CN107179525A - A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon - Google Patents
A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon Download PDFInfo
- Publication number
- CN107179525A CN107179525A CN201710599551.8A CN201710599551A CN107179525A CN 107179525 A CN107179525 A CN 107179525A CN 201710599551 A CN201710599551 A CN 201710599551A CN 107179525 A CN107179525 A CN 107179525A
- Authority
- CN
- China
- Prior art keywords
- mrow
- mtd
- msub
- mtr
- mtable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010276 construction Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims 2
- 238000009795 derivation Methods 0.000 claims 1
- 238000005070 sampling Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Radio frequency fingerprinting
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种基于泰森多边形的克里金插值的RSSI位置指纹构建方法,该方法构建泰森多边形,根据离散点自动构建三角网,即构建Delaunay三角网。对离散点和形成的三角形编号,记录每个三角形是由哪三个离散点构成的,然后找出与每个离散点相邻的所有三角形的编号,并记录下来。对与每个离散点相邻的三角形按顺时针或逆时针方向排序,以便下一步连接生成泰森多边形,计算每个三角形的外接圆圆心,并记录其坐标位置,根据每个离散点的相邻三角形,连接这些相邻三角形的外接圆圆心,即得到泰森多边形。对于三角网边缘的泰森多边形,可作垂直平分线与图廓相交,与图廓一起构成泰森多边形。该方法较为准确的预测出未采样参考点的信号强度。
The invention discloses an RSSI position fingerprint construction method based on Kriging interpolation of Thiessen polygons. The method constructs Thiessen polygons, and automatically constructs a triangular network according to discrete points, that is, constructs a Delaunay triangular network. Number the discrete points and the formed triangles, record which three discrete points each triangle is composed of, and then find out the numbers of all triangles adjacent to each discrete point, and record them. Sort the triangles adjacent to each discrete point clockwise or counterclockwise, so that the next step can be connected to generate a Thiessen polygon, calculate the circumcenter of each triangle, and record its coordinate position, according to the phase of each discrete point Adjacent triangles, connecting the circumcenters of these adjacent triangles, the Thiessen polygon is obtained. For the Thiessen polygon on the edge of the triangulation network, the vertical bisector can be intersected with the figure profile, and together with the figure profile form the Thiessen polygon. This method more accurately predicts the signal strength of the unsampled reference point.
Description
技术领域technical field
本发明涉及一种应用于室内无线定位的RSSI位置指纹构建方法,属于无线定位技术领域。The invention relates to an RSSI position fingerprint construction method applied to indoor wireless positioning, and belongs to the technical field of wireless positioning.
背景技术Background technique
随着移动终端(特别是智能手机)的普及,大型商场、机场、高铁站等人员密集的室内区域的位置服务需求急剧增加。但是,GPS(GlobalPositioningSystem,全球定位系统)、BDS(BeiDouNavigationSatelliteSystem,北斗卫星导航系统)等为代表的卫星导航定位系统在室内区域却几乎无法工作,国内外科研机构正致力于寻找能够辅助(或替代)卫星系统为室内区域提供定位服务的技术方案。无线城市、智慧城市等工程的建设为室内定位提供了基础支撑,比如WiFi在满足了用户上网需求的同时也能够用于定位。由于WiFi、蓝牙等泛在无线信号的广泛性、生态性,基于泛在无线信号的室内定位成为当前的研究热点。With the popularity of mobile terminals (especially smart phones), the demand for location-based services in crowded indoor areas such as large shopping malls, airports, and high-speed rail stations has increased dramatically. However, satellite navigation and positioning systems represented by GPS (Global Positioning System, Global Positioning System), BDS (BeiDou Navigation Satellite System, Beidou Satellite Navigation System), etc., can hardly work in indoor areas. A technical solution for satellite systems to provide positioning services for indoor areas. The construction of wireless cities, smart cities and other projects provides basic support for indoor positioning. For example, WiFi can also be used for positioning while meeting the needs of users to access the Internet. Due to the universality and ecological nature of ubiquitous wireless signals such as WiFi and Bluetooth, indoor positioning based on ubiquitous wireless signals has become a current research hotspot.
目前,基于泛在无线信号的室内定位方法主要有位置指纹匹配和测距交会两种。但是两种方法各有优缺点,其中位置指纹匹配具有较高的定位精度,需要花费人力时间成本采集位置指纹数据,并且位置指纹数据需要维护和更新。At present, the indoor positioning methods based on ubiquitous wireless signals mainly include location fingerprint matching and ranging rendezvous. However, the two methods have their own advantages and disadvantages. Among them, location fingerprint matching has high positioning accuracy, and it takes manpower and time to collect location fingerprint data, and the location fingerprint data needs to be maintained and updated.
名称为“无线室内定位指纹地图的自动更新方法及装置”的中国专利申请CN104869536A公开了以下技术方案,即利用移动设备静止时的位置作为参考点构建其与非参考点之间关于指纹数据的映射关系,然后基于此映射关系,在更新指纹数据时利用一定数量参考位置及在其上收集的最新指纹数据生成非参考点的位置指纹数据,但是该发明CN104869536A需要首先确定移动设备静止时的位置,其中的定位误差给非参考点的位置指纹数据生成带来不利影响。另外,该发明CN104869536A所依赖的映射关系的完善需要较长的训练时间。The Chinese patent application CN104869536A entitled "Automatic Update Method and Device for Wireless Indoor Positioning Fingerprint Map" discloses the following technical solution, that is, using the position of the mobile device when it is stationary as a reference point to construct a mapping of fingerprint data between it and non-reference points relationship, and then based on this mapping relationship, a certain number of reference positions and the latest fingerprint data collected on it are used to generate non-reference point position fingerprint data when updating fingerprint data, but the invention CN104869536A needs to first determine the position of the mobile device when it is still, The positioning error has an adverse effect on the generation of location fingerprint data of non-reference points. In addition, the improvement of the mapping relationship that the invention CN104869536A relies on requires a long training time.
发明内容Contents of the invention
本发明目的在于针对上述现有技术的不足,提供一种插值精度高的RSSI位置指纹构建方法,该方法利用已采样参考点的信号强度预测未采样参考点的信号强度,在构建WiFi室内定位中的指纹库的过程中大大降低了信号采集强度,从而能快速构建指纹库。The purpose of the present invention is to address the deficiencies in the prior art above, to provide a RSSI position fingerprint construction method with high interpolation accuracy, the method utilizes the signal strength of the sampled reference point to predict the signal strength of the unsampled reference point, in the construction of WiFi indoor positioning In the process of fingerprint library, the signal acquisition intensity is greatly reduced, so that the fingerprint library can be quickly constructed.
本发明解决其技术问题所采取的技术方案是:一种基于泰森多边形的克里金插值的RSSI位置指纹构建方法,该方法包括以下步骤:The technical scheme that the present invention solves its technical problem is: a kind of RSSI position fingerprint construction method based on the kriging interpolation of Thiessen polygon, this method comprises the following steps:
步骤1:构建泰森多边形Step 1: Build Thiessen Polygons
1)根据离散点自动构建三角网,即构建Delaunay三角网。对离散点和形成的三角形编号,记录每个三角形是由哪三个离散点构成的。1) Automatically construct a triangular network according to discrete points, that is, construct a Delaunay triangular network. Number the discrete points and the resulting triangles, recording which three discrete points each triangle is made of.
2)然后找出与每个离散点相邻的所有三角形的编号,并记录下来。这只要在已构建的三角网中找出具有一个相同顶点的所有三角形即可。2) Then find out the numbers of all triangles adjacent to each discrete point, and record them. This is as long as finding all the triangles with the same vertex in the constructed triangulation network.
3)对与每个离散点相邻的三角形按顺时针或逆时针方向排序,以便下一步连接生成泰森多边形。设离散点为o。找出以o为顶点的一个三角形,设为A;取三角形A除o以外的另一顶点,设为a,则另一个顶点也可找出,即为f;则下一个三角形必然是以of为边的,即为三角形F;三角形F的另一顶点为e,则下一三角形是以oe为边的;如此重复进行,直到回到oa边。3) Sort the triangles adjacent to each discrete point clockwise or counterclockwise, so that the next step can be connected to generate a Thiessen polygon. Let the discrete point be o. Find a triangle with o as the vertex, set it as A; take another vertex of triangle A except o, set it as a, then the other vertex can also be found, which is f; then the next triangle must be of is the side, that is triangle F; the other vertex of triangle F is e, then the next triangle has oe as the side; and so on, until returning to the side oa.
4)计算每个三角形的外接圆圆心,并记录其坐标位置。4) Calculate the circumcircle center of each triangle, and record its coordinate position.
5)根据每个离散点的相邻三角形,连接这些相邻三角形的外接圆圆心,即得到泰森多边形。对于三角网边缘的泰森多边形,可作垂直平分线与图廓相交,与图廓一起构成泰森多边形。5) According to the adjacent triangles of each discrete point, connect the circumcenters of these adjacent triangles to obtain a Thiessen polygon. For the Thiessen polygon on the edge of the triangulation network, the vertical bisector can be intersected with the figure profile, and together with the figure profile form the Thiessen polygon.
步骤2:RSSI插值估计Step 2: RSSI Interpolation Estimation
克里金插值为:Kriging interpolation is:
其中R(z0)为插值点z0的RSSI值,λi为采样点zi的权值,R(zi)为采样点zi的RSSI值Where R(z 0 ) is the RSSI value of the interpolation point z 0 , λ i is the weight of the sampling point z i , and R(z i ) is the RSSI value of the sampling point z i
假设区域内信号属性值满足二阶平稳,对区域内任意点:Assuming that the signal attribute value in the area satisfies the second-order stationary, for any point in the area:
将(1)式代入(2)式得约束条件:Substitute formula (1) into formula (2) to get the constraints:
令无偏估计方差最小:Minimize the variance of the unbiased estimate:
(4)式中μ为拉格朗日系数,求解使这个代价函数最小的参数集μ,λ1,λ2...λn,则能满足其在约束条件下估计方差最小In formula (4), μ is the Lagrange coefficient, and solving the parameter set μ,λ 1 ,λ 2 ...λ n that minimizes this cost function can satisfy its Estimated variance is minimized under constraints
令分别对μ,λi求导:make Differentiate for μ, λ i respectively:
求取克里金权值方程组:Find the system of kriging weight equations:
其矩阵表示:Its matrix representation:
简化表达式:Simplified expression:
C×ω=DC × ω = D
那么其权值为:Then its weight is:
ω=C-1×Dω=C -1 ×D
将协方差转化为求空间变量的变异函数Transform covariance into variogram for spatial variables
定义变异函数:Define the variogram:
其中γ(zi,zj)=-Cov(zi,zj) (9)in γ(z i ,z j )=-Cov(z i ,z j ) (9)
将(9)式代入(6)式:Substitute formula (9) into formula (6):
在实际应用中,由式(9)的半方差定义,可方便地由下式计算出半方差的值:In practical applications, defined by the semivariance of formula (9), the value of the semivariance can be easily calculated by the following formula:
本发明采用已知的(h,γ(h)),选择合适的半方差模型进行拟合,选择最小的无偏估计方差所对应的模型的插值结果作为最终的指纹数据库。The present invention adopts the known (h, γ(h)), selects a suitable semi-variance model for fitting, and selects the interpolation result of the model corresponding to the smallest unbiased estimation variance as the final fingerprint database.
本发明在采用以上插值方法估计出每个采样点的RSSI特征之后,首先得到来自其中一个信号源的RSSI特征分布,然后按照同样的步骤得到其它信号源的RSSI特征分布,最后将这些RSSI特征分布叠加,按照以每个采样点为单位的特征向量形式存储,便得到当前时刻的位置指纹数据。After using the above interpolation method to estimate the RSSI feature of each sampling point, the present invention first obtains the RSSI feature distribution from one of the signal sources, then obtains the RSSI feature distribution of other signal sources according to the same steps, and finally distributes these RSSI feature distributions The superposition is stored in the form of a feature vector with each sampling point as the unit, and the location fingerprint data at the current moment is obtained.
有益效果:Beneficial effect:
1、本发明采用已采样参考点的信号强度预测未采样参考点的信号强度,在构建WiFi室内定位中的指纹库的过程中大大降低了信号采集强度,从而能快速构建指纹库。1. The present invention uses the signal strength of the sampled reference point to predict the signal strength of the unsampled reference point, and greatly reduces the signal acquisition intensity in the process of building the fingerprint library in WiFi indoor positioning, so that the fingerprint library can be quickly built.
2、本发明采用相邻参考点信强度的相关性,通过采样参考点之间的半方差函数求取参考点对待测点的权重,通过距离待预测参考点最近的几个已采样参考点预测和待预测参考点的信号强度,较为准确的预测出未采样参考点的信号强度。2. The present invention adopts the correlation of the signal strength of adjacent reference points, obtains the weight of the reference point to be measured by the semivariogram function between the sampling reference points, and predicts by several sampled reference points closest to the reference point to be predicted and the signal strength of the reference point to be predicted, and more accurately predict the signal strength of the unsampled reference point.
3、本发明采用正确的模型和参数拟合出正确的结果对结果精度有比较大的影响,通过计算最小平均无偏估计方差来选择合适的半方差模型提高插值的精度。3. The present invention adopts the correct model and parameters to fit the correct result, which has a relatively large impact on the accuracy of the result, and selects a suitable semi-variance model to improve the accuracy of interpolation by calculating the minimum average unbiased estimated variance.
附图说明Description of drawings
图1为本发明方法的流程图。Fig. 1 is the flowchart of the method of the present invention.
图2为本发明实例中定位区域参考点分布图。Fig. 2 is a distribution diagram of reference points in a positioning area in an example of the present invention.
具体实施方式detailed description
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
本实施例中,一种WiFi室内定位中指纹库的构建方法;如图1所示,包括:1.采集WiFi室内定位区域一个参考点的信号强度时间序列;2.利用泰森多边形算法计算出待测点坐标位置;3.根据已提取的信号特征采集其他参考点的信号强度;4.利用已采集参考点信号强度预测未采样参考点信号强度,具体的说是按如下步骤进行:In this embodiment, a method for constructing a fingerprint library in WiFi indoor positioning; as shown in Figure 1, includes: 1. collecting the signal strength time series of a reference point in the WiFi indoor positioning area; 2. using the Thiessen polygon algorithm to calculate 3. Collect the signal strength of other reference points according to the extracted signal characteristics; 4. Use the signal strength of the collected reference point to predict the signal strength of the unsampled reference point. Specifically, proceed as follows:
步骤1:以室内区域的外接矩形所包括的整个区域作为WiFi室内定位区域,以外接矩形的任意顶点为原点o,与原点相邻两条边分别为x轴和y轴,建立直角坐标系oxy;在具体建立坐标系的过程中,使定位区域位于坐标系oxy的第一象限。Step 1: Take the entire area covered by the circumscribed rectangle of the indoor area as the WiFi indoor positioning area, set any vertex of the circumscribed rectangle as the origin o, and the two sides adjacent to the origin are the x-axis and y-axis respectively, and establish a Cartesian coordinate system oxy ; In the specific process of establishing the coordinate system, the positioning area is located in the first quadrant of the coordinate system oxy.
步骤2:将WiFi室内定位区域均匀划分为d个网格,以每个网格的中心点作为参考点,从而形成参考点集合,记为P={P1,P2,…,Pi,…,Pd},Pi表示第i个网格内的参考点;1≤i≤d;本实施例中,如图2所示,实际定位环境为作者所处的实验室,d的值定为100。每行相邻参考点的间距是1米,相邻两列参考点的间距也是1米。Step 2: Divide the WiFi indoor positioning area evenly into d grids, and use the center point of each grid as a reference point to form a set of reference points, which is recorded as P={P 1 ,P 2 ,…,P i , ..., P d }, P i represents the reference point in the i-th grid; 1≤i≤d; in this embodiment, as shown in Figure 2, the actual positioning environment is the author's laboratory, and the value of d Set at 100. The distance between adjacent reference points in each row is 1 meter, and the distance between two adjacent columns of reference points is also 1 meter.
步骤3:在WiFi室内定位区域设置有n个路由器,记为AP={AP1,AP2,..APj,...APn},APj表示第j个路由器;1≤j≤n;本实施例中,n的值定为4。如图2所示,将4个AP放置于室内区域中。Step 3: There are n routers set up in the WiFi indoor positioning area, recorded as AP={AP 1 ,AP 2 ,..AP j ,...AP n }, AP j represents the jth router; 1≤j≤n ; In the present embodiment, the value of n is determined as 4. As shown in Figure 2, 4 APs are placed in the indoor area.
步骤4:在如图2各顶点处采集各AP信号强度,以(x,y,RssAiP1,RssAiP2,RssAiP3,RssAiP4):为当前位置的指纹数据信息,建立位置指纹数据库。Step 4: Collect the signal strength of each AP at each vertex as shown in Figure 2, and use (x, y, Rss A i P1 , Rss A i P2 , Rss A i P3 , Rss A i P4 ): as the fingerprint data information of the current location , to establish a location fingerprint database.
构建泰森多边形包括:Building Thiessen polygons involves:
1)根据离散点自动构建三角网,即构建Delaunay三角网。对离散点和形成的三角形编号,记录每个三角形是由哪三个离散点构成的。1) Automatically construct a triangular network according to discrete points, that is, construct a Delaunay triangular network. Number the discrete points and the resulting triangles, recording which three discrete points each triangle is made of.
2)然后找出与每个离散点相邻的所有三角形的编号,并记录下来。这只要在已构建的三角网中找出具有一个相同顶点的所有三角形即可。2) Then find out the numbers of all triangles adjacent to each discrete point, and record them. This is as long as finding all the triangles with the same vertex in the constructed triangulation network.
3)对与每个离散点相邻的三角形按顺时针或逆时针方向排序,以便下一步连接生成泰森多边形。设离散点为o。找出以o为顶点的一个三角形,设为A;取三角形A除o以外的另一顶点,设为a,则另一个顶点也可找出,即为f;则下一个三角形必然是以of为边的,即为三角形F;三角形F的另一顶点为e,则下一三角形是以oe为边的;如此重复进行,直到回到oa边。3) Sort the triangles adjacent to each discrete point clockwise or counterclockwise, so that the next step can be connected to generate a Thiessen polygon. Let the discrete point be o. Find a triangle with o as the vertex, set it as A; take another vertex of triangle A except o, set it as a, then the other vertex can also be found, which is f; then the next triangle must be of is the side, that is triangle F; the other vertex of triangle F is e, then the next triangle has oe as the side; and so on, until returning to the side oa.
4)计算每个三角形的外接圆圆心,并记录其坐标位置(xj,yj)。4) Calculate the circumcircle center of each triangle, and record its coordinate position (x j , y j ).
5)根据每个离散点的相邻三角形,连接这些相邻三角形的外接圆圆心,即得到泰森多边形。对于三角网边缘的泰森多边形,可作垂直平分线与图廓相交,与图廓一起构成泰森多边形。5) According to the adjacent triangles of each discrete point, connect the circumcenters of these adjacent triangles to obtain a Thiessen polygon. For the Thiessen polygon on the edge of the triangulation network, the vertical bisector can be intersected with the figure profile, and together with the figure profile form the Thiessen polygon.
如图2所示,待预测点用符号。来表示,记录所用预测点的坐标(xj,yj);As shown in Figure 2, the points to be predicted use symbols. To represent, record the coordinates (x j , y j ) of the prediction point used;
利用已知的采样点的坐标和信号强度,求得一组数据{(h0,γ(h0)),(h1,γ(h1)),...(hm,γ(hm))},分别选择球形模型,指数模型,高斯模型进行拟合,得到拟合函数γs(h),γe(h),γg(h),以球形模型为例,代入γs(h)将公式9化简。Using the known coordinates and signal strength of sampling points, a set of data {(h 0 ,γ(h 0 )), (h 1 ,γ(h 1 )),...(h m ,γ(h m ))}, select the spherical model, exponential model, and Gaussian model for fitting respectively, and obtain the fitting functions γ s (h), γ e (h), and γ g (h). Taking the spherical model as an example, substitute γ s (h) Simplify Equation 9.
令解四元一次方程组:make Solve a system of linear equations in quaternions:
λ1=(2*a*μ-3*μ+2*b*μ+2*c*μ+a^2*μ+b^2*μ+c^2*μ+a^2+b^2+c^2-2*a*b*c-2*a*b*μ-2*a*c*μ-2*b*c*μ-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+2*b+c^2+2*c-3)λ 1 =(2*a*μ-3*μ+2*b*μ+2*c*μ+a^2*μ+b^2*μ+c^2*μ+a^2+b^ 2+c^2-2*a*b*c-2*a*b*μ-2*a*c*μ-2*b*c*μ-1)/(a^2-2*a* b-2*a*c+2*a+b^2-2*b*c+2*b+c^2+2*c-3)
λ2=(a+b-a*c-b*c+c^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+2*b+c^2+2*c-3)λ 2 =(a+ba*cb*c+c^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+ 2*b+c^2+2*c-3)
λ3=(a+c-a*b-b*c+b^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+2*b+c^2+2*c-3)λ 3 =(a+ca*bb*c+b^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+ 2*b+c^2+2*c-3)
μ=(b+c-a*b-a*c+a^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+2*b+c^2+2*c-3)μ=(b+c-a*b-a*c+a^2-1)/(a^2-2*a*b-2*a*c+2*a+b^2-2*b*c+2 *b+c^2+2*c-3)
将求得的权重λi,μ代入取其前n个点的J均值(n=9),球形模型J=2.8218,指数模型J=0.3827,高斯模型J=0.0317.Substitute the obtained weights λ i and μ into Taking the J mean value of the first n points (n=9), the spherical model J=2.8218, the exponential model J=0.3827, and the Gaussian model J=0.0317.
选取高斯模型求取的权重λi,代入便可求得预测点的信号强度。Select the weight λ i obtained by the Gaussian model, and substitute Then the signal strength of the prediction point can be obtained.
在利用以上插值方法估计出每个采样点的RSSI特征之后,首先得到来自其中一个信号源的RSSI特征分布,然后按照同样的步骤得到其它信号源的RSSI特征分布,最后将这些RSSI特征分布叠加,按照以每个采样点为单位的特征向量形式存储,便得到当前时刻的位置指纹数据。After using the above interpolation method to estimate the RSSI feature of each sampling point, first obtain the RSSI feature distribution from one of the signal sources, then follow the same steps to get the RSSI feature distribution of other signal sources, and finally superimpose these RSSI feature distributions, Stored in the form of a feature vector with each sampling point as a unit, the location fingerprint data at the current moment can be obtained.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710599551.8A CN107179525A (en) | 2017-07-21 | 2017-07-21 | A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710599551.8A CN107179525A (en) | 2017-07-21 | 2017-07-21 | A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107179525A true CN107179525A (en) | 2017-09-19 |
Family
ID=59838070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710599551.8A Pending CN107179525A (en) | 2017-07-21 | 2017-07-21 | A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107179525A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107979817A (en) * | 2017-11-24 | 2018-05-01 | 王红军 | A kind of mobile terminal two dimension fingerprint positioning method |
CN108052923A (en) * | 2017-12-28 | 2018-05-18 | 国网湖南省电力有限公司 | Transmission line forest fire synchronous satellite monitoring image treatment method, system and storage medium based on Thiessen polygon |
CN108650626A (en) * | 2018-05-18 | 2018-10-12 | 华南师范大学 | A kind of fingerprinting localization algorithm based on Thiessen polygon |
CN109239656A (en) * | 2018-10-19 | 2019-01-18 | 南京工业大学 | Radio frequency map establishing method in position fingerprint positioning |
CN109581286A (en) * | 2018-12-28 | 2019-04-05 | 皖西学院 | A kind of two dimension fingerprint distribution indoor positioning method and structure |
CN111858712A (en) * | 2020-07-20 | 2020-10-30 | 上海仪电(集团)有限公司中央研究院 | In-situ water quality inspection data time-space analysis and anomaly detection method and system |
CN113516206A (en) * | 2020-09-09 | 2021-10-19 | 深圳市城市规划设计研究院有限公司 | Rapid searching method for Hamilton path based on TIN triangular network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080197A1 (en) * | 2009-06-26 | 2012-04-05 | Dickens Thomas A | Constructing Resistivity Models From Stochastic Inversion |
CN103139907A (en) * | 2013-02-04 | 2013-06-05 | 北京工业大学 | Indoor wireless positioning method by utilizing fingerprint technique |
CN106028290A (en) * | 2016-05-06 | 2016-10-12 | 浙江工业大学 | Kriging-based multi-dimensional vector fingerprint location method for WSN |
CN106211327A (en) * | 2016-09-18 | 2016-12-07 | 中山大学 | A kind of method automatically generating location fingerprint data |
-
2017
- 2017-07-21 CN CN201710599551.8A patent/CN107179525A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120080197A1 (en) * | 2009-06-26 | 2012-04-05 | Dickens Thomas A | Constructing Resistivity Models From Stochastic Inversion |
CN103139907A (en) * | 2013-02-04 | 2013-06-05 | 北京工业大学 | Indoor wireless positioning method by utilizing fingerprint technique |
CN106028290A (en) * | 2016-05-06 | 2016-10-12 | 浙江工业大学 | Kriging-based multi-dimensional vector fingerprint location method for WSN |
CN106211327A (en) * | 2016-09-18 | 2016-12-07 | 中山大学 | A kind of method automatically generating location fingerprint data |
Non-Patent Citations (4)
Title |
---|
刘志建 等: "基于克里金空间插值的位置指纹数据库建立算法", 《计算机应用研究》 * |
刘志建: "融合 WLAN 和 Bluetooth 的室内位置指纹定位技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑 》 * |
吴风华 等: "《地理信息系统基础》", 31 December 2014 * |
王倩: "基于 Delaunay 的三维快速克里金插值", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107979817A (en) * | 2017-11-24 | 2018-05-01 | 王红军 | A kind of mobile terminal two dimension fingerprint positioning method |
CN108052923A (en) * | 2017-12-28 | 2018-05-18 | 国网湖南省电力有限公司 | Transmission line forest fire synchronous satellite monitoring image treatment method, system and storage medium based on Thiessen polygon |
CN108650626A (en) * | 2018-05-18 | 2018-10-12 | 华南师范大学 | A kind of fingerprinting localization algorithm based on Thiessen polygon |
CN109239656A (en) * | 2018-10-19 | 2019-01-18 | 南京工业大学 | Radio frequency map establishing method in position fingerprint positioning |
CN109581286A (en) * | 2018-12-28 | 2019-04-05 | 皖西学院 | A kind of two dimension fingerprint distribution indoor positioning method and structure |
CN111858712A (en) * | 2020-07-20 | 2020-10-30 | 上海仪电(集团)有限公司中央研究院 | In-situ water quality inspection data time-space analysis and anomaly detection method and system |
CN113516206A (en) * | 2020-09-09 | 2021-10-19 | 深圳市城市规划设计研究院有限公司 | Rapid searching method for Hamilton path based on TIN triangular network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107179525A (en) | A kind of location fingerprint construction method of the Kriging regression based on Thiessen polygon | |
CN103634901B (en) | Novel location fingerprint based on Density Estimator gathers extracting method | |
CN105704652A (en) | Method for building and optimizing fingerprint database in WLAN/Bluetooth positioning processes | |
CN108534779A (en) | One kind is corrected based on track and the improved indoor positioning map constructing method of fingerprint | |
CN104038901B (en) | Indoor positioning method for reducing fingerprint data acquisition workload | |
CN112367614B (en) | An indoor positioning algorithm based on LSTM fusion of Wi-Fi and geomagnetic field | |
CN106525031A (en) | Combined indoor positioning method | |
CN106123892A (en) | A kind of robot localization method based on wireless sensor network Yu earth magnetism map | |
CN106597363A (en) | Pedestrian location method in indoor WLAN environment | |
US20120225678A1 (en) | Apparatus and method for constructing wireless ap map | |
CN103220777A (en) | Mobile device positioning system | |
Guo et al. | WiMag: Multimode fusion localization system based on Magnetic/WiFi/PDR | |
CN102984745A (en) | Combined estimation method for Wi-Fi AP (wireless fidelity access point) position and path loss model | |
CN104507097A (en) | Semi-supervised training method based on WiFi (wireless fidelity) position fingerprints | |
CN107979817A (en) | A kind of mobile terminal two dimension fingerprint positioning method | |
CN107426816A (en) | The implementation method that a kind of WiFi positioning is merged with map match | |
CN104144495B (en) | A kind of fingerprint positioning method based on direction sensor and wlan network | |
CN106125038A (en) | Based on edge calculations and the indoor wireless positioning method of Bayes posterior probability model | |
CN106211327A (en) | A kind of method automatically generating location fingerprint data | |
CN105530702A (en) | A self-organizing map-based mobile node localization method for wireless sensor networks | |
CN109839613A (en) | A kind of radio frequency positioning method and device calibrated using routing information | |
CN110856100A (en) | Method and device for terminal positioning and positioning model construction based on 5G signal | |
Jin et al. | Toward scalable and robust indoor tracking: Design, implementation, and evaluation | |
Wang et al. | Optimal target tracking based on dynamic fingerprint in indoor wireless network | |
CN117676462A (en) | Wi-Fi and Bluetooth fused double-triangle positioning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170919 |
|
RJ01 | Rejection of invention patent application after publication |