CN107161141A - 无人驾驶汽车系统及汽车 - Google Patents
无人驾驶汽车系统及汽车 Download PDFInfo
- Publication number
- CN107161141A CN107161141A CN201710136501.6A CN201710136501A CN107161141A CN 107161141 A CN107161141 A CN 107161141A CN 201710136501 A CN201710136501 A CN 201710136501A CN 107161141 A CN107161141 A CN 107161141A
- Authority
- CN
- China
- Prior art keywords
- information
- barrier
- pilotless automobile
- subsystem
- radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 87
- 230000004927 fusion Effects 0.000 claims abstract description 76
- 238000001514 detection method Methods 0.000 claims description 37
- 230000000007 visual effect Effects 0.000 claims description 29
- 239000000284 extract Substances 0.000 claims description 23
- 239000000725 suspension Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims 1
- 230000006870 function Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000009432 framing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/60—Traffic rules, e.g. speed limits or right of way
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及一种汽车和无人驾驶汽车系统及汽车。无人驾驶汽车系统包括环境感知子系统、数据融合子系统、路径规划决策子系统以及行驶控制子系统。通过数据融合子系统融合包括影像信息和三维坐标信息的周围环境信息,并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息,提高了对周围环境信息的识别能力和精准度。路径规划决策子系统根据数据融合子系统提取的信息以及行驶目的地信息规划行驶路径,行驶控制子系统根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制,进而可以实现安全性能极高的无人驾驶功能。
Description
技术领域
本发明涉及汽车技术领域,特别是涉及无人驾驶汽车系统及汽车。
背景技术
目前的自动驾驶汽车技术已经基本具备自动操作和行驶能力,例如,在汽车上安装摄像头、雷达传感器和激光探测器等先进的仪器,可通过它们来感知公路的限速和路旁交通标志,以及周围的车辆移动情况,如果要出发的话只需借助地图来导航即可。无人驾驶系统主要利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
目前,无人驾驶汽车是一种智能汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶。但是,无人驾驶系统其中难点在于对路旁交通及周围环境识别情况的辨别能力,从而可能导致无人驾驶系统采集到的数据不准确等。
发明内容
基于此,有必要针对上述问题,提供一种对周围环境信息的识别能力强和精准度高且能够安全行驶的无人驾驶汽车系统和汽车。
一种无人驾驶汽车系统,包括:
环境感知子系统,用于采集无人驾驶汽车的车辆信息和周围环境信息,所述周围环境信息包括周围环境的影像信息和三维坐标信息;
数据融合子系统,用于融合所述影像信息和三维坐标信息并提取车道线信息、障碍物信息、交通标识信息以及动态障碍物的追踪信息;
路径规划决策子系统,用于根据所述车辆信息、数据融合子系统提取的信息以及行驶目的地信息规划行驶路径;
行驶控制子系统,用于根据所述行驶路径生成控制指令,并根据所述控制指令对无人驾驶汽车进行控制。
在其中一个实施例中,所述环境感知子系统包括:
视觉传感器,用于采集无人驾驶汽车周围环境的影像信息;
雷达,用于采集无人驾驶汽车的周围环境的三维坐标信息。
在其中一个实施例中,所述数据融合子系统包括:
车道线融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行叠加或排除,并提取所述车道线信息;
障碍物识别融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行融合,并提取所述障碍物信息;
交通标识融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行检测,并提取所述交通标识信息;
障碍物动态追踪融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行融合,并提取所述动态障碍物的追踪信息。
在其中一个实施例中,所述车道线融合模块包括视觉车道线检测单元和雷达车道线检测单元;所述视觉车道线检测单元用于对所述影像信息进行处理,并提取视觉车道线信息;所述雷达车道线检测单元用于提取无人驾驶汽车行驶的路面信息,并根据所述路面信息获取车道外轮廓信息;所述车道线融合模块还用于对所述视觉车道线信息和车道外轮廓信息进行叠加或排除,获取所述车道线信息。
在其中一个实施例中,所述障碍物识别融合模块包括视觉障碍物识别单元和雷达障碍物识别单元;所述视觉障碍物识别单元用于根据所述影像信息分割出背景信息和前景信息,对所述前景信息进行识别获取具有彩色信息的视觉障碍物信息;所述雷达障碍物识别单元还用于识别在第一预设高度范围内的具有三维坐标信息的雷达障碍物信息;所述障碍物识别融合模块,用于融合所述视觉障碍物信息和雷达障碍物信息,获取所述障碍物信息。
在其中一个实施例中,所述交通标识融合模块包括视觉交通标识检测单元和雷达交通标识检测单元;所述视觉交通标识检测单元对所述影像信息进行检测,并提取视觉交通标识信息;所述雷达交通标识检测单元用于提取地面交通标识信息;还用于检测在第二预设高度范围内的悬挂交通标识信息;所述交通标识融合模块还用于根据所述地面交通标识信息和悬挂交通标识信息确定所述交通标识信息的位置,并在所述位置区域内获取所述交通标识信息的类别。
在其中一个实施例中,所述障碍物动态追踪融合模块包括视觉动态追踪单元和雷达动态追踪单元,所述视觉动态追踪单元用于对所述影像信息进行识别,并在相邻两帧连续帧中定位动态障碍物,并获取所述动态障碍物的色彩信息;所述雷达动态追踪单元用于追踪动态障碍物的三维坐标信息;所述障碍物动态追踪融合模块还用于融合所述动态障碍物的色彩信息和动态障碍物的三维坐标信息,获取所述动态障碍物的追踪信息。
在其中一个实施例中,所述环境感知子系统还包括:
GPS定位导航仪,用于采集无人驾驶汽车的当前的地理位置与时间;
惯性测量单元,用于测量所述无人驾驶汽车的车辆姿态;
车速采集模块,用于获取无人驾驶汽车当前运行的速度。
在其中一个实施例中,还包括:
通信子系统,用于将所述路径规划决策子系统规划的行驶路径实时传输至外部监控中心。
此外,还提供一种汽车,包括上述无人驾驶汽车系统。
本发明实施例的无人驾驶汽车系统,通过数据融合子系统融合包括影像信息和三维坐标信息的周围环境信息,并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息,提高了对周围环境信息的识别能力和精准度。路径规划决策子系统根据数据融合子系统提取的信息以及行驶目的地信息规划行驶路径,行驶控制子系统根据所述行驶路径生成控制指令,并根据所述控制指令控制对无人驾驶汽车进行控制,进而可以实现安全性能极高的无人驾驶功能。
附图说明
图1为一个实施例中无人驾驶汽车系统的结构框架图;
图2为一个实施例中环境感知子系统的结构框架图;
图3为一个实施例中数据融合子系统的结构框架图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为一个实施例中无人驾驶汽车系统的结构框架图,一种无人驾驶汽车系统包括环境感知子系统10、数据融合子系统20、路径规划决策子系统30以及行驶控制子系统40。
其中,环境感知子系统10,用于采集无人驾驶汽车的车辆信息和周围环境信息,其中,周围环境信息包括周围环境的影像信息和三维坐标信息。
数据融合子系统20,用于融合周围环境信息并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息。
路径规划决策子系统30,用于根据车辆信息、数据融合子系统20提取的信息以及行驶目的地信息规划行驶路径。
行驶控制子系统40,用于根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制。
上述无人驾驶汽车系统,通过数据融合子系统20融合包括影像信息和三维坐标信息的周围环境信息,并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息,提高了对周围环境信息的识别能力和精准度。路径规划决策子系统30根据数据融合子系统20提取的信息以及行驶目的地信息规划行驶路径,行驶控制子系统40根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制,进而可以实现安全性能极高的无人驾驶功能。
在一个实施例中,参考图2,环境感知子系统10包括视觉传感器110和雷达120。其中,视觉传感器110主要由一个或者两个图形传感器组成,有时还要配以光投射器及其他辅助设备。图像传感器可以使用激光扫描器、线阵和面阵CCD摄像机或者TV摄像机,也可以是最新出现的数字摄像机等。视觉传感器110安装在无人驾驶汽车上,用于采集无人驾驶汽车的周围环境信息,也就采集无人驾驶汽车附近的实时路况信息,包括障碍物信息、车道线信息、交通标识信息以及对障碍物的动态追踪信息。所采集的周围环境信息为周围环境的影像信息,又可以称之为视频信息。
雷达120用于采集无人驾驶汽车的周围环境的三维坐标信息。该无人驾驶汽车系统中包括多个雷达120。在一个实施例中,多个雷达120包括激光雷达和毫米波雷达。激光雷达采用机械式的多线束激光雷达,主要是通过发射激光束,来探测目标的位置、速度等特征量,还可以利用激光雷达的回波强度信息进行障碍检测和追踪。激光雷达具有探测范围更广,探测精度高的优势。毫米波雷达的波长介于厘米波和光波之间,兼有微波制导和光电制导的优点,且其引导头具有体积小、质量轻、空间分辨率高,毫米波导引头穿透雾、烟、灰尘的能力强的特点。在一个实例中,同时采用激光雷达和毫米波雷达,可以解决激光雷达在极端气候下无法施展性能的弊端,可以大大提升无人驾驶汽车的探测性能。
在一个实施例中,环境感知子系统10还用于采集无人驾驶汽车的车辆信息。其中,车辆信息包括无人驾驶汽车的当前的地理位置与时间、车辆姿态和当前运行的速度等。环境感知子系统10还包括GPS定位导航仪130、惯性测量单元140(Inertial measurementunit,IMU)和车速采集模块150。其中,GPS定位导航仪130采集无人驾驶汽车的当前的地理位置与时间。无人驾驶汽车在行驶过程中,车内安装的全球定位仪将随时获取汽车所在准确方位,进一步提高安全性。惯性测量单元140用于测量无人驾驶汽车的车辆姿态。车速采集模块150用于获取无人驾驶汽车当前运行的速度。
在一个实施例中,参考图3,数据融合子系统20包括:车道线融合模块210、障碍物识别融合模块220、交通标识融合模块230以及障碍物动态追踪融合模块240。
其中,车道线融合模块210,用于对视觉传感器110和雷达120采集的周围环境信息进行叠加或排除,并提取车道线信息。障碍物识别融合模块220,用于对视觉传感器110和雷达120采集的周围环境信息进行融合,并提取障碍物信息。交通标识融合模块230,用于对视觉传感器110和雷达120采集的周围环境信息进行检测,并提取交通标识信息。障碍物动态追踪融合模块240,用于对视觉传感器110和雷达120采集的周围环境信息进行融合,并提取车道线信息。
在一个实施例中,车道线融合模块210包括视觉车道线检测单元211和雷达车道线检测单元213。
视觉车道线检测单元211用于对影像信息进行处理,并提取视觉车道线信息。视觉车道线检测单元211对视觉传感器110获取的影像信息进行去噪、增强、分割等预处理,并提取出视觉车道线信息。
雷达车道线检测单元213用于提取无人驾驶汽车行驶的路面信息,并根据路面信息获取车道外轮廓信息。雷达车道线检测单元213在获取车道外轮廓信息时,对激光雷达获取的无人驾驶汽车的行驶地面的三维坐标信息进行校准,并计算出三维坐标信息中的离散点,其中,离散点可定义为相邻两点之间的距离大于预设范围的点。并对离散点进行滤波处理,利用随机采样一致性方法拟合出地面的位置信息,获取车道外轮廓信息,也即获取雷达120车道线信息。
车道线融合模块210对获取的视觉车道线信息和车道外轮廓信息进行融合(叠加)或排除,获取实时的车道线信息。通过车道线融合模块210,可以提高车道线信息的识别的精确度,可以避免漏获取车道线信息的情况发生。
在一个实施例中,障碍物识别融合模块220包括视觉障碍物识别单元221和雷达障碍物识别单元223。其中,视觉障碍物识别单元221用于根据影像信息分割出背景信息和前景信息,对前景信息进行识别获取具有彩色信息的视觉障碍物信息。视觉障碍物识别单元221通过模式识别或者机器学习等方法对影像信息进行处理,使用背景更新算法建立背景模型以及分割出前景。对分割出的前景进行识别获取具有彩色信息的视觉障碍物信息。
雷达障碍物识别单元223用于识别在第一预设高度范围内的具有三维坐标信息的雷达障碍物信息。
雷达障碍物识别单元223对激光雷达获取的无人驾驶汽车周围环境信息进行预处理,去除地面信息,并筛选识别出在第一预设高度范围内的周围环境的三维坐标信息。根据车道线信息这一约束条件检测感兴趣区域(region of interest,ROI),其中,感兴趣区域为以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域。将识别出的感兴趣区域的数据信息栅格化,并进行障碍物块聚类分割。对每一块障碍物块对应的原始激光雷达点云数据进行二次聚类,放置欠分割。将二次聚类的所点云数据作为训练样本集,根据训练样本集生成分类器模型,继而,利用训练模型对二次聚类后的障碍物块进行分类识别并获取具有三维坐标信息的雷达障碍物信息。
障碍物识别融合模块220,用于融合视觉障碍物信息和雷达障碍物信息,获取障碍物信息。由于视觉障碍物信息在强光环境或者光线快速变化的场景中会失效,而雷达120是通过主动光源对障碍物信息进行探测,其稳定性强。当无人驾驶汽车在强光环境或者光线快速变化的场景中行驶时,可以通过障碍物识别融合模块220对视觉障碍物信息和雷达障碍物信息进行叠加,就可以在强光环境或者光线快速变化的场景中获取精确的障碍物信息。
由于雷达120在垂直方向的分辨率较低,所采集的是障碍物的三维坐标信息而且并没有红绿蓝RGB彩色信息,在远距离或者有障碍物遮挡的情况下也会出现错误识别的情况。而视觉障碍物识别单元221获取的障碍物信息包含了丰富的红绿蓝RGB信息,而且像素高。对障碍物的彩色信息和障碍物的三维坐标信息进行叠加融合,就可以同时获取包含彩色信息和三维信息的障碍物信息。通过障碍物识别融合模块220可以减小误识别率、提高识别准确度,进一步保证了安全驾驶。
在一个实施例中,交通标识融合模块230包括视觉交通标识检测单元231和雷达交通标识检测单元233。
视觉交通标识检测单元231对影像信息进行检测,并提取视觉交通标识信息。视觉交通标识检测单元231对影像信息进行检测,通过模式识别或者机器学习等方法对影像信息进行处理,并获取视觉交通标识信息,其中,视觉交通标识信息中包含了红绿蓝RGB彩色信息。
雷达交通标识检测单元233用于提取地面交通标识信息;还用于检测在第二预设高度范围内的悬挂交通标识信息。其中,雷达交通标识检测单元233根据反射强度梯度,提取交通标志线点,再利用曲线拟合出地面交通标识信息(地面交通标识线),还可以根据障碍物聚类原理,获取在第二预设高度范围内且形状为标准矩形和圆形的目标物,并定义该目标物为悬挂交通标识信息
交通标识融合模块230用于根据地面交通标识信息和悬挂交通标识信息确定交通标识信息的位置。在获取的特定位置区域,根据视觉交通标识检测单元231获取的视觉交通标识信息识别出交通标识信息的类别或种类。通过交通标识融合模块230可以准确的获取底面或悬挂的各种交通标识信息,可以保证无人驾驶汽车在遵守交通规则的前体下安全行驶。
在一个实施例中,障碍物动态追踪融合模块240包括视觉动态追踪单元241和雷达动态追踪单元243。
视觉动态追踪单元241用于对影像信息进行识别,并在相邻两帧连续帧中定位动态障碍物,并获取动态障碍物的色彩信息。视觉动态追踪单元241通过模式识别或者机器学习等方法对影像信息(视频图像)序列进行处理,在视频图像的连续帧中识别并定位动态障碍物,并获取障碍物的色彩信息。
雷达动态追踪单元243用于追踪动态障碍物的三维坐标信息。雷达动态追踪单元243依据相关目标关联算法,采用最邻近匹配算法和多元假设追踪算法相结合确定相邻两帧或多帧的障碍物为同一目标。根据激光雷达的测试数据获取该目标的三维位置信息和速度信息,进而对关联之后的目标进行追踪。同时,还可以利用卡尔曼滤波与粒子滤波的滤波算法对已经得到的目标的测量状态和预测状态进行滤波得到比较精确的动态障碍物的三维坐标信息。
障碍物动态追踪融合模块240用于融合动态障碍物的色彩信息和障碍物的三维坐标信息,获取动态障碍物的追踪信息。由于视觉动态障碍物信息容易受到强光或者光照变化的干扰,没有精确的动态障碍物的三位坐标信息,但是视觉动态障碍物信息中包含了丰富的红绿蓝RGB的彩色信息。雷动获取的动态障碍物信息没有红绿蓝RGB的彩色信息,在运动过程中出现遮挡及遮挡后分开时无法识别出具体是哪个动态物体,但是,激光雷达获取的动态障碍物信息稳定性强,不会受到光强变化等外界干扰,而且激光雷达获取的动态障碍物信息具有精确的三维坐标信息,对运动物体的动态跟踪具有更精确的运动模型。因此,可以通过障碍物动态追踪融合模块240对从影像信息中获取的动态障碍物的色彩信息和激光雷达获取的动态障碍物信息的三维坐标信息进行融合,既可以获取包含色彩信息和三维坐标信息的动态障碍物,可以对动态障碍物进行精确的追踪。
在一个实施例中,路径规划决策子系统30用于根据车辆信息、数据融合子系统20提取的信息以及行驶目的地信息规划行驶路径。路径规划决策子系统30可以根据环境感知子系统10获取的车辆信息(无人驾驶汽车的当前的地理位置与时间、车辆姿态和当前运行的速度)、数据融合子系统20提取的周围环境信息(障碍物信息、车道线信息、交通标识信息以及对障碍物的动态追踪信息)以及无人驾驶汽车的行驶目的地信息来规划行驶路径。路径规划决策子系统30结合规划的行驶路径对无人驾驶汽车下一时刻的位置进行路径规划,并计算出无人驾驶汽车的控制数据,包括角速度、线速度、行驶方向等。
在一个实施例中,行驶控制子系统40用于根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制。行驶控制子系统40根据路径规划决策子系统30计算的控制数据生成控制指令,该控制指令包括对车辆的行驶速度、行驶方向(前、后、左、右)、油门以及车辆的形式档位的控制,进而保证无人驾驶车辆能够安全平稳行驶,实现无人驾驶的功能。
在一个实施例中,无人驾驶汽车系统还包括通信子系统50,通信子系统50用于将路径规划决策子系统30规划的行驶路径实时传输至外部监控中心。由外部监控中心对无人驾驶汽车的行驶状况进行监控。
上述无人驾驶汽车系统,通过数据融合子系统20融合包括影像信息和三维坐标信息的周围环境信息,并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息,提高了对周围环境信息的识别能力和精准度。路径规划决策子系统30根据数据融合子系统20提取的信息以及行驶目的地信息规划行驶路径,行驶控制子系统40根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制,进而可以实现安全性能极高的无人驾驶功能。
此外,本发明的实施例还提供一种汽车,包括上述各实施例中的无人驾驶汽车系统。根据本发明实施例的汽车,可通过汽车中的无人驾驶汽车系统中的数据融合子系统20融合包括影像信息和三维坐标信息的周围环境信息,并提取障碍物信息、车道线信息、交通标识信息以及动态障碍物的追踪信息,提高了对周围环境信息的识别能力和精准度。路径规划决策子系统30根据数据融合子系统20提取的信息以及行驶目的地信息规划行驶路径,行驶控制子系统40根据行驶路径生成控制指令,并根据控制指令控制对无人驾驶汽车进行控制,进而可以实现安全性能极高的无人驾驶功能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种无人驾驶汽车系统,其特征在于,包括:
环境感知子系统,用于采集无人驾驶汽车的车辆信息和周围环境信息,所述周围环境信息包括周围环境的影像信息和三维坐标信息;
数据融合子系统,用于融合所述影像信息和三维坐标信息并提取车道线信息、障碍物信息、交通标识信息以及动态障碍物的追踪信息;
路径规划决策子系统,用于根据所述车辆信息、数据融合子系统提取的信息以及行驶目的地信息规划行驶路径;
行驶控制子系统,用于根据所述行驶路径生成控制指令,并根据所述控制指令对无人驾驶汽车进行控制。
2.根据权利要求1所述的无人驾驶汽车系统,其特征在于,所述环境感知子系统包括:
视觉传感器,用于采集无人驾驶汽车周围环境的影像信息;
雷达,用于采集无人驾驶汽车的周围环境的三维坐标信息。
3.根据权利要求2所述的无人驾驶汽车系统,其特征在于,所述数据融合子系统包括:
车道线融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行叠加或排除,并提取所述车道线信息;
障碍物识别融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行融合,并提取所述障碍物信息;
交通标识融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行检测,并提取所述交通标识信息;
障碍物动态追踪融合模块,用于对所述视觉传感器和所述雷达采集的周围环境信息进行融合,并提取所述动态障碍物的追踪信息。
4.根据权利要求3所述的无人驾驶汽车系统,其特征在于,所述车道线融合模块包括视觉车道线检测单元和雷达车道线检测单元;
所述视觉车道线检测单元用于对所述影像信息进行处理,并提取视觉车道线信息;所述雷达车道线检测单元用于提取无人驾驶汽车行驶的路面信息,并根据所述路面信息获取车道外轮廓信息;
所述车道线融合模块还用于对所述视觉车道线信息和车道外轮廓信息进行叠加或排除,获取所述车道线信息。
5.根据权利要求3所述的无人驾驶汽车系统,其特征在于,所述障碍物识别融合模块包括视觉障碍物识别单元和雷达障碍物识别单元;
所述视觉障碍物识别单元用于根据所述影像信息分割出背景信息和前景信息,对所述前景信息进行识别获取具有彩色信息的视觉障碍物信息;所述雷达障碍物识别单元用于识别在第一预设高度范围内的具有三维坐标信息的雷达障碍物信息;
所述障碍物识别融合模块还用于融合所述视觉障碍物信息和雷达障碍物信息,获取所述障碍物信息。
6.根据权利要求3所述的无人驾驶汽车系统,其特征在于,所述交通标识融合模块包括视觉交通标识检测单元和雷达交通标识检测单元;
所述视觉交通标识检测单元对所述影像信息进行检测,并提取视觉交通标识信息;所述雷达交通标识检测单元用于提取地面交通标识信息,还用于检测在第二预设高度范围内的悬挂交通标识信息;
所述交通标识融合模块还用于根据所述地面交通标识信息和悬挂交通标识信息确定所述交通标识信息的位置,并在所述位置区域内获取所述交通标识信息的类别。
7.根据权利要求3所述的无人驾驶汽车系统,其特征在于,所述障碍物动态追踪融合模块包括视觉动态追踪单元和雷达动态追踪单元;
所述视觉动态追踪单元用于对所述影像信息进行识别,并在相邻两帧连续帧中定位动态障碍物,并获取所述动态障碍物的色彩信息;所述雷达动态追踪单元用于追踪动态障碍物的三维坐标信息;
所述障碍物动态追踪融合模块还用于融合所述动态障碍物的色彩信息和动态障碍物的三维坐标信息,获取所述动态障碍物的追踪信息。
8.根据权利要求1所述的无人驾驶汽车系统,其特征在于,所述环境感知子系统还包括:
GPS定位导航仪,用于采集无人驾驶汽车的当前的地理位置与时间;
惯性测量单元,用于测量所述无人驾驶汽车的车辆姿态;
车速采集模块,用于获取无人驾驶汽车当前运行的速度。
9.根据权利要求1所述的无人驾驶汽车系统,其特征在于,还包括:
通信子系统,用于将所述路径规划决策子系统规划的行驶路径实时传输至外部监控中心。
10.一种汽车,其特征在于,包括如权利要求1~9中任一项所述的无人驾驶汽车系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710136501.6A CN107161141B (zh) | 2017-03-08 | 2017-03-08 | 无人驾驶汽车系统及汽车 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710136501.6A CN107161141B (zh) | 2017-03-08 | 2017-03-08 | 无人驾驶汽车系统及汽车 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107161141A true CN107161141A (zh) | 2017-09-15 |
CN107161141B CN107161141B (zh) | 2023-05-23 |
Family
ID=59848697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710136501.6A Active CN107161141B (zh) | 2017-03-08 | 2017-03-08 | 无人驾驶汽车系统及汽车 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107161141B (zh) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107600062A (zh) * | 2017-09-06 | 2018-01-19 | 深圳市招科智控科技有限公司 | 一种整车控制系统及方法 |
CN107826115A (zh) * | 2017-10-26 | 2018-03-23 | 杨晓艳 | 一种汽车识别方法 |
CN108008727A (zh) * | 2017-12-11 | 2018-05-08 | 梁金凤 | 一种能够高速行驶的无人驾驶汽车 |
CN108021132A (zh) * | 2017-11-29 | 2018-05-11 | 芜湖星途机器人科技有限公司 | 路径规划方法 |
CN108256413A (zh) * | 2017-11-27 | 2018-07-06 | 科大讯飞股份有限公司 | 可通行区域检测方法及装置、存储介质、电子设备 |
CN108375775A (zh) * | 2018-01-17 | 2018-08-07 | 上海禾赛光电科技有限公司 | 车载探测设备及其参数的调整方法、介质、探测系统 |
CN108416257A (zh) * | 2018-01-19 | 2018-08-17 | 北京交通大学 | 融合视觉与激光雷达数据特征的地铁轨道障碍物检测方法 |
CN108469817A (zh) * | 2018-03-09 | 2018-08-31 | 武汉理工大学 | 基于fpga和信息融合的无人船避障控制系统 |
CN108628320A (zh) * | 2018-07-04 | 2018-10-09 | 广东猪兼强互联网科技有限公司 | 一种智能汽车无人驾驶系统 |
CN108646739A (zh) * | 2018-05-14 | 2018-10-12 | 北京智行者科技有限公司 | 一种传感信息融合方法 |
CN108725452A (zh) * | 2018-06-01 | 2018-11-02 | 湖南工业大学 | 一种基于全声频感知的无人驾驶车辆控制系统及控制方法 |
CN108873013A (zh) * | 2018-06-27 | 2018-11-23 | 江苏大学 | 一种采用多线激光雷达的道路可通行区域获取方法 |
CN108896994A (zh) * | 2018-05-11 | 2018-11-27 | 武汉环宇智行科技有限公司 | 一种无人驾驶车辆定位方法及设备 |
CN108919805A (zh) * | 2018-07-04 | 2018-11-30 | 广东猪兼强互联网科技有限公司 | 一种车辆无人驾驶辅助系统 |
CN108961749A (zh) * | 2018-07-12 | 2018-12-07 | 南方科技大学 | 一种智能交通系统以及智能交通控制方法 |
CN109002053A (zh) * | 2018-08-17 | 2018-12-14 | 河南科技大学 | 无人驾驶设备用智能化空间定位和环境感知装置及方法 |
CN109061655A (zh) * | 2018-06-01 | 2018-12-21 | 湖南工业大学 | 一种智能驾驶车辆全声频感知系统及其智能控制方法 |
CN109597404A (zh) * | 2017-09-30 | 2019-04-09 | 徐工集团工程机械股份有限公司 | 压路机及其控制器、控制方法和系统 |
CN109817021A (zh) * | 2019-01-15 | 2019-05-28 | 北京百度网讯科技有限公司 | 一种激光雷达路侧盲区交通参与者避让方法和装置 |
CN109829351A (zh) * | 2017-11-23 | 2019-05-31 | 华为技术有限公司 | 车道信息的检测方法、装置及计算机可读存储介质 |
CN109855646A (zh) * | 2019-04-30 | 2019-06-07 | 奥特酷智能科技(南京)有限公司 | 分布集中式自动驾驶系统和方法 |
CN109883439A (zh) * | 2019-03-22 | 2019-06-14 | 百度在线网络技术(北京)有限公司 | 一种车辆导航方法、装置、电子设备及存储介质 |
WO2019134110A1 (en) * | 2018-01-05 | 2019-07-11 | Driving Brain International Ltd. | Autonomous driving methods and systems |
WO2019134389A1 (zh) * | 2018-01-08 | 2019-07-11 | 北京图森未来科技有限公司 | 一种自动驾驶系统 |
CN110162026A (zh) * | 2018-02-11 | 2019-08-23 | 北京图森未来科技有限公司 | 一种物体识别系统、方法及装置 |
CN110389359A (zh) * | 2018-04-19 | 2019-10-29 | 法拉第未来公司 | 用于地平面探测的系统和方法 |
CN110435648A (zh) * | 2019-07-26 | 2019-11-12 | 中国第一汽车股份有限公司 | 车辆的行驶控制方法、装置、车辆和存储介质 |
CN110667591A (zh) * | 2018-07-02 | 2020-01-10 | 百度(美国)有限责任公司 | 用于自动驾驶车辆的规划驾驶感知系统 |
CN110764108A (zh) * | 2019-11-05 | 2020-02-07 | 畅加风行(苏州)智能科技有限公司 | 一种用于港口自动驾驶场景的障碍物检测方法及装置 |
CN110843792A (zh) * | 2019-11-29 | 2020-02-28 | 北京百度网讯科技有限公司 | 用于输出信息的方法和装置 |
CN110908366A (zh) * | 2018-08-28 | 2020-03-24 | 大陆泰密克汽车系统(上海)有限公司 | 自动驾驶方法及装置 |
CN110969178A (zh) * | 2018-09-30 | 2020-04-07 | 长城汽车股份有限公司 | 自动驾驶车辆的数据融合系统、方法及自动驾驶系统 |
WO2020083349A1 (zh) * | 2018-10-24 | 2020-04-30 | 长沙智能驾驶研究院有限公司 | 用于智能驾驶设备的数据处理方法、装置和存储介质 |
CN111127701A (zh) * | 2019-12-24 | 2020-05-08 | 武汉光庭信息技术股份有限公司 | 车辆失效场景检测方法及系统 |
CN111142528A (zh) * | 2019-12-31 | 2020-05-12 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 车用危险场景感知方法、装置和系统 |
CN111223354A (zh) * | 2019-12-31 | 2020-06-02 | 塔普翊海(上海)智能科技有限公司 | 无人小车、基于ar和ai技术的无人车实训平台及方法 |
CN111242986A (zh) * | 2020-01-07 | 2020-06-05 | 北京百度网讯科技有限公司 | 跨相机的障碍物跟踪方法、装置、设备、系统及介质 |
CN111247525A (zh) * | 2019-01-14 | 2020-06-05 | 深圳市大疆创新科技有限公司 | 一种车道检测方法、装置及车道检测设备、移动平台 |
WO2020118623A1 (en) * | 2018-12-13 | 2020-06-18 | Continental Automotive Gmbh | Method and system for generating an environment model for positioning |
CN111307162A (zh) * | 2019-11-25 | 2020-06-19 | 奥特酷智能科技(南京)有限公司 | 用于自动驾驶场景的多传感器融合定位方法 |
CN111427349A (zh) * | 2020-03-27 | 2020-07-17 | 齐鲁工业大学 | 基于激光与视觉的车辆导航避障方法与系统 |
CN111551976A (zh) * | 2020-05-20 | 2020-08-18 | 四川万网鑫成信息科技有限公司 | 一种结合多种数据对异常定位进行自动补全的方法 |
CN111746557A (zh) * | 2019-03-26 | 2020-10-09 | 通用汽车环球科技运作有限责任公司 | 用于车辆的路径规划融合 |
CN111768621A (zh) * | 2020-06-17 | 2020-10-13 | 北京航空航天大学 | 一种基于5g的城市道路路车融合全域感知方法 |
CN111775934A (zh) * | 2020-07-21 | 2020-10-16 | 湖南汽车工程职业学院 | 一种汽车的智能驾驶避障系统 |
CN112101069A (zh) * | 2019-06-18 | 2020-12-18 | 华为技术有限公司 | 确定行驶区域信息的方法及装置 |
CN112130153A (zh) * | 2020-09-23 | 2020-12-25 | 的卢技术有限公司 | 基于毫米波雷达和摄像头实现无人驾驶汽车边缘检测方法 |
CN112519799A (zh) * | 2020-11-10 | 2021-03-19 | 深圳市豪恩汽车电子装备股份有限公司 | 机动车道路辅助驾驶装置及方法 |
CN112703423A (zh) * | 2019-01-31 | 2021-04-23 | 动态Ad有限责任公司 | 合并来自多个LiDAR装置的数据 |
CN112829768A (zh) * | 2021-03-02 | 2021-05-25 | 刘敏 | 一种无人驾驶汽车及其控制系统 |
CN113002396A (zh) * | 2020-04-14 | 2021-06-22 | 青岛慧拓智能机器有限公司 | 一种用于自动驾驶矿用车辆的环境感知系统及矿用车辆 |
WO2021134742A1 (zh) * | 2020-01-02 | 2021-07-08 | 华为技术有限公司 | 一种处理预测运动轨迹的方法、显示约束屏障的方法以及装置 |
CN113252053A (zh) * | 2021-06-16 | 2021-08-13 | 中智行科技有限公司 | 高精度地图生成方法、装置和电子设备 |
CN113298910A (zh) * | 2021-05-14 | 2021-08-24 | 阿波罗智能技术(北京)有限公司 | 生成交通标志线地图的方法、设备和存储介质 |
CN113415289A (zh) * | 2021-07-30 | 2021-09-21 | 佛山市顺德区中等专业学校(佛山市顺德区技工学校) | 无人驾驶车辆的标识装置和方法 |
CN113486836A (zh) * | 2021-07-19 | 2021-10-08 | 安徽江淮汽车集团股份有限公司 | 针对低通度障碍物的自动驾驶操控方法 |
CN113753052A (zh) * | 2021-09-01 | 2021-12-07 | 苏州莱布尼茨智能科技有限公司 | 一种新能源汽车整车安全智能驱动控制系统 |
CN113848956A (zh) * | 2021-11-09 | 2021-12-28 | 盐城工学院 | 一种无人驾驶车辆系统及无人驾驶方法 |
CN114019978A (zh) * | 2021-11-08 | 2022-02-08 | 陕西欧卡电子智能科技有限公司 | 一种无人驾驶游船及无人驾驶方法 |
CN114281075A (zh) * | 2021-11-19 | 2022-04-05 | 岚图汽车科技有限公司 | 基于面向服务的紧急避障系统、控制方法及其设备 |
US11346926B2 (en) | 2018-01-17 | 2022-05-31 | Hesai Technology Co., Ltd. | Detection device and method for adjusting parameter thereof |
CN115145272A (zh) * | 2022-06-21 | 2022-10-04 | 大连华锐智能化科技有限公司 | 焦炉车辆环境感知系统及方法 |
CN115339453A (zh) * | 2022-10-19 | 2022-11-15 | 禾多科技(北京)有限公司 | 车辆换道决策信息生成方法、装置、设备和计算机介质 |
CN111414848B (zh) * | 2020-03-19 | 2023-04-07 | 小米汽车科技有限公司 | 一种全类别3d障碍物检测方法、系统和介质 |
CN115985122A (zh) * | 2022-10-31 | 2023-04-18 | 内蒙古智能煤炭有限责任公司 | 无人驾驶系统感知方法 |
CN116166033A (zh) * | 2023-04-21 | 2023-05-26 | 深圳市速腾聚创科技有限公司 | 车辆避障方法、装置、介质以及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100106356A1 (en) * | 2008-10-24 | 2010-04-29 | The Gray Insurance Company | Control and systems for autonomously driven vehicles |
CN104267721A (zh) * | 2014-08-29 | 2015-01-07 | 陈业军 | 一种智能汽车的无人驾驶系统 |
CN104943684A (zh) * | 2014-03-31 | 2015-09-30 | 比亚迪股份有限公司 | 无人驾驶汽车控制系统和具有其的汽车 |
CN106441319A (zh) * | 2016-09-23 | 2017-02-22 | 中国科学院合肥物质科学研究院 | 一种无人驾驶车辆车道级导航地图的生成系统及方法 |
CN206691107U (zh) * | 2017-03-08 | 2017-12-01 | 深圳市速腾聚创科技有限公司 | 无人驾驶汽车系统及汽车 |
-
2017
- 2017-03-08 CN CN201710136501.6A patent/CN107161141B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100106356A1 (en) * | 2008-10-24 | 2010-04-29 | The Gray Insurance Company | Control and systems for autonomously driven vehicles |
CN104943684A (zh) * | 2014-03-31 | 2015-09-30 | 比亚迪股份有限公司 | 无人驾驶汽车控制系统和具有其的汽车 |
CN104267721A (zh) * | 2014-08-29 | 2015-01-07 | 陈业军 | 一种智能汽车的无人驾驶系统 |
CN106441319A (zh) * | 2016-09-23 | 2017-02-22 | 中国科学院合肥物质科学研究院 | 一种无人驾驶车辆车道级导航地图的生成系统及方法 |
CN206691107U (zh) * | 2017-03-08 | 2017-12-01 | 深圳市速腾聚创科技有限公司 | 无人驾驶汽车系统及汽车 |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107600062A (zh) * | 2017-09-06 | 2018-01-19 | 深圳市招科智控科技有限公司 | 一种整车控制系统及方法 |
CN109597404A (zh) * | 2017-09-30 | 2019-04-09 | 徐工集团工程机械股份有限公司 | 压路机及其控制器、控制方法和系统 |
CN107826115A (zh) * | 2017-10-26 | 2018-03-23 | 杨晓艳 | 一种汽车识别方法 |
CN109829351A (zh) * | 2017-11-23 | 2019-05-31 | 华为技术有限公司 | 车道信息的检测方法、装置及计算机可读存储介质 |
CN108256413A (zh) * | 2017-11-27 | 2018-07-06 | 科大讯飞股份有限公司 | 可通行区域检测方法及装置、存储介质、电子设备 |
CN108256413B (zh) * | 2017-11-27 | 2022-02-25 | 科大讯飞股份有限公司 | 可通行区域检测方法及装置、存储介质、电子设备 |
CN108021132A (zh) * | 2017-11-29 | 2018-05-11 | 芜湖星途机器人科技有限公司 | 路径规划方法 |
CN108008727A (zh) * | 2017-12-11 | 2018-05-08 | 梁金凤 | 一种能够高速行驶的无人驾驶汽车 |
WO2019134110A1 (en) * | 2018-01-05 | 2019-07-11 | Driving Brain International Ltd. | Autonomous driving methods and systems |
US11648958B2 (en) | 2018-01-08 | 2023-05-16 | Beijing Tusen Weilai Technology Co., Ltd. | Autonomous driving system |
WO2019134389A1 (zh) * | 2018-01-08 | 2019-07-11 | 北京图森未来科技有限公司 | 一种自动驾驶系统 |
US11346926B2 (en) | 2018-01-17 | 2022-05-31 | Hesai Technology Co., Ltd. | Detection device and method for adjusting parameter thereof |
CN108375775A (zh) * | 2018-01-17 | 2018-08-07 | 上海禾赛光电科技有限公司 | 车载探测设备及其参数的调整方法、介质、探测系统 |
CN108416257A (zh) * | 2018-01-19 | 2018-08-17 | 北京交通大学 | 融合视觉与激光雷达数据特征的地铁轨道障碍物检测方法 |
CN110162026B (zh) * | 2018-02-11 | 2022-06-21 | 北京图森智途科技有限公司 | 一种物体识别系统、方法及装置 |
CN110162026A (zh) * | 2018-02-11 | 2019-08-23 | 北京图森未来科技有限公司 | 一种物体识别系统、方法及装置 |
US11869249B2 (en) | 2018-02-11 | 2024-01-09 | Beijing Tusen Zhitu Technology Co., Ltd. | System, method and apparatus for object identification |
US11532157B2 (en) | 2018-02-11 | 2022-12-20 | Beijing Tusen Zhitu Technology Co., Ltd. | System, method and apparatus for object identification |
CN108469817A (zh) * | 2018-03-09 | 2018-08-31 | 武汉理工大学 | 基于fpga和信息融合的无人船避障控制系统 |
CN110389359A (zh) * | 2018-04-19 | 2019-10-29 | 法拉第未来公司 | 用于地平面探测的系统和方法 |
CN108896994A (zh) * | 2018-05-11 | 2018-11-27 | 武汉环宇智行科技有限公司 | 一种无人驾驶车辆定位方法及设备 |
CN108646739A (zh) * | 2018-05-14 | 2018-10-12 | 北京智行者科技有限公司 | 一种传感信息融合方法 |
CN109061655B (zh) * | 2018-06-01 | 2022-09-06 | 湖南工业大学 | 一种智能驾驶车辆全声频感知系统及其智能控制方法 |
CN109061655A (zh) * | 2018-06-01 | 2018-12-21 | 湖南工业大学 | 一种智能驾驶车辆全声频感知系统及其智能控制方法 |
CN108725452A (zh) * | 2018-06-01 | 2018-11-02 | 湖南工业大学 | 一种基于全声频感知的无人驾驶车辆控制系统及控制方法 |
CN108873013B (zh) * | 2018-06-27 | 2022-07-22 | 江苏大学 | 一种采用多线激光雷达的道路可通行区域获取方法 |
CN108873013A (zh) * | 2018-06-27 | 2018-11-23 | 江苏大学 | 一种采用多线激光雷达的道路可通行区域获取方法 |
CN110667591A (zh) * | 2018-07-02 | 2020-01-10 | 百度(美国)有限责任公司 | 用于自动驾驶车辆的规划驾驶感知系统 |
CN110667591B (zh) * | 2018-07-02 | 2022-11-04 | 百度(美国)有限责任公司 | 用于自动驾驶车辆的规划驾驶感知系统 |
CN108628320A (zh) * | 2018-07-04 | 2018-10-09 | 广东猪兼强互联网科技有限公司 | 一种智能汽车无人驾驶系统 |
CN108919805A (zh) * | 2018-07-04 | 2018-11-30 | 广东猪兼强互联网科技有限公司 | 一种车辆无人驾驶辅助系统 |
CN108919805B (zh) * | 2018-07-04 | 2021-09-28 | 江苏大块头智驾科技有限公司 | 一种车辆无人驾驶辅助系统 |
CN108961749A (zh) * | 2018-07-12 | 2018-12-07 | 南方科技大学 | 一种智能交通系统以及智能交通控制方法 |
CN109002053A (zh) * | 2018-08-17 | 2018-12-14 | 河南科技大学 | 无人驾驶设备用智能化空间定位和环境感知装置及方法 |
CN110908366B (zh) * | 2018-08-28 | 2023-08-25 | 大陆智行科技(上海)有限公司 | 自动驾驶方法及装置 |
CN110908366A (zh) * | 2018-08-28 | 2020-03-24 | 大陆泰密克汽车系统(上海)有限公司 | 自动驾驶方法及装置 |
CN110969178B (zh) * | 2018-09-30 | 2023-09-12 | 毫末智行科技有限公司 | 自动驾驶车辆的数据融合系统、方法及自动驾驶系统 |
CN110969178A (zh) * | 2018-09-30 | 2020-04-07 | 长城汽车股份有限公司 | 自动驾驶车辆的数据融合系统、方法及自动驾驶系统 |
WO2020083349A1 (zh) * | 2018-10-24 | 2020-04-30 | 长沙智能驾驶研究院有限公司 | 用于智能驾驶设备的数据处理方法、装置和存储介质 |
WO2020118623A1 (en) * | 2018-12-13 | 2020-06-18 | Continental Automotive Gmbh | Method and system for generating an environment model for positioning |
CN111247525A (zh) * | 2019-01-14 | 2020-06-05 | 深圳市大疆创新科技有限公司 | 一种车道检测方法、装置及车道检测设备、移动平台 |
WO2020146983A1 (zh) * | 2019-01-14 | 2020-07-23 | 深圳市大疆创新科技有限公司 | 一种车道检测方法、装置及车道检测设备、移动平台 |
CN109817021A (zh) * | 2019-01-15 | 2019-05-28 | 北京百度网讯科技有限公司 | 一种激光雷达路侧盲区交通参与者避让方法和装置 |
CN109817021B (zh) * | 2019-01-15 | 2021-11-02 | 阿波罗智能技术(北京)有限公司 | 一种激光雷达路侧盲区交通参与者避让方法和装置 |
CN112703423A (zh) * | 2019-01-31 | 2021-04-23 | 动态Ad有限责任公司 | 合并来自多个LiDAR装置的数据 |
US11333762B2 (en) | 2019-01-31 | 2022-05-17 | Motional Ad Llc | Merging data from multiple LiDAR devices |
CN109883439A (zh) * | 2019-03-22 | 2019-06-14 | 百度在线网络技术(北京)有限公司 | 一种车辆导航方法、装置、电子设备及存储介质 |
CN111746557A (zh) * | 2019-03-26 | 2020-10-09 | 通用汽车环球科技运作有限责任公司 | 用于车辆的路径规划融合 |
CN111746557B (zh) * | 2019-03-26 | 2024-03-29 | 通用汽车环球科技运作有限责任公司 | 用于车辆的路径规划融合 |
US20220204025A1 (en) * | 2019-04-30 | 2022-06-30 | Autocore Intellegent Technology (Nanjing) Co., Ltd. | Distributed centralized automatic driving method |
CN111174805A (zh) * | 2019-04-30 | 2020-05-19 | 奥特酷智能科技(南京)有限公司 | 分布集中式自动驾驶系统 |
CN109855646A (zh) * | 2019-04-30 | 2019-06-07 | 奥特酷智能科技(南京)有限公司 | 分布集中式自动驾驶系统和方法 |
US11926340B2 (en) * | 2019-04-30 | 2024-03-12 | Autocore Technology (Nanjing) Co., Ltd. | Distributed centralized automatic driving method |
WO2020207504A1 (zh) * | 2019-04-30 | 2020-10-15 | 奥特酷智能科技(南京)有限公司 | 分布集中式自动驾驶系统 |
CN112101069A (zh) * | 2019-06-18 | 2020-12-18 | 华为技术有限公司 | 确定行驶区域信息的方法及装置 |
WO2020253764A1 (zh) * | 2019-06-18 | 2020-12-24 | 华为技术有限公司 | 确定行驶区域信息的方法及装置 |
US20220108552A1 (en) | 2019-06-18 | 2022-04-07 | Huawei Technologies Co., Ltd. | Method and Apparatus for Determining Drivable Region Information |
US11698459B2 (en) | 2019-06-18 | 2023-07-11 | Huawei Technologies Co., Ltd. | Method and apparatus for determining drivable region information |
EP3975042A4 (en) * | 2019-06-18 | 2022-08-17 | Huawei Technologies Co., Ltd. | METHOD AND APPARATUS FOR DETERMINING WALK AREA INFORMATION |
CN110435648A (zh) * | 2019-07-26 | 2019-11-12 | 中国第一汽车股份有限公司 | 车辆的行驶控制方法、装置、车辆和存储介质 |
CN110435648B (zh) * | 2019-07-26 | 2021-02-26 | 中国第一汽车股份有限公司 | 车辆的行驶控制方法、装置、车辆和存储介质 |
CN110764108A (zh) * | 2019-11-05 | 2020-02-07 | 畅加风行(苏州)智能科技有限公司 | 一种用于港口自动驾驶场景的障碍物检测方法及装置 |
CN110764108B (zh) * | 2019-11-05 | 2023-05-02 | 畅加风行(苏州)智能科技有限公司 | 一种用于港口自动驾驶场景的障碍物检测方法及装置 |
CN111307162A (zh) * | 2019-11-25 | 2020-06-19 | 奥特酷智能科技(南京)有限公司 | 用于自动驾驶场景的多传感器融合定位方法 |
CN110843792A (zh) * | 2019-11-29 | 2020-02-28 | 北京百度网讯科技有限公司 | 用于输出信息的方法和装置 |
CN110843792B (zh) * | 2019-11-29 | 2021-05-25 | 北京百度网讯科技有限公司 | 用于输出信息的方法和装置 |
CN111127701A (zh) * | 2019-12-24 | 2020-05-08 | 武汉光庭信息技术股份有限公司 | 车辆失效场景检测方法及系统 |
CN111142528A (zh) * | 2019-12-31 | 2020-05-12 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 车用危险场景感知方法、装置和系统 |
CN111223354A (zh) * | 2019-12-31 | 2020-06-02 | 塔普翊海(上海)智能科技有限公司 | 无人小车、基于ar和ai技术的无人车实训平台及方法 |
CN111142528B (zh) * | 2019-12-31 | 2023-10-24 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 车用危险场景感知方法、装置和系统 |
WO2021134742A1 (zh) * | 2020-01-02 | 2021-07-08 | 华为技术有限公司 | 一种处理预测运动轨迹的方法、显示约束屏障的方法以及装置 |
CN111242986A (zh) * | 2020-01-07 | 2020-06-05 | 北京百度网讯科技有限公司 | 跨相机的障碍物跟踪方法、装置、设备、系统及介质 |
CN111242986B (zh) * | 2020-01-07 | 2023-11-24 | 阿波罗智能技术(北京)有限公司 | 跨相机的障碍物跟踪方法、装置、设备、系统及介质 |
CN111414848B (zh) * | 2020-03-19 | 2023-04-07 | 小米汽车科技有限公司 | 一种全类别3d障碍物检测方法、系统和介质 |
CN111427349A (zh) * | 2020-03-27 | 2020-07-17 | 齐鲁工业大学 | 基于激光与视觉的车辆导航避障方法与系统 |
CN113002396A (zh) * | 2020-04-14 | 2021-06-22 | 青岛慧拓智能机器有限公司 | 一种用于自动驾驶矿用车辆的环境感知系统及矿用车辆 |
CN111551976A (zh) * | 2020-05-20 | 2020-08-18 | 四川万网鑫成信息科技有限公司 | 一种结合多种数据对异常定位进行自动补全的方法 |
CN111768621A (zh) * | 2020-06-17 | 2020-10-13 | 北京航空航天大学 | 一种基于5g的城市道路路车融合全域感知方法 |
CN111775934A (zh) * | 2020-07-21 | 2020-10-16 | 湖南汽车工程职业学院 | 一种汽车的智能驾驶避障系统 |
CN112130153A (zh) * | 2020-09-23 | 2020-12-25 | 的卢技术有限公司 | 基于毫米波雷达和摄像头实现无人驾驶汽车边缘检测方法 |
CN112519799A (zh) * | 2020-11-10 | 2021-03-19 | 深圳市豪恩汽车电子装备股份有限公司 | 机动车道路辅助驾驶装置及方法 |
CN112829768A (zh) * | 2021-03-02 | 2021-05-25 | 刘敏 | 一种无人驾驶汽车及其控制系统 |
CN113298910A (zh) * | 2021-05-14 | 2021-08-24 | 阿波罗智能技术(北京)有限公司 | 生成交通标志线地图的方法、设备和存储介质 |
CN113252053A (zh) * | 2021-06-16 | 2021-08-13 | 中智行科技有限公司 | 高精度地图生成方法、装置和电子设备 |
CN113252053B (zh) * | 2021-06-16 | 2021-09-28 | 中智行科技有限公司 | 高精度地图生成方法、装置和电子设备 |
CN113486836A (zh) * | 2021-07-19 | 2021-10-08 | 安徽江淮汽车集团股份有限公司 | 针对低通度障碍物的自动驾驶操控方法 |
CN113486836B (zh) * | 2021-07-19 | 2023-06-06 | 安徽江淮汽车集团股份有限公司 | 针对低通度障碍物的自动驾驶操控方法 |
CN113415289B (zh) * | 2021-07-30 | 2022-09-13 | 佛山市顺德区中等专业学校(佛山市顺德区技工学校) | 无人驾驶车辆的标识装置和方法 |
CN113415289A (zh) * | 2021-07-30 | 2021-09-21 | 佛山市顺德区中等专业学校(佛山市顺德区技工学校) | 无人驾驶车辆的标识装置和方法 |
CN113753052A (zh) * | 2021-09-01 | 2021-12-07 | 苏州莱布尼茨智能科技有限公司 | 一种新能源汽车整车安全智能驱动控制系统 |
CN114019978A (zh) * | 2021-11-08 | 2022-02-08 | 陕西欧卡电子智能科技有限公司 | 一种无人驾驶游船及无人驾驶方法 |
CN113848956A (zh) * | 2021-11-09 | 2021-12-28 | 盐城工学院 | 一种无人驾驶车辆系统及无人驾驶方法 |
CN114281075A (zh) * | 2021-11-19 | 2022-04-05 | 岚图汽车科技有限公司 | 基于面向服务的紧急避障系统、控制方法及其设备 |
CN115145272B (zh) * | 2022-06-21 | 2024-03-29 | 大连华锐智能化科技有限公司 | 焦炉车辆环境感知系统及方法 |
CN115145272A (zh) * | 2022-06-21 | 2022-10-04 | 大连华锐智能化科技有限公司 | 焦炉车辆环境感知系统及方法 |
CN115339453A (zh) * | 2022-10-19 | 2022-11-15 | 禾多科技(北京)有限公司 | 车辆换道决策信息生成方法、装置、设备和计算机介质 |
CN115339453B (zh) * | 2022-10-19 | 2022-12-23 | 禾多科技(北京)有限公司 | 车辆换道决策信息生成方法、装置、设备和计算机介质 |
CN115985122A (zh) * | 2022-10-31 | 2023-04-18 | 内蒙古智能煤炭有限责任公司 | 无人驾驶系统感知方法 |
CN116166033A (zh) * | 2023-04-21 | 2023-05-26 | 深圳市速腾聚创科技有限公司 | 车辆避障方法、装置、介质以及电子设备 |
CN116166033B (zh) * | 2023-04-21 | 2024-05-21 | 深圳市速腾聚创科技有限公司 | 车辆避障方法、装置、介质以及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN107161141B (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206691107U (zh) | 无人驾驶汽车系统及汽车 | |
CN107161141A (zh) | 无人驾驶汽车系统及汽车 | |
JP7125214B2 (ja) | プログラムおよびコンピューティングデバイス | |
JP7432285B2 (ja) | レーンマッピング及びナビゲーション | |
CN116026345B (zh) | 用于车辆导航的系统和方法 | |
CN106681353B (zh) | 基于双目视觉与光流融合的无人机避障方法及系统 | |
CN107235044B (zh) | 一种基于多传感数据实现对道路交通场景和司机驾驶行为的还原方法 | |
EP2372310B1 (en) | Image processing system and position measurement system | |
US11280630B2 (en) | Updating map data | |
DE112020004133T5 (de) | Systeme und verfahren zur identifizierung möglicher kommunikationshindernisse | |
CN110176156A (zh) | 一种机载地面预警系统 | |
CN109405824A (zh) | 一种适用于智能网联汽车的多源感知定位系统 | |
CN115661204B (zh) | 一种无人机集群对运动目标的协同搜寻与跟踪定位方法 | |
CN113255520B (zh) | 基于双目视觉和深度学习的车辆避障方法与电子设备 | |
CN108108750A (zh) | 基于深度学习和单目视觉的距离空间重建方法 | |
CN110264500A (zh) | 基于检测到的停放车辆特性控制主车辆 | |
CN109583415A (zh) | 一种基于激光雷达与摄像机融合的交通灯检测与识别方法 | |
GB2614379A (en) | Systems and methods for vehicle navigation | |
KR101510745B1 (ko) | 차량의 무인 자율주행 시스템 | |
CN107451988A (zh) | 在飞行器的检视系统中对感兴趣的元素合成表示的方法 | |
Kawamura et al. | Ground-Based Vision Tracker for Advanced Air Mobility and Urban Air Mobility | |
WO2018161278A1 (zh) | 无人驾驶汽车系统及其控制方法、汽车 | |
KR101441422B1 (ko) | 온톨로지 기법을 이용한 항공기 이착륙시 장애물과의 충돌을 예측하는 의사결정장치 및 방법 | |
US20220309786A1 (en) | Method for training a supervised artificial intelligence intended to identify a predetermined object in the environment of an aircraft | |
US20240375677A1 (en) | Systems and methods of determining changes in pose of an autonomous vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |