图和纹理显著图,得到融合显著图;通过自适应阈值算法分割融合显著图,得到裂纹区域图像;在判定裂纹区域图像的裂纹为真实裂纹时,获得裂纹区域图像的裂纹参数。According to an aspect of the embodiments of the present invention, an image detection method for tunnel cracks is provided, the image detection method includes: performing bilateral filtering on the image of the tunnel crack to be detected to obtain the filtered image; using the visual saliency model to construct the filter The luminance saliency map of the filtered image and the texture saliency map of the filtered image; the fused saliency map and the texture saliency map are fused to obtain a fused saliency map; the fused saliency map is obtained by segmenting the fused saliency map through an adaptive threshold algorithm to obtain a crack area image; When the crack is a real crack, the crack parameters of the crack area image are obtained.
根据本发明实施例的另一方面,提供一种隧道裂纹的图像检测装置,该图像检测装置包括:图像滤波模块,用于对隧道裂纹的待检测图像进行双边滤波处理,得到滤波后图像;显著图构建模块,用于利用视觉显著性模型分别构建滤波后图像的亮度显著图和滤波后图像的纹理显著图;显著图融合模块,用于融合亮度显著图和纹理显著图,得到融合显著图;显著图分割模块,用于通过自适应阈值算法分割融合显著图,得到裂纹区域图像;裂纹参数获取模块,用于在判定裂纹区域图像的裂纹为真实裂纹时,获得裂纹区域图像的裂纹参数。According to another aspect of the embodiments of the present invention, an image detection device for tunnel cracks is provided, the image detection device includes: an image filtering module, which is used to perform bilateral filtering on the image of the tunnel crack to be detected to obtain a filtered image; The graph construction module is used to construct the luminance saliency map of the filtered image and the texture saliency map of the filtered image respectively by using the visual saliency model; the saliency map fusion module is used to fuse the luminance saliency map and the texture saliency map to obtain the fused saliency map; The saliency map segmentation module is used to segment and fuse the saliency map through the adaptive threshold algorithm to obtain the crack area image; the crack parameter acquisition module is used to obtain the crack parameters of the crack area image when the crack in the crack area image is determined to be a real crack.
本发明实施例中的图像检测方法和装置,通过构建待检测图像的亮度显著图和纹理显著图,并将亮度显著图和纹理显著图进行融合得到融合显著图,可以使连续性差、对比度低的裂纹在图像中得到突出和增强,对得到的融合显著图进行分割,判定并统计裂纹参数信息,从而使隧道裂纹得到有效检测。In the image detection method and device in the embodiments of the present invention, by constructing the luminance saliency map and the texture saliency map of the image to be detected, and fusing the luminance saliency map and the texture saliency map to obtain the fused saliency map, the images with poor continuity and low contrast can be Cracks are highlighted and enhanced in the image, and the obtained fused saliency map is segmented, and the crack parameter information is determined and counted, so that tunnel cracks can be effectively detected.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the embodiments of the present invention. Additional figures can be derived from these figures.
图1是示出根据本发明一实施例的隧道裂纹的图像检测方法的流程图;FIG. 1 is a flowchart illustrating an image detection method for tunnel cracks according to an embodiment of the present invention;
图2是示出根据本发明一实施例的隧道裂纹的图像检测装置的结构示意图;FIG. 2 is a schematic structural diagram showing an image detection device for tunnel cracks according to an embodiment of the present invention;
图3是示出了发明一实施例的能够实现根据本发明实施例的隧道裂纹的图像检测方法和装置的计算设备的示例性硬件架构的结构图。Fig. 3 is a structural diagram showing an exemplary hardware architecture of a computing device capable of implementing the image detection method and apparatus for tunnel cracks according to an embodiment of the invention.
具体实施方式detailed description
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。The characteristics and exemplary embodiments of various aspects of the present invention will be described in detail below. In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only configured to explain the present invention, not to limit the present invention. It will be apparent to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. any such actual relationship or order exists between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising..." does not exclude the presence of additional same elements in the process, method, article or device comprising said element.
下面结合附图,详细描述根据本发明实施例提供的隧道裂纹的图像检测方法和装置。应注意,本发明中所描述实施例并不是用来限制本发明公开的范围。The method and device for image detection of tunnel cracks according to the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the embodiments described in the present invention are not intended to limit the scope of the present disclosure.
图1是示出根据本发明一实施例的隧道裂纹的图像检测方法的流程图。如图1所示,本实施例中的隧道裂纹的图像检测方法100包括以下步骤:FIG. 1 is a flow chart illustrating an image detection method for tunnel cracks according to an embodiment of the present invention. As shown in FIG. 1 , the image detection method 100 for tunnel cracks in this embodiment includes the following steps:
步骤S110,对隧道裂纹的待检测图像进行双边滤波处理,得到滤波后图像。Step S110, performing bilateral filtering on the image of the tunnel crack to be detected to obtain a filtered image.
步骤S120,利用视觉显著性模型分别构建滤波后图像的亮度显著图和滤波后图像的纹理显著图。Step S120, using the visual saliency model to respectively construct a brightness saliency map of the filtered image and a texture saliency map of the filtered image.
步骤S130,融合亮度显著图和纹理显著图,得到融合显著图。Step S130, fusing the luminance saliency map and the texture saliency map to obtain a fused saliency map.
步骤S140,通过自适应阈值算法分割融合显著图,得到裂纹区域图像。Step S140, segmenting and merging the saliency map through an adaptive threshold algorithm to obtain a crack area image.
步骤S150,在判定裂纹区域图像的裂纹为真实裂纹时,获得裂纹区域图像的裂纹参数。Step S150, when it is determined that the crack in the crack region image is a real crack, obtain the crack parameters of the crack region image.
根据本发明实施例的图像检测方法,可以对隧道裂纹进行有效检测,并获得较好的检测结果。According to the image detection method of the embodiment of the present invention, tunnel cracks can be effectively detected and better detection results can be obtained.
作为可选实施例,步骤S110中的双边滤波处理的步骤具体可以包括:As an optional embodiment, the steps of bilateral filtering processing in step S110 may specifically include:
步骤S111,统计待检测图像中指定邻域内每个像素的灰度方差值。Step S111, counting the gray variance value of each pixel in the specified neighborhood in the image to be detected.
在该步骤中,指定邻域例如可以是M×N像素尺寸的矩形窗口,M或N的取值可以是7至21之间的奇数。In this step, the specified neighborhood can be, for example, a rectangular window with a size of M×N pixels, and the value of M or N can be an odd number between 7 and 21.
步骤S112,通过每个像素的灰度方差值计算得到待检测图像的平均灰度方差值。Step S112 , calculating the average grayscale variance value of the image to be detected through the grayscale variance value of each pixel.
步骤S113,根据平均灰度方差值设定灰度方差参数,并基于灰度方差参数构建双边滤波器核函数。Step S113 , setting a grayscale variance parameter according to the average grayscale variance value, and constructing a bilateral filter kernel function based on the grayscale variance parameter.
步骤S114,利用构建的双边滤波器核函数,通过卷积模板公式对待检测图像进行双边滤波,将双边滤波后的待检测图像作为滤波后图像。Step S114, using the constructed bilateral filter kernel function to perform bilateral filtering on the image to be detected through the convolution template formula, and use the image to be detected after bilateral filtering as a filtered image.
为了便于理解,作为一个示例,本发明实施例计算待检测图像的平均灰度方差σ,以σr=σ/2作为灰度方差参数,使用下面的公式(1)构建双边滤波器核函数。For ease of understanding, as an example, the embodiment of the present invention calculates the average gray variance σ of the image to be detected, and uses σ r =σ/2 as the gray variance parameter, and uses the following formula (1) to construct a bilateral filter kernel function.
在上述公式(1)中,ω(i,j,k,l)表示指定邻域内每个像素点的权重系数,参数i和参数j表示指定邻域内的图像像素点的坐标,参数k和参数1表示该参数k和该参数1所属的高斯模板对应的坐标,σd表示空域高斯模板的方差,σr表示值域高斯模板的方差。在双边滤波中,权重系数ω(i,j,k,l)是值域高斯模板ωr(i,j,k,l)和空域高斯模板ωd(i,j,k,l)的乘积,即ω(i,j,k,l)=ωd(i,j,k,l)×ωr(i,j,k,l),并且,值域高斯模板空域高斯模板 In the above formula (1), ω(i, j, k, l) represents the weight coefficient of each pixel in the specified neighborhood, parameter i and parameter j represent the coordinates of the image pixel in the specified neighborhood, parameter k and parameter 1 represents the coordinates corresponding to the parameter k and the Gaussian template to which parameter 1 belongs, σ d represents the variance of the spatial Gaussian template, and σ r represents the variance of the Gaussian template in the range. In bilateral filtering, the weight coefficient ω(i, j, k, l) is the product of the range Gaussian template ω r (i, j, k, l) and the spatial domain Gaussian template ω d (i, j, k, l) , ie ω(i, j, k, l)=ω d (i, j, k, l)×ω r (i, j, k, l), and the range Gaussian template Spatial Gaussian Mask
利用构建的双边滤波器核函数(1),使用下面的公式(2)进行双边滤波器滤波:Using the constructed bilateral filter kernel function (1), use the following formula (2) to perform bilateral filter filtering:
在上述公式(2)中,I′(i,j)表示双边滤波器滤波后得到的图像数据。In the above formula (2), I'(i, j) represents the image data obtained after filtering by the bilateral filter.
在该实施例中,采用双边滤波的方法对待检测图像进行预处理,可以在消除待检测图像的噪声的同时保持图像边缘信息,使待处理图像平滑,对图像细节具有明显的保护效果。In this embodiment, the bilateral filtering method is used to preprocess the image to be detected, which can eliminate the noise of the image to be detected while maintaining image edge information, smooth the image to be processed, and have an obvious protection effect on image details.
在本发明实施例中,视觉显著性模型是根据人类的视觉注意机制提出的一种算法,人类视觉注意机制指人类视觉的注意力通常集中在视觉信号中突变的亮度区域或者纹理区域。In the embodiment of the present invention, the visual saliency model is an algorithm proposed based on the human visual attention mechanism. The human visual attention mechanism means that human visual attention usually focuses on abruptly changing brightness regions or texture regions in visual signals.
在一些实施例中,步骤S120中构建滤波后图像的亮度显著图和滤波后图像的纹理显著图的步骤还可以包括:In some embodiments, the step of constructing the brightness saliency map of the filtered image and the texture saliency map of the filtered image in step S120 may further include:
步骤S121,根据视觉显著性模型,构建滤波后图像的亮度高斯金字塔,亮度高斯金字塔包括预定的层数。Step S121 , according to the visual saliency model, construct a brightness Gaussian pyramid of the filtered image, and the brightness Gaussian pyramid includes a predetermined number of layers.
在本发明实施例中,高斯金字塔作为一种图像的多尺度表示方法,可以高效地提取图像在不同尺度的特征,下面对本发明中构建亮度高斯金字塔的过程进行详细说明。In the embodiment of the present invention, as a multi-scale image representation method, the Gaussian pyramid can efficiently extract the features of the image at different scales. The process of constructing the brightness Gaussian pyramid in the present invention will be described in detail below.
首先,提取待处理的原始图像中的亮度特征得到亮度特征原始图像,并将该原始图像作为金字塔的底层图像;然后,将该原始图像进行高斯函数滤波后的图像作为亮度高斯金字塔的第二层图像,并且该第二层图像的长度为底层图像长度的1/2,该第二层图像的宽度为底层图像宽度的1/2;再将第二层图像进行高斯函数滤波后的图像作为亮度高斯金字塔的第三层图像,并且该第三层图像的长度为第二层图像长度的1/2,第三层图像的宽度为第二层图像宽度的1/2,……,以此类推,构建出不断进行高斯滤波后的图像的亮度高斯金字塔。该亮度高斯金字塔除底层外,按照层数从高到低的每一层图像的长度为与该层相邻的下一层图像的长度的1/2,每一层图像的宽度为与该层相邻的下一层图像宽度的1/2。First, extract the luminance feature in the original image to be processed to obtain the original image of luminance feature, and use the original image as the bottom image of the pyramid; then, the image after Gaussian function filtering of the original image is used as the second layer of the luminance Gaussian pyramid image, and the length of the second-layer image is 1/2 of the length of the bottom image, and the width of the second-layer image is 1/2 of the width of the bottom image; The third-level image of the Gaussian pyramid, and the length of the third-level image is 1/2 of the length of the second-level image, the width of the third-level image is 1/2 of the width of the second-level image, ..., and so on , to construct a brightness Gaussian pyramid of the image after continuous Gaussian filtering. In addition to the bottom layer of the brightness Gaussian pyramid, the length of each layer image from high to low according to the number of layers is 1/2 of the length of the next layer image adjacent to this layer, and the width of each layer image is 1/2 of the length of the layer image. 1/2 of the image width of the adjacent next layer.
作为一个示例,本发明实施例中构建的亮度高斯金字塔的层数为5层。As an example, the number of layers of the brightness Gaussian pyramid constructed in the embodiment of the present invention is 5 layers.
步骤S122,利用盖伯滤波器函数,通过计算亮度高斯金字塔的每一层图像在0、π/4、π/2、3π/4四个方向的盖伯滤波图像,得到滤波后图像的纹理高斯金字塔。Step S122, using the Gabor filter function to obtain the texture Gaussian of the filtered image by calculating the Gabor filter image of each layer image of the brightness Gaussian pyramid in the four directions of 0, π/4, π/2, and 3π/4 pyramid.
具体地,通过下述公式(3)计算亮度高斯金字塔的每一层在0、π/4、π/2、3π/4四个方向上的盖伯滤波影像,形成纹理金字塔:Specifically, the Gaber filter image of each layer of the brightness Gaussian pyramid in the four directions of 0, π/4, π/2, and 3π/4 is calculated by the following formula (3) to form a texture pyramid:
在上述公式(3)中,为盖伯滤波器的核函数,盖伯滤波器的核函数具有如下参数:波长λ、方向θ、相位偏移标准差σ、长宽比γ,x和y为亮度高斯金字塔当前层的图像像素点的坐标。In the above formula (3), is the kernel function of the Gabor filter, and the kernel function of the Gabor filter has the following parameters: wavelength λ, direction θ, phase shift Standard deviation σ, aspect ratio γ, x and y are the coordinates of the image pixel of the current layer of the brightness Gaussian pyramid.
步骤S123,按照亮度高斯金字塔的层数从高到低分别获取除底层外的每一层图像作为待处理图像,对待处理图像进行上采样得到分辨率与待处理图像相邻的下一层图像的分辨率相同的图像,并计算上采样得到的图像与相邻的下一层图像的图像相减运算的绝对值,得到亮度显著图。Step S123, according to the number of layers of the luminance Gaussian pyramid from high to low, obtain images of each layer except the bottom layer as the image to be processed, and perform up-sampling on the image to be processed to obtain the image of the next layer whose resolution is adjacent to the image to be processed images with the same resolution, and calculate the absolute value of the image subtraction operation between the image obtained by upsampling and the image of the adjacent next layer image to obtain a brightness saliency map.
步骤S124,按照纹理高斯金字塔的层数从高到低分别获取除底层外的每一层图像作为待处理图像,对待处理图像进行上采样得到分辨率与待处理图像相邻的下一层图像的分辨率相同的图像,并计算上采样得到的图像与相邻的下一层图像的图像相减运算的绝对值,得到纹理显著图。Step S124, according to the number of layers of the texture Gaussian pyramid from high to low, obtain each layer image except the bottom layer as the image to be processed, and perform up-sampling on the image to be processed to obtain the next layer image whose resolution is adjacent to the image to be processed images with the same resolution, and calculate the absolute value of the subtraction operation between the image obtained by upsampling and the image of the adjacent next layer image to obtain the texture saliency map.
在上述步骤S123或步骤S124中,利用如下公式(4)进行图像相减运算,并对图像相减运算的结果求取绝对值:In above-mentioned step S123 or step S124, utilize following formula (4) to carry out image subtraction operation, and obtain the absolute value to the result of image subtraction operation:
s(i,j)=|p(i)-pT(j)| (4)s(i,j)=|p(i)-p T (j)| (4)
在上述公式(4)中,p(i)表示第i层的金字塔影像,p↑(j)表示对第j层的金字塔图像进行上采样得到分辨率与第i层图像的分辨率相同的图像,并且i<j。In the above formula (4), p(i) represents the pyramid image of the i-th layer, and p ↑ (j) represents an image with the same resolution as the i-th layer image obtained by upsampling the j-th layer pyramid image , and i<j.
在本发明实施例中,图像相减运算是指两幅或多幅图像的像素点之间进行点对点的像素值的相减运算。以两幅图像进行图像相减运算为例,分别获取其中一幅图像的每个像素点作为第一像素点,并将该第一像素点的像素值与其中另一幅图像中的与该第一像素点位置相同的像素点的像素值进行相减运算,得到该其中一幅图像与该另一幅图像的图像相减运算结果。In the embodiment of the present invention, image subtraction refers to a point-to-point subtraction of pixel values between pixels of two or more images. Taking image subtraction of two images as an example, each pixel of one of the images is obtained as the first pixel, and the pixel value of the first pixel is compared with the pixel value of the other image and the first pixel. The pixel values of the pixels at the same pixel position are subtracted to obtain an image subtraction result of one of the images and the other image.
通过本发明实施例中的图像相减运算,在对裂纹进行检测时可以去除待检测图像中不需要的叠加性图案,当裂纹对比度低、连续性差时,可以有效去除背景图像,使裂纹显示效果得到加强,从而在后续的裂纹检测中获得较好的检测效果。Through the image subtraction operation in the embodiment of the present invention, the unnecessary superimposed pattern in the image to be detected can be removed when the crack is detected, and when the crack contrast is low and the continuity is poor, the background image can be effectively removed to make the crack display effect be strengthened, so as to obtain a better detection effect in the subsequent crack detection.
在一些实施例中,步骤S130中融合亮度显著图和纹理显著图的步骤具体可以包括:In some embodiments, the step of fusing the brightness saliency map and the texture saliency map in step S130 may specifically include:
步骤S131,分别获取亮度显著图中像素点的最大像素值作为第一像素值,获取纹理显著图中像素点的最大像素值作为第二像素值,并将亮度显著图中像素点的像素值与第一像素值相除得到归一化亮度显著图,将纹理显著图中像素点的像素值与第二像素值相除得到归一化纹理显著图。Step S131, obtain the maximum pixel value of the pixel point in the luminance saliency map as the first pixel value, obtain the maximum pixel value of the pixel point in the texture saliency map as the second pixel value, and combine the pixel value of the pixel point in the luminance saliency map with The first pixel value is divided to obtain a normalized brightness saliency map, and the pixel value of a pixel point in the texture saliency map is divided by the second pixel value to obtain a normalized texture saliency map.
具体地,通过下述公式(5)进行亮度显著图或纹理显著图的归一化处理:Specifically, the normalization process of the brightness saliency map or the texture saliency map is performed by the following formula (5):
sn(i,j)=s(i,j)/M(i,j) (5)s n (i, j) = s (i, j)/M (i, j) (5)
在使用上述公式(5)对亮度显著图进行归一化处理时,sn(i,j)表示对亮度显著图归一化处理后的得到的归一化亮度显著图,s(i,j)为该亮度显著图中的像素点的像素值,M(i,j)为亮度显著图中像素点的最大像素值。When using the above formula (5) to normalize the luminance saliency map, s n (i, j) represents the normalized luminance saliency map obtained after normalizing the luminance saliency map, s(i, j ) is the pixel value of a pixel in the luminance saliency map, and M(i, j) is the maximum pixel value of a pixel in the luminance saliency map.
在使用上述公式(5)对纹理显著图进行归一化处理时,sn(i,j)表示对纹理显著图归一化处理后的得到的归一化纹理显著图,s(i,j)为该纹理显著图中的像素点的像素值,M(i,j)为纹理显著图中像素点的最大像素值。When using the above formula (5) to normalize the texture saliency map, s n (i, j) represents the normalized texture saliency map obtained after normalizing the texture saliency map, s(i, j ) is the pixel value of the pixel in the texture saliency map, and M(i, j) is the maximum pixel value of the pixel in the texture saliency map.
步骤S132,将归一化亮度显著图中的每一个像素点,与归一化纹理显著图中和每一个像素点的位置相同的像素点进行像素值的对比,将对比得到的最大值作为融合显著图中与每一个像素点的位置相同的像素点的像素值,得到融合显著图。Step S132, comparing the pixel value of each pixel in the normalized brightness saliency map with the pixel in the same position as each pixel in the normalized texture saliency map, and using the maximum value obtained from the comparison as the fusion The pixel value of the pixel in the same position as each pixel in the saliency map is obtained to obtain the fused saliency map.
具体地,通过下述公式(6)将亮度显著图和纹理显著图进行融合:Specifically, the brightness saliency map and the texture saliency map are fused by the following formula (6):
在上述步骤(6)中,是归一化处理后得到的归一化亮度显著图,是归一化处理后得到的归一化纹理显著图。In the above step (6), is the normalized brightness saliency map obtained after normalization processing, is the normalized texture saliency map obtained after normalization processing.
在一些实施例中,步骤S140中的自适应阈值算法为最大类间方差法,步骤S140还可以包括:In some embodiments, the adaptive threshold algorithm in step S140 is the maximum inter-class variance method, and step S140 may also include:
步骤S141,通过最大类间方差法,计算得到融合显著图的最优裂纹分割阈值。In step S141, the optimum crack segmentation threshold for the fused saliency map is calculated by the maximum between-class variance method.
在本发明实施例中,最大类间方差法也称OTSU算法或大津算法,最大类间方差法是一种使得分割后的前景图像区域与背景图像区域的类间方差最大化的方法。In the embodiment of the present invention, the maximum inter-class variance method is also called OTSU algorithm or Otsu algorithm, and the maximum inter-class variance method is a method for maximizing the inter-class variance between the segmented foreground image area and the background image area.
具体地,可以通过下述公式(7)表示最优裂纹分割阈值的选择:Specifically, the selection of the optimal crack segmentation threshold can be expressed by the following formula (7):
T=arg maxt(var(I<t)+var(I≥t)) (7)T=arg max t (var(I<t)+var(I≥t)) (7)
在上述公式(7)中,var(I<t)表示灰度值比t值小的图像区域相对于整体灰度均值的方差,var(I≥t)表示灰度值不小于t值时的图像区域相对于整体灰度均值的方差,t表示分割阈值,T表示var(I<t)+var(I≥t)取最大值时t的取值。In the above formula (7), var(I<t) represents the variance of the image area whose gray value is smaller than the t value relative to the overall gray value mean, and var(I≥t) represents the gray value when the gray value is not less than the t value The variance of the image area relative to the mean value of the overall gray scale, t represents the segmentation threshold, and T represents the value of t when var(I<t)+var(I≥t) takes the maximum value.
也就是说,使用一个裂纹分割阈值将整个图像数据分成两个类,假如两个类之间的方差最大,那么这个裂纹分割阈值就是最优的裂纹分割阈值。That is to say, a crack segmentation threshold is used to divide the entire image data into two classes. If the variance between the two classes is the largest, then this crack segmentation threshold is the optimal crack segmentation threshold.
步骤S142,利用最优裂纹分割阈值分割融合显著图,得到融合显著图的候选裂纹区域图像。In step S142, the optimal crack segmentation threshold is used to segment the fused saliency map to obtain a candidate crack region image of the fused saliency map.
在该实施例中,使用根据最大类间方差法获取最优裂纹分割阈值,可以使应用该最优裂纹分割阈值对待检测图像进行分割的错分概率最小,从而提高了图像分割后得到的候选裂纹区域图像的准确度。In this embodiment, the optimal crack segmentation threshold is obtained by using the method of maximum between-class variance, which can minimize the probability of misclassification of the image to be detected by applying the optimal crack segmentation threshold, thereby improving the number of candidate cracks obtained after image segmentation. The accuracy of the area image.
在一些实施例中,步骤S150具体可以包括:In some embodiments, step S150 may specifically include:
步骤S151,分别计算裂纹区域图像中像素点的灰度值的均值,以及与裂纹区域图像相邻的指定区域内像素点的灰度值的均值。Step S151 , respectively calculating the mean value of the gray value of the pixels in the image of the crack area and the mean value of the gray value of the pixels in a specified area adjacent to the image of the crack area.
步骤S152,如果裂纹区域内像素点的灰度值的均值,小于指定区域内像素点的灰度值的均值,则判定裂纹区域的裂纹为真实裂纹。Step S152, if the average gray value of the pixels in the crack area is smaller than the average gray value of the pixels in the specified area, it is determined that the crack in the crack area is a real crack.
在该步骤中,利用裂纹灰度较低的特点,统计分割得到的候选裂纹区域的临近区域的像素点的灰度均值,如果裂纹的灰度均值小于其临近影像的灰度均值,则判定此裂纹为真实裂纹。In this step, the average gray value of the pixels in the adjacent area of the candidate crack area obtained by statistical segmentation is used for the low gray value of the crack. If the average gray value of the crack is smaller than the average gray value of its adjacent image, the Cracks are real cracks.
步骤S153,二值分割裂纹区域图像得到裂纹区域图像的裂纹二值图像,并对裂纹二值图像进行骨架化操作得到裂纹区域图像的裂纹参数,裂纹参数包括裂纹长度和裂纹宽度。Step S153, binary segmenting the crack region image to obtain a crack binary image of the crack region image, and performing a skeletonization operation on the crack binary image to obtain crack parameters of the crack region image, where the crack parameters include crack length and crack width.
图像骨架化是进行线条类图像分析的方法,通过对判定为真实裂纹的裂纹进行骨架提取,识别并统计裂纹的尺寸和形状信息,例如裂纹的长度和宽度。Image skeletonization is a method for line image analysis. By extracting the skeleton of cracks judged as real cracks, the size and shape information of cracks, such as the length and width of cracks, are identified and counted.
根据本发明实施例提供的图像检测方法,可以准确的对图像中的裂纹区域进行检测和识别,并且在裂纹连续性差、对比度低时,也可以获得良好的检测效果。According to the image detection method provided by the embodiment of the present invention, the crack region in the image can be detected and identified accurately, and good detection effect can also be obtained when the crack continuity is poor and the contrast is low.
下面结合附图详细介绍根据本发明实施例的隧道裂纹的图像检测装置。The image detection device for tunnel cracks according to the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图2示出了根据本发明一实施例提供的隧道裂纹的图像检测装置的结构示意图。如图2所示,本发明实施例中的图像检测装置200包括:Fig. 2 shows a schematic structural diagram of an image detection device for tunnel cracks according to an embodiment of the present invention. As shown in FIG. 2, the image detection device 200 in the embodiment of the present invention includes:
图像滤波模块310,用于对隧道裂纹的待检测图像进行双边滤波处理,得到滤波后图像。The image filtering module 310 is configured to perform bilateral filtering on the image of the tunnel crack to be detected to obtain a filtered image.
显著图构建模块320,用于利用视觉显著性模型分别构建滤波后图像的亮度显著图和滤波后图像的纹理显著图。The saliency map construction module 320 is configured to respectively construct a brightness saliency map of the filtered image and a texture saliency map of the filtered image by using the visual saliency model.
显著图融合模块330,用于融合亮度显著图和纹理显著图,得到融合显著图。The saliency map fusion module 330 is used to fuse the brightness saliency map and the texture saliency map to obtain the fused saliency map.
显著图分割模块340,用于通过自适应阈值算法分割融合显著图,得到裂纹区域图像。The saliency map segmentation module 340 is configured to segment and fuse the saliency map through an adaptive threshold algorithm to obtain a crack region image.
裂纹参数获取模块350,用于在判定裂纹区域图像的裂纹为真实裂纹时,获得裂纹区域图像的裂纹参数。The crack parameter acquisition module 350 is configured to acquire crack parameters of the crack area image when it is determined that the crack in the crack area image is a real crack.
根据本发明实施例提供的图像检测装置,将待检测图像的亮度显著图和纹理显著图进行融合得到融合显著图,对得到的融合显著图进行分割,判定并统计裂纹参数信息,使隧道裂纹得到有效检测。According to the image detection device provided by the embodiment of the present invention, the luminance saliency map and the texture saliency map of the image to be detected are fused to obtain a fused saliency map, and the obtained fused saliency map is segmented to determine and count the crack parameter information, so that the tunnel crack can be obtained effective detection.
在一些实施例中,图像滤波模块310还可以包括:In some embodiments, the image filtering module 310 may also include:
灰度方差值统计单元311,用于统计待检测图像中指定邻域内每个像素的灰度方差值;A grayscale variance value statistical unit 311, used to count the grayscale variance value of each pixel in the specified neighborhood in the image to be detected;
平均灰度方差值计算单元322,用于通过每个像素的灰度方差值计算得到待检测图像的平均灰度方差值;The average grayscale variance value calculation unit 322 is used to calculate the average grayscale variance value of the image to be detected through the grayscale variance value of each pixel;
双边滤波器核函数构建单元323,用于根据平均灰度方差值设定灰度方差参数,并基于灰度方差参数构建双边滤波器核函数;The bilateral filter kernel function construction unit 323 is used to set the grayscale variance parameter according to the average grayscale variance value, and construct the bilateral filter kernel function based on the grayscale variance parameter;
双边滤波函数计算单元324,用于利用构建的双边滤波器核函数,通过卷积模板公式对待检测图像进行双边滤波,将双边滤波后的待检测图像作为滤波后图像。The bilateral filter function calculation unit 324 is configured to use the constructed bilateral filter kernel function to perform bilateral filtering on the image to be detected through the convolution template formula, and use the bilaterally filtered image to be detected as a filtered image.
在该实施例中,双边滤波可以消除待检测图像的噪声,同时保持图像边缘信息,使待处理图像平滑。In this embodiment, the bilateral filtering can eliminate the noise of the image to be detected while maintaining the edge information of the image to make the image to be processed smooth.
在一些实施例中,显著图构建模块320还可以包括:In some embodiments, the saliency map construction module 320 may also include:
亮度高斯金字塔构建单元321,用于根据视觉显著性模型,构建滤波后图像的亮度高斯金字塔,亮度高斯金字塔包括预定的层数;A brightness Gaussian pyramid construction unit 321, configured to construct a brightness Gaussian pyramid of the filtered image according to the visual saliency model, where the brightness Gaussian pyramid includes a predetermined number of layers;
纹理高斯金字塔构建单元322,用于利用盖伯滤波器函数,通过计算亮度高斯金字塔的每一层图像在0、π/4、π/2、3π/4四个方向的盖伯滤波图像,得到滤波后图像的纹理高斯金字塔;The texture Gaussian pyramid construction unit 322 is used to use the Gabor filter function to calculate the Gabor filter image of each layer image of the brightness Gaussian pyramid in the four directions of 0, π/4, π/2, and 3π/4 to obtain A textured Gaussian pyramid of the filtered image;
亮度显著图构建单元323,用于按照亮度高斯金字塔的层数从高到低分别获取除底层外的每一层图像作为待处理图像,对待处理图像进行上采样得到分辨率与待处理图像相邻的下一层图像的分辨率相同的图像,并计算上采样得到的图像与相邻的下一层图像的图像相减运算的绝对值,得到亮度显著图;The luminance saliency map construction unit 323 is used to obtain the image of each layer except the bottom layer from high to low according to the number of layers of the luminance Gaussian pyramid as the image to be processed, and perform up-sampling on the image to be processed to obtain a resolution adjacent to the image to be processed The image with the same resolution as the image of the next layer, and calculate the absolute value of the image subtraction operation between the image obtained by upsampling and the image of the adjacent image of the next layer to obtain a brightness saliency map;
纹理显著图构建单元324,用于按照纹理高斯金字塔的层数从高到低分别获取除底层外的每一层图像作为待处理图像,对待处理图像进行上采样得到分辨率与待处理图像相邻的下一层图像的分辨率相同的图像,并计算上采样得到的图像与相邻的下一层图像的图像相减运算的绝对值,得到纹理显著图。The texture saliency map construction unit 324 is used to obtain the image of each layer except the bottom layer from high to low according to the number of layers of the texture Gaussian pyramid as the image to be processed, and perform up-sampling on the image to be processed to obtain a resolution adjacent to the image to be processed The resolution of the next layer image is the same as that of the next layer image, and the absolute value of the subtraction operation between the upsampled image and the image of the adjacent next layer image is calculated to obtain the texture saliency map.
在该实施例中,通过显著图的构建使得待检测图像中的裂纹得到加强,当当裂纹对比度低、连续性差时,可以有效去除背景图像,为后续裂纹检测和识别提供了良好的数据基础。In this embodiment, the cracks in the image to be detected are enhanced through the construction of the saliency map. When the contrast of the crack is low and the continuity is poor, the background image can be effectively removed, which provides a good data basis for subsequent crack detection and identification.
在一些实施例中,显著图融合模块330还可以包括:In some embodiments, the saliency map fusion module 330 may also include:
特征图归一化处理单元331,用于分别获取亮度显著图中像素点的最大像素值作为第一像素值,获取纹理显著图中像素点的最大像素值作为第二像素值,并将亮度显著图中像素点的像素值与第一像素值相除得到归一化亮度特征图,将纹理显著图中像素点的像素值与第二像素值相除得到归一化纹理特征图;The feature map normalization processing unit 331 is configured to acquire the maximum pixel value of the pixel in the luminance saliency map as the first pixel value, acquire the maximum pixel value of the pixel in the texture saliency map as the second pixel value, and set the luminance salience The pixel value of the pixel point in the figure is divided by the first pixel value to obtain a normalized brightness feature map, and the pixel value of the pixel point in the texture saliency map is divided by the second pixel value to obtain a normalized texture feature map;
融合显著图构建单元332,用于将归一化亮度显著图中的每一个像素点,与归一化纹理显著图中和每一个像素点的位置相同的像素点进行像素值的对比,将对比得到的最大值作为融合显著图中与每一个像素点的位置相同的像素点的像素值,得到融合显著图。The fused saliency map construction unit 332 is used to compare the pixel value of each pixel in the normalized brightness saliency map with the pixel at the same position as each pixel in the normalized texture saliency map, and compare The obtained maximum value is used as the pixel value of the pixel in the same position as each pixel in the fused saliency map to obtain the fused saliency map.
在一些实施例中,显著图分割模块340还可以包括:In some embodiments, the saliency map segmentation module 340 may also include:
最优裂纹分割阈值计算单元341,用于通过最大类间方差法,计算得到融合显著图的最优裂纹分割阈值;The optimal crack segmentation threshold calculation unit 341 is used to calculate and obtain the optimal crack segmentation threshold of the fusion saliency map through the maximum inter-class variance method;
显著图分割获取模块340利用最优裂纹分割阈值分割融合显著图,得到融合显著图的候选裂纹区域图像。The saliency map segmentation acquisition module 340 uses the optimal crack segmentation threshold to segment the fused saliency map to obtain the image of the candidate crack area of the fused saliency map.
在该实施例中,图像分割所选取的分割阈值是由最大类间方差法获得的最优裂纹分割阈值,使用该最优裂纹分割阈值对融合的显著图进行分割,可以有效降低裂纹的错分率。In this embodiment, the segmentation threshold selected for image segmentation is the optimal crack segmentation threshold obtained by the maximum between-class variance method, and using the optimal crack segmentation threshold to segment the fused saliency map can effectively reduce the misclassification of cracks Rate.
在一些实施例中,裂纹参数获取模块350还可以包括:In some embodiments, the crack parameter acquisition module 350 may also include:
灰度值计算单元351,用于分别计算裂纹区域图像中像素点的灰度值的均值,以及与裂纹区域图像相邻的指定区域内像素点的灰度值的均值;A gray value calculation unit 351, configured to respectively calculate the mean value of the gray value of the pixels in the image of the crack area, and the mean value of the gray value of the pixels in a specified area adjacent to the image of the crack area;
裂纹真实性判定单元352,用于如果裂纹区域内像素点的灰度值的均值,小于指定区域内像素点的灰度值的均值,则判定裂纹区域的裂纹为真实裂纹;The crack authenticity determination unit 352 is configured to determine that the crack in the crack area is a real crack if the average value of the gray value of the pixels in the crack area is less than the average value of the gray value of the pixel points in the specified area;
裂纹参数获取单元353,用于二值分割裂纹区域图像得到裂纹区域图像的裂纹二值图像,并对裂纹二值图像进行骨架化操作得到裂纹区域图像的裂纹参数,裂纹参数包括裂纹长度和裂纹宽度。The crack parameter acquisition unit 353 is used for binary segmentation of the crack region image to obtain the crack binary image of the crack region image, and performs skeletonization operation on the crack binary image to obtain the crack parameters of the crack region image, and the crack parameters include crack length and crack width .
在该实施例中,利用裂纹灰度较低的特点对分割后得到的裂纹区域进行判定,并在判定为真实裂纹后,获取裂纹长度和裂纹宽度等参数信息。In this embodiment, the crack region obtained after segmentation is judged by the characteristic of low gray level of the crack, and after it is judged as a real crack, parameter information such as crack length and crack width is obtained.
根据本发明实施例的隧道裂纹的图像检测装置的其他细节与以上结合图1描述的根据本发明实施例的隧道裂纹的图像检测方法类似,在此不再赘述。Other details of the image detection device for tunnel cracks according to the embodiment of the present invention are similar to the image detection method for tunnel cracks according to the embodiment of the present invention described above in conjunction with FIG. 1 , and will not be repeated here.
结合图1与图2描述的根据本发明实施例的隧道裂纹的图像检测方法和装置可以由可拆卸地或者固定地安装在应用服务端设备上的计算设备实现。图3是示出能够实现根据本发明实施例的隧道裂纹的图像检测方法和装置的计算设备的示例性硬件架构的结构图。如图3所示,计算设备300包括输入设备301、输入接口302、中央处理器303、存储器304、输出接口305、以及输出设备306。其中,输入接口302、中央处理器303、存储器304、以及输出接口305通过总线310相互连接,输入设备301和输出设备306分别通过输入接口302和输出接口305与总线310连接,进而与计算设备300的其他组件连接。具体地,输入设备301接收来自外部(例如,摄像设备或数码相机)的图像输入信息,并通过输入接口302将输入信息传送到中央处理器303;中央处理器303基于存储器304中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器304中,然后通过输出接口305将输出信息传送到输出设备306;输出设备306将输出信息输出到计算设备300的外部供用户使用。The image detection method and apparatus for tunnel cracks according to the embodiments of the present invention described in conjunction with FIG. 1 and FIG. 2 may be implemented by a computing device detachably or fixedly installed on an application server device. FIG. 3 is a structural diagram illustrating an exemplary hardware architecture of a computing device capable of implementing the image detection method and apparatus for tunnel cracks according to an embodiment of the present invention. As shown in FIG. 3 , the computing device 300 includes an input device 301 , an input interface 302 , a central processing unit 303 , a memory 304 , an output interface 305 , and an output device 306 . Wherein, the input interface 302, the central processing unit 303, the memory 304, and the output interface 305 are connected to each other through the bus 310, and the input device 301 and the output device 306 are respectively connected to the bus 310 through the input interface 302 and the output interface 305, and then connected to the computing device 300 other component connections. Specifically, the input device 301 receives image input information from the outside (for example, an imaging device or a digital camera), and transmits the input information to the central processing unit 303 through the input interface 302; The execution instruction processes the input information to generate output information, temporarily or permanently stores the output information in the memory 304, and then transmits the output information to the output device 306 through the output interface 305; the output device 306 outputs the output information to the computing device 300 external to the user.
也就是说,图3所示的计算设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图2描述的隧道裂纹的图像检测方法和装置。这里,处理器可以与图像管理系统或安装在待检测装置上的图像传感器等图像获取模块进行通信,从而基于来自图像管理系统和/或图像传感器的相关信息执行计算机可执行指令,从而实现结合图1至图2描述的隧道裂纹的图像检测方法和装置。That is to say, the computing device shown in FIG. 3 can also be implemented to include: a memory storing computer-executable instructions; and a processor, which can implement the operations described in conjunction with FIGS. 1 to 2 when executing the computer-executable instructions. Image detection method and device for tunnel cracks. Here, the processor can communicate with an image acquisition module such as an image management system or an image sensor installed on the device to be inspected, so as to execute computer-executable instructions based on relevant information from the image management system and/or image sensor, thereby realizing the combination of FIG. 1 to 2 describe the image detection method and device for tunnel cracks.
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。It is to be understood that the invention is not limited to the specific arrangements and processes described above and shown in the drawings. For conciseness, detailed descriptions of known methods are omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present invention is not limited to the specific steps described and shown, and those skilled in the art can make various changes, modifications and additions, or change the sequence of steps after understanding the spirit of the present invention.
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。The functional blocks shown in the structural block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like. When implemented in software, the elements of the invention are the programs or code segments employed to perform the required tasks. Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves. "Machine-readable medium" may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like. Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices. However, the present invention is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be performed simultaneously.
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。The above is only a specific implementation of the present invention, and those skilled in the art can clearly understand that for the convenience and brevity of description, the specific working process of the above-described systems, modules and units can refer to the foregoing method embodiments The corresponding process in , will not be repeated here. It should be understood that the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of various equivalent modifications or replacements within the technical scope disclosed in the present invention, and these modifications or replacements should cover all Within the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710227430.0A CN107220962B (en) | 2017-04-07 | 2017-04-07 | An image detection method and device for tunnel cracks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710227430.0A CN107220962B (en) | 2017-04-07 | 2017-04-07 | An image detection method and device for tunnel cracks |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107220962A true CN107220962A (en) | 2017-09-29 |
CN107220962B CN107220962B (en) | 2020-04-21 |
Family
ID=59927549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710227430.0A Active CN107220962B (en) | 2017-04-07 | 2017-04-07 | An image detection method and device for tunnel cracks |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107220962B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110111711A (en) * | 2019-04-30 | 2019-08-09 | 京东方科技集团股份有限公司 | The detection method and device of screen, computer readable storage medium |
CN111198191A (en) * | 2018-10-30 | 2020-05-26 | 三星显示有限公司 | Apparatus for inspecting display device and inspection method thereof |
CN111289974A (en) * | 2018-12-10 | 2020-06-16 | 中铁一局集团有限公司 | Tunnel full-section rack method rapid detection system and operation control method thereof |
CN111325724A (en) * | 2020-02-19 | 2020-06-23 | 石家庄铁道大学 | Tunnel crack area detection method and device |
CN111833363A (en) * | 2019-04-17 | 2020-10-27 | 南开大学 | Detection method and device |
CN112668396A (en) * | 2020-12-03 | 2021-04-16 | 浙江大华技术股份有限公司 | Two-dimensional false target identification method, device, equipment and medium |
CN114708226A (en) * | 2022-04-01 | 2022-07-05 | 南通蓝城机械科技有限公司 | Copper pipe inner wall crack detection method based on illumination influence |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175701A (en) * | 2011-02-11 | 2011-09-07 | 王慧斌 | System and method for online flaw detection of industrial X-ray machine |
CN102521595A (en) * | 2011-12-07 | 2012-06-27 | 中南大学 | Method for extracting image region of interest based on eye movement data and bottom-layer features |
CN103871053A (en) * | 2014-02-25 | 2014-06-18 | 苏州大学 | Vision conspicuousness-based cloth flaw detection method |
CN104463847A (en) * | 2014-08-05 | 2015-03-25 | 华南理工大学 | Ink and wash painting characteristic rendering method |
CN105510350A (en) * | 2016-01-28 | 2016-04-20 | 北京工业大学 | Tunnel surface image acquisition device and tunnel surface detection equipment |
CN105913413A (en) * | 2016-03-31 | 2016-08-31 | 宁波大学 | Objective colorful image quality evaluation method based on online manifold learning |
-
2017
- 2017-04-07 CN CN201710227430.0A patent/CN107220962B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175701A (en) * | 2011-02-11 | 2011-09-07 | 王慧斌 | System and method for online flaw detection of industrial X-ray machine |
CN102521595A (en) * | 2011-12-07 | 2012-06-27 | 中南大学 | Method for extracting image region of interest based on eye movement data and bottom-layer features |
CN103871053A (en) * | 2014-02-25 | 2014-06-18 | 苏州大学 | Vision conspicuousness-based cloth flaw detection method |
CN104463847A (en) * | 2014-08-05 | 2015-03-25 | 华南理工大学 | Ink and wash painting characteristic rendering method |
CN105510350A (en) * | 2016-01-28 | 2016-04-20 | 北京工业大学 | Tunnel surface image acquisition device and tunnel surface detection equipment |
CN105913413A (en) * | 2016-03-31 | 2016-08-31 | 宁波大学 | Objective colorful image quality evaluation method based on online manifold learning |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111198191A (en) * | 2018-10-30 | 2020-05-26 | 三星显示有限公司 | Apparatus for inspecting display device and inspection method thereof |
CN111289974A (en) * | 2018-12-10 | 2020-06-16 | 中铁一局集团有限公司 | Tunnel full-section rack method rapid detection system and operation control method thereof |
CN111833363A (en) * | 2019-04-17 | 2020-10-27 | 南开大学 | Detection method and device |
CN111833363B (en) * | 2019-04-17 | 2023-10-24 | 南开大学 | Image edge and saliency detection method and device |
CN110111711A (en) * | 2019-04-30 | 2019-08-09 | 京东方科技集团股份有限公司 | The detection method and device of screen, computer readable storage medium |
CN111325724A (en) * | 2020-02-19 | 2020-06-23 | 石家庄铁道大学 | Tunnel crack area detection method and device |
CN111325724B (en) * | 2020-02-19 | 2023-06-09 | 石家庄铁道大学 | Tunnel crack area detection method and device |
CN112668396A (en) * | 2020-12-03 | 2021-04-16 | 浙江大华技术股份有限公司 | Two-dimensional false target identification method, device, equipment and medium |
CN114708226A (en) * | 2022-04-01 | 2022-07-05 | 南通蓝城机械科技有限公司 | Copper pipe inner wall crack detection method based on illumination influence |
CN114708226B (en) * | 2022-04-01 | 2024-06-21 | 辽宁中科力勒检测技术服务有限公司 | Copper pipe inner wall crack detection method based on illumination influence |
Also Published As
Publication number | Publication date |
---|---|
CN107220962B (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11580647B1 (en) | Global and local binary pattern image crack segmentation method based on robot vision | |
CN107220962A (en) | A kind of image detecting method and device of tunnel crackle | |
CN102693426B (en) | Method for detecting image salient regions | |
CN107146217B (en) | An image detection method and device | |
CN108898132B (en) | A THz Image Dangerous Goods Recognition Method Based on Shape Context Description | |
CN103996209A (en) | Infrared vessel object segmentation method based on salient region detection | |
Lo et al. | Joint trilateral filtering for depth map super-resolution | |
Krishnan et al. | A survey on different edge detection techniques for image segmentation | |
CN103164692A (en) | Special vehicle instrument automatic identification system and algorithm based on computer vision | |
CN106845457A (en) | Method for detecting infrared puniness target based on spectrum residual error with fuzzy clustering | |
Wazalwar et al. | A design flow for robust license plate localization and recognition in complex scenes | |
CN109961416B (en) | A business license information extraction method based on multi-scale fusion of morphological gradients | |
CN117557565B (en) | Detection method and device for lithium battery pole piece | |
Halder et al. | Edge detection: A statistical approach | |
CN109993744B (en) | An infrared target detection method in a marine backlight environment | |
Igbinosa | Comparison of edge detection technique in image processing techniques | |
CN110263778A (en) | A kind of meter register method and device based on image recognition | |
CN117522778A (en) | Hollow brick flaw detection system | |
CN116311212A (en) | Ship number identification method and device based on high-speed camera and in motion state | |
CN117649606A (en) | Hyperspectral image shadow removing method and hyperspectral image shadow removing system based on intrinsic representation model | |
CN112508017A (en) | Intelligent digital display instrument reading identification method, system, processing equipment and storage medium | |
CN115083008A (en) | Moving object detection method, device, equipment and storage medium | |
Othman et al. | Road crack detection using adaptive multi resolution thresholding techniques | |
CN114359149B (en) | Dam bank dangerous case video detection method and system based on real-time image edge enhancement | |
CN115471476A (en) | Method, device, equipment and medium for detecting component defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |