CN107102076B - 一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 - Google Patents
一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 Download PDFInfo
- Publication number
- CN107102076B CN107102076B CN201710262964.7A CN201710262964A CN107102076B CN 107102076 B CN107102076 B CN 107102076B CN 201710262964 A CN201710262964 A CN 201710262964A CN 107102076 B CN107102076 B CN 107102076B
- Authority
- CN
- China
- Prior art keywords
- metamifop
- optical isomer
- content
- sample
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/89—Inverse chromatography
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明提供一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,具体步骤包括:1)样品的准备;2)确定手性色谱分离条件;3)确定质谱条件;4)光学异构体含量测定。本发明选择手性高效液相色谱‑质谱/质谱技术定量检测体内/环境中恶唑酰草胺光学异构体含量,具有操作简单,定量准确、批量成本低,特别适用于农残检测/监测的需要,为体内/环境中恶唑酰草胺光学异构体的检测提供了一条新的思路和方法。
Description
技术领域
本发明涉及一种基于手性高效液相色谱-质谱/质谱技术检测和监测生物或环境样品中(R)-恶唑酰草胺和(S)-恶唑酰草胺光学异构体含量的方法,属于农药分析和农残检测/监测领域。
背景技术
据统计,至2015年,世界上农药有25%是手性分子,绝大多数以外消旋体形式出售和使用,而单一异构体只占7%。由于酶、蛋白质、离子通道等受体的不对称环境,手性农药与受体的结合具有立体选择性;其被生物吸收后,代谢、转化、排泄等过程往往也是选择性的。在多数情况下,对映体中的一种异构体对目标生物体具有杀虫或杀菌活性,或者对非目标生物体毒性较大,而另一种却不具备药效或药效很低。因此通过非手性分析得到的外消旋农药的总浓度所指示的可能与实际生态毒理学效应并不相符。只有在对映异构体水平上研究手性农药的毒性问题、环境问题,才能准确评价人体健康和生态系统的风险性。
恶唑酰草胺(Metamifop,CAS:256412-89-2)是芳氧苯氧丙酸酯类除草剂,属ACC酶抑制剂。该药物有一个手性中心,两个光学异构体,即(R)-恶唑酰草胺和(S)-恶唑酰草胺,现有的毒理、环境影响和生物体内代谢研究,都没有涉及到恶唑酰草胺的手性中心。介于“海豹婴儿”事件的影响,深入和细致的研究手性化合物不同异构体在生物体内的不同是非常必要和必须的;同时环境因素也有可能导致光学异构体之间的转化,产生新的农药污染问题。
HPLC-PDA或HPLC-MS等方法常用于恶唑酰草胺环境中浓度检测,但该方法只能检测恶唑酰草胺光学异构体的总浓度,无法分别检测(R)和(S)-恶唑酰草胺。而上个世纪的“海豹婴儿”悲剧,使得人们逐渐认识到,无论是手性药物还是农药,其不同对映异构体在生物体内的差异是非常巨大。因此,同时建立(R)和(S)-恶唑酰草胺生物和环境中药物浓度的分析方法是非常必要的。
反相手性高效液相色谱-质谱/质谱技术结合了手性色谱柱对光学异构体的分离能力和质谱/质谱技术的高灵敏度,可以较好的解决手性药物的光学异构体的检测问题。然而,针对不同的分离对象,需要对进样量、柱温、洗脱剂(即流动相)、流速、母离子/子离子选择、碰撞能量、锥孔电压等大量条件和参数进行优化和筛选,既要保证光学异构体的分离,还要达到生物或环境体内微量或痕量药物的检测,难度极大。
发明内容
本发明的目的在于提供一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,特别适合在手性农药恶唑酰草胺的生物体内残留或环境残留的检测/监测中应用。
为达到上述目的,本发明采用了以下技术方案:
1)样品的准备:将生物样品或生物样品的匀浆液与乙腈混合以沉淀蛋白,通过离心分离沉淀,将离心所得上清液吹干,得到待分析样品;或用乙腈直接提取环境样品中的恶唑酰草胺后离心,将离心所得上清液吹干,得到待分析样品;
2)确定手性色谱分离条件:根据(R)-恶唑酰草胺和(S)-恶唑酰草胺的分离度≥1.5的要求,手性高效液相色谱分离中采用的流动相为甲醇或乙腈与水、易挥发性缓冲盐以及易挥发性酸的混合溶液,混合溶液中所述缓冲盐的浓度为1-10mM,所述酸的体积分数为0.01-0.5%,甲醇或乙腈与水的体积比为1~9:1;柱温为5-50℃;进样量为1-10μL;流动相流速为0.3-0.8mL/min,等度洗脱;
3)确定质谱/质谱工作条件:采用三重四级杆质谱以及多反应监测扫描模式;母离子和子离子分别为441.09和318.05;锥孔电压为20-35V;碰撞能量为15-40eV;
4)光学异构体含量测定:对待分析样品进行手性高效液相色谱-质谱/质谱分析,然后采用外标法计算样品中的(R)-恶唑酰草胺和(S)-恶唑酰草胺的含量。
所述生物样品为血浆、体液、组织液或生物组织(如肝脏、肾脏、心脏、胰脏、大脑等)。
所述环境样品为土壤、水、农作物或其他可能污染的样品。
所述步骤1)中,沉淀蛋白所用乙腈的体积为生物样品体积的至少4倍。
所述手性高效液相色谱采用反相涂敷型或键合型手性色谱柱,手性填料包括多糖衍生物类填料。
所述缓冲盐包括甲酸铵、乙酸铵、碳酸铵或碳酸氢铵,所述酸包括甲酸、乙酸或三氟乙酸。
所述质谱/质谱的工作条件还包括:驻留时间为0.15-0.17s;ESI离子源温度为120-150℃;干燥气的温度为280-300℃,干燥气的流速为600-900L/h;毛细管电压为2.5-3.5KV。
所述外标法(即配制(R)-恶唑酰草胺和(S)-恶唑酰草胺的标准溶液,制作标准曲线,利用标准曲线计算待分析样品中的(R)-恶唑酰草胺和(S)-恶唑酰草胺的含量)采用的标准曲线的范围为0.1-150ng/mL。
本发明的有益效果体现在:
1)光学异构体的分析灵敏度高、检出限低。现有的手性HPLC方法,灵敏度较差,其最低检出限为μg/mL,很难实现生物体内或环境中微量和痕量样品的分析;本发明中采用三重四级杆中的MRM扫描模式,在保证光学异构体分离的同时,极大的提高了灵敏度,最低检出限为0.2ng/mL,可以满足生物或环境样品检测的需要。
2)可同时实现(R)-恶唑酰草胺和(S)-恶唑酰草胺的检测。对于生物或环境样品中药物浓度的检测,现有方法无法对恶唑酰草胺的光学异构体进行分离测定,只能得到一个总的外消旋恶唑酰草胺的总浓度,不能检测各个光学异构体的浓度;本发明通过大量实验对手性高效液相色谱-质谱/质谱的条件进行优化,确定了母离子和子离子以及锥孔电压、洗脱流速、干燥气温度等关键参数,在保证高灵敏度的同时,首次实现了同时检测(R)-恶唑酰草胺和(S)-恶唑酰草胺,为恶唑酰草胺光学异构体的体内/环境检测提供了技术支持,为研究手性农药体内/环境转化提供了新的思路。
3)可实现自动化的检测,符合农药残留检测中大样本量的需要:本发明利用HPLC的自动进样功能、可实现无人值守;极大的节省了人力物力,满足多样品、大数据处理的需要。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1血浆中外消旋恶唑酰草胺的浓度检测
以外消旋恶唑酰草胺为例,但本发明的保护范围不局限于该实验,具体步骤如下:具体步骤包括:1)样品的准备;2)确定手性色谱分离条件;3)确定质谱条件;4)光学异构体含量测定。
一、样品准备
取已注射外消旋恶唑酰草胺的SD大鼠血浆100μL(采血时间点1.5h),加入400μL乙腈,旋混30s后,12500转离心10min,取上清液室温下液氮气吹干,得待分析样品,-80℃冻存;
二、确定手性色谱分离条件
上述样品加入50μL的流动相中复溶,采用Waters TQD Xevo分析(R)和(S)-恶唑酰草胺,条件如下;
色谱条件:
①自动进样,体积5μL;
②流动相是乙腈:水=90:10(体积比)的混合溶剂(含体积分数0.1%的甲酸和10mM的甲酸铵),流速为0.3mL/min,等度洗脱;
③柱温箱温度为25℃;
该条件下(R)-恶唑酰草胺和(S)-恶唑酰草胺的保留时间分别为:18.22和19.92min,分离度为1.8。
三、确定质谱条件
采用Waters TQD的多反应监测扫描模式(MRM),条件如下:
母离子和子离子分别为441.09和318.05;
锥孔电压为20V;
碰撞能量为40eV;
驻留时间为0.161s;
ESI离子源温度为150℃;
N2(干燥气)的温度及流速为300℃和900L/h;
毛细管电压3.5KV。
四、光学异构体含量测定
数据采集和处理采用Mass Lynx software(Version 4.1),定量计算采用TargetLynxTM software。
配制外消旋恶唑酰草胺的标准溶液(体积分数50%乙腈的水溶液),浓度分别为:0.1ng/mL,0.5ng/mL,1ng/mL,5ng/mL,10ng/mL,20ng/mL,40ng/mL,80ng/mL,150ng/mL;上述标准溶液样品与待分析样品采用本实施例中的色谱和质谱条件分析,Target LynxTMsoftware自动计算待测样品中(R)-和(S)-恶唑酰草胺的含量。
该实施例中,(R)-恶唑酰草胺和(S)-恶唑酰草胺的血药浓度分别为26.55ng/mL和29.39ng/mL;(R)和(S)异构体间存在吸收、分布和代谢的差异。
实施例2尿液中(R)-恶唑酰草胺的浓度检测
除以下条件外,其他条件与实施例1相同:
①取已注射(R)-恶唑酰草胺的SD大鼠尿液100μL(24h的总尿液);
③流动相是甲醇:水=90:10(体积比)的混合溶剂(含体积分数0.5%的乙酸和1mM的乙酸铵),流速为0.8mL/min,等度洗脱;
④自动进样,体积10μL;
⑤柱温箱温度为40℃;
⑥锥孔电压为35V;
⑦碰撞能量为15eV。
该实施例中,(R)-恶唑酰草胺和(S)-恶唑酰草胺的保留时间分别为:9.49和10.98min;其尿药浓度分别为5.18ng/mL和0.66ng/mL;(R)-异构体在大鼠体内能够部分转化为(S)-异构体。
实施例3肝脏中(S)-恶唑酰草胺的浓度检测
除以下条件外,其他条件与实施例1相同:
①取已注射(S)-恶唑酰草胺的SD大鼠肝脏0.1g(给药后12小时断颈处死,迅速解剖取出肝脏),加入PBS缓冲溶液0.5mL,4℃匀浆,离心后取上清液(匀浆液)100μL;向上述匀浆液中加入400μL乙腈,旋混30s后,12500转/分离心5min,取上清液室温下氮气吹干,得待分析样品;
③流动相是乙腈:水=70:30(体积比)的混合溶剂(含体积分数0.5%的三氟乙酸和5mM的碳酸氢铵),流速为0.4mL/min,等度洗脱;
④自动进样,体积1μL;
⑤柱温箱温度为50℃;
⑥锥孔电压为30V;
⑦碰撞能量为30eV。
该实施例中,(R)-恶唑酰草胺和(S)-恶唑酰草胺的保留时间分别为:14.28和15.65min;其肝脏药物浓度分别为8.55ng/mL和65.58ng/mL;(S)-异构体在大鼠肝脏中能够部分转化为(R)-异构体。
实施例4土壤中(R)-恶唑酰草胺的检测
除以下条件外,其他条件与实施例1相同:
①取已喷洒(R)-恶唑酰草胺(20克/亩)48小时后的土壤样品0.1g,加入PBS缓冲溶液0.5mL和乙腈1.2mL,旋混30s,离心后取上清液1mL,N2吹干,20μL流动相复溶;
③流动相是乙腈:水=50:50(体积比)的混合溶剂(含体积分数0.2%的三氟乙酸和10mM的碳酸氢铵),流速为0.8mL/min,等度洗脱;
④自动进样,体积10μL;
⑤柱温箱温度为5℃;
⑥碰撞能量为15eV。
该实施例中,(R)-恶唑酰草胺和(S)-恶唑酰草胺的保留时间分别为:8.44和9.95min;其环境残留浓度分别为3.89ng/mL和0.22ng/mL;存在环境中手性转化现象。
本发明所针对的是恶唑酰草胺的光学纯异构体的检测,不同来源的生物或环境样品,受样品中其他物质的干扰,其色谱分离条件、质谱检测参数等均不相同,据此得出本发明中的条件范围。
本发明选择反相手性高效液相色谱-质谱/质谱技术定量检测恶唑酰草胺光学异构体含量的方法,是为了解决在实际科研、农残监测中恶唑酰草胺光学异构体的检测/监测所存在的问题,为恶唑酰草胺光学异构体在生物体内和环境中的转化和检测提供了一条新的思路和方法。
Claims (8)
1.一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:包括以下步骤:
1)样品的准备:将生物样品或其匀浆液与乙腈混合以沉淀蛋白,通过离心分离沉淀,将离心所得上清液吹干,得到待分析样品;或用乙腈直接提取环境样品中的恶唑酰草胺后离心,将离心所得上清液吹干,得到待分析样品;
2)确定手性色谱分离条件:根据(R)-恶唑酰草胺和(S)-恶唑酰草胺的分离度≥1.5的要求,手性高效液相色谱分离中采用的流动相为甲醇或乙腈与水、易挥发性缓冲盐以及易挥发性酸的混合溶液,混合溶液中所述缓冲盐的浓度为1-10 mM,所述酸的体积分数为0.01-0.5%,甲醇或乙腈与水的体积比为1~9:1;柱温为5-50℃;进样量为1-10μL;流动相流速为0.3-0.8mL/min,等度洗脱;
所述手性高效液相色谱采用反相涂敷型或键合型手性色谱柱,手性填料采用多糖衍生物类填料;
3)确定质谱/质谱工作条件:采用三重四级杆质谱以及多反应监测扫描模式;母离子和子离子分别为441.09和318.05;锥孔电压为20-35V;碰撞能量为15-40eV;
4)光学异构体含量测定:对待分析样品进行手性高效液相色谱-质谱/质谱分析,然后采用外标法计算样品中的(R)-恶唑酰草胺和(S)-恶唑酰草胺的含量,其中标准溶液采用外消旋恶唑酰草胺配制。
2.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述生物样品选自体液或生物组织。
3.根据权利要求2所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述体液选自血浆或组织液。
4.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述环境样品选自土壤、水、农作物或其他可能污染的样品。
5.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述步骤1)中,沉淀蛋白所用乙腈的体积为生物样品体积的至少4倍。
6.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述缓冲盐选自甲酸铵、乙酸铵、碳酸铵或碳酸氢铵,所述酸选自甲酸、乙酸或三氟乙酸。
7.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述质谱/质谱的工作条件还包括:驻留时间为0.15-0.17s;ESI离子源温度为120-150℃;干燥气的温度为280-300℃,干燥气的流速为600-900L/h;毛细管电压为2.5-3.5KV。
8.根据权利要求1所述一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法,其特征在于:所述外标法采用的标准曲线的范围为0.1-150 ng/mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710262964.7A CN107102076B (zh) | 2017-04-20 | 2017-04-20 | 一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710262964.7A CN107102076B (zh) | 2017-04-20 | 2017-04-20 | 一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107102076A CN107102076A (zh) | 2017-08-29 |
CN107102076B true CN107102076B (zh) | 2020-06-05 |
Family
ID=59657096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710262964.7A Active CN107102076B (zh) | 2017-04-20 | 2017-04-20 | 一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107102076B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918709B (zh) * | 2018-07-12 | 2021-05-18 | 河北医科大学 | 一种血液中常见除草剂的筛查、定量检测方法及应用 |
CN109342623A (zh) * | 2018-12-25 | 2019-02-15 | 安徽华辰检测技术研究院有限公司 | 一种气质联用检测水稻中芳氧苯氧丙酸酯类除草剂的方法 |
CN111595979A (zh) * | 2020-06-15 | 2020-08-28 | 湖南农业大学 | 同时测定噁唑酰草胺及其代谢物含量的超高效液相色谱-串联质谱法 |
CN111735899B (zh) * | 2020-08-04 | 2020-11-20 | 天津汉一医药科技有限公司 | 一种含有取代基的萘环的分析方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353740A (zh) * | 2011-06-03 | 2012-02-15 | 中国农业科学院农业质量标准与检测技术研究所 | 一种同步测定三唑类手性农药对映体含量的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2319932T5 (pl) * | 2004-04-30 | 2017-09-29 | Dow Agrosciences Llc | Nowe geny odporności na herbicydy |
-
2017
- 2017-04-20 CN CN201710262964.7A patent/CN107102076B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353740A (zh) * | 2011-06-03 | 2012-02-15 | 中国农业科学院农业质量标准与检测技术研究所 | 一种同步测定三唑类手性农药对映体含量的方法 |
Non-Patent Citations (3)
Title |
---|
Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry;Yuanbo Li等;《Journal of Hazardous Materials》;20130204;第250-251卷;第9-18页 * |
Enantioselective toxicity and degradation of chiral herbicide fenoxaprop-ethyl in earthworm Eisenia fetida;Xu Jing等;《Ecological Indicators》;20161227;第75卷;第128-129页第2.4节和图2 * |
农药禾草灵在键合型手性固定相上的拆分;刘万良等;《化学试剂》;20091031;第31卷(第10期);第825-827页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107102076A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107102076B (zh) | 一种检测生物体内和环境中恶唑酰草胺光学异构体含量的方法 | |
Zhang et al. | Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry | |
Pan et al. | Stereoselective analysis of novel chiral fungicide pyrisoxazole in cucumber, tomato and soil under different application methods with supercritical fluid chromatography/tandem mass spectrometry | |
Li et al. | Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution | |
Qu et al. | Rapid determination of underivatized pyroglutamic acid, glutamic acid, glutamine and other relevant amino acids in fermentation media by LC-MS-MS | |
CN107525866B (zh) | 一种利用DPX枪头式分散固相微萃取柱萃取及分析β-受体激动剂类瘦肉精的方法 | |
Liang et al. | Stereoselective separation and determination of triadimefon and triadimenol in wheat, straw, and soil by liquid chromatography–tandem mass spectrometry | |
Fumes et al. | Determination of pesticides in sugarcane juice employing microextraction by packed sorbent followed by gas chromatography and mass spectrometry | |
Elmongy et al. | Determination of metoprolol enantiomers in human plasma and saliva samples utilizing microextraction by packed sorbent and liquid chromatography–tandem mass spectrometry | |
CN106124678A (zh) | 鱼肉中全氟化合物及其前体物质的快速筛查方法 | |
CN105784894B (zh) | 一种用于中药的农药残留检测方法 | |
CN105758946A (zh) | 一种水果中15种三唑类农药残留量的测定方法 | |
Rocío-Bautista et al. | Direct coupling of bio-SPME to liquid electron ionization-MS/MS via a modified microfluidic open interface | |
Warren | Development of online microdialysis-mass spectrometry for continuous minimally invasive measurement of soil solution dynamics | |
Kimura et al. | Simple and rapid determination of 1‐deoxynojirimycin in mulberry leaves | |
Wu et al. | Determination of ractopamine in pig hair using liquid chromatography with tandem mass spectrometric detection | |
CN105548431A (zh) | 同时检测蔬菜/水果中杀线威和杀线威肟残留量的方法 | |
CN101334386B (zh) | 扶正化淤植物药血浆苦杏仁苷的测定方法 | |
CN106645477A (zh) | 一种检测氟苯尼考胺残留的方法及应用 | |
Schmeer et al. | Rapid pharmacokinetic screening of salbutamol in plasma samples by column-switching high-performance liquid chromatography–electrospray mass spectrometry | |
Lu et al. | A rapid liquid chromatography‐electrospray ionization‐ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat | |
CN1643375A (zh) | 检测生物样品中的辅酶a分子的方法 | |
CN108663464B (zh) | 检测水果蔬菜或土壤中的环酰菌胺的方法 | |
Jiang et al. | Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry | |
Yang et al. | Enantioselective determination of trantinterol in rat plasma by ultra performance liquid chromatography–electrospray ionization mass spectrometry after derivatization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |