Detailed Description
In order to explain technical contents, achieved objects, and effects of the present invention in detail, the following description is made with reference to the accompanying drawings in combination with the embodiments.
The most key concept of the invention is as follows: the problem of energy waste in a fresh air system adopting the compressor principle in the prior art is solved by utilizing the temperature difference between waste gas in an exhaust unit and fresh air in an air inlet unit and adopting the coil circulation principle.
Referring to fig. 1 to 3, an air treatment system using heat energy of an exhaust section includes an air intake unit 1 and an exhaust unit 2;
the air inlet unit 1 comprises an evaporation section 14, a first circulation recovery section 13 and a second circulation recovery section 15;
the exhaust fan set 2 comprises a water washing spray section 22 and a third recycling section 23;
a first circulation recovery section 131 is arranged in front of the evaporation section 14, a second circulation recovery section 15 is arranged behind the evaporation section 14, and a third circulation recovery section 23 is arranged behind the washing spray section 22;
the first recycling section 13 comprises a first recycling coil 131, the second recycling section 13 comprises a second recycling coil 151, and the third recycling section 23 comprises a third recycling coil; the first circulation recovery coil 131, the second circulation recovery coil 141 and the third circulation recovery coil are filled with glycol liquid;
the inlet end of the first recycling coil 131 is connected with the outlet end of the second recycling coil 151 through a pipeline, the inlet end of the third recycling coil is connected with the outlet end of the first recycling coil 131 through a pipeline, and the outlet end of the third recycling coil is connected with the inlet end of the second recycling coil 151 through a pipeline.
The use of the air treatment system utilizing the heat energy of the exhaust section comprises the following steps: outdoor high wet new trend gets into and advances fan unit's first circulation recovery section 13 and carry out the heat exchange, then through evaporation zone 14, because evaporation coil 141 entrance connection condensation heat recovery coil 181 exit end, the high-pressure refrigerant among the condensation heat recovery coil 181 is through the heat absorption of the heat sink of pressure relief device decompression evaporation when getting into evaporation coil 141, make evaporation coil 141 temperature reduce, moisture in the outdoor high wet new trend contacts microthermal evaporation coil 141 condensation in the twinkling of an eye, thereby reach the effect of new trend dehumidification, the new trend continues to get into second circulation recovery section 15 and carries out the heat exchange after, get into other sections body and handle the back and get into indoorly.
Indoor waste gas enters a water washing spraying section 22 in the exhaust fan set to remove harmful substances such as amine, nitrogen and the like in the waste gas, and then passes through a third circulation recovery section, the third circulation recovery section exchanges heat with the waste gas in the section to recover heat of the waste gas, and the heat recovery section is applied to the first circulation recovery section and the second circulation recovery section of the air inlet fan set to exchange heat with fresh air, so that the heat energy of the waste gas in the exhaust fan set is fully utilized, and the energy consumption is reduced;
and the waste gas passes through the third circulation recovery section and then is continuously treated by other sections and then is discharged outdoors.
The air treatment system utilizing the heat energy of the air exhaust section has the advantages that: the invention relates to an air treatment system utilizing heat energy of an exhaust section, which is provided with a multi-effect circulating recovery coil and comprises a first circulating recovery section 13 arranged in front of an evaporation section 14, a second circulating recovery section 15 arranged behind the evaporation section 14 and a third circulating recovery section 23 arranged behind a water washing spray section 22; the temperature difference between the waste gas in the exhaust unit 2 and the fresh air unit is effectively utilized, so that the heat source of the exhaust section is fully utilized, and the energy is further saved;
in the air processing system using the heat energy of the exhaust section, the inlet end of the first recycling coil 131 is disposed at the lower part of the first recycling section 13, and the outlet end of the first recycling coil 131 is disposed at the upper part of the first recycling section 13.
In the air processing system using the heat energy of the exhaust section, the inlet end of the third recycling coil is arranged at the upper part in the third recycling section 23, and the outlet end of the third recycling coil is arranged at the lower part in the third recycling section 23.
In the air processing system using the heat energy of the exhaust section, the inlet end of the second recycling coil 151 is disposed at the upper part in the second recycling section 15, and the outlet end of the second recycling coil 151 is disposed at the lower part in the second recycling section 15.
In the air processing system using heat energy of the exhaust section, the second recycling section 15 further includes a second recycling straight-going pipe, an inlet end of the second recycling straight-going pipe is connected to an inlet end of the second recycling coil 151, and an outlet end of the second recycling coil 151 is connected to an outlet end of the second recycling straight-going pipe.
In the air processing system using heat energy of the exhaust section, a second electric three-way valve is arranged on the upper portion of the second recycling section 15, the inlet end of the second electric three-way valve is connected with the outlet end of a third recycling coil pipe through a pipeline, the first outlet end of the second electric three-way valve is connected with the inlet end of the recycling coil pipe, and the second outlet end of the second electric three-way valve is connected with the inlet end of a second recycling straight pipe. The second electric three-way valve is arranged in the second circulation recovery section 15, and the second electric three-way valve controls whether the ethylene glycol liquid exchanges heat with fresh air in the section, so that the temperature of the fresh air can be adjusted according to different environments, and the air treatment system utilizing the heat energy of the exhaust section is suitable for fresh air treatment in different environments.
In the air treatment system using the heat energy of the exhaust section, the second recycling straight pipe is provided with a one-way valve.
Example 1
Referring to fig. 1 to 3, an air processing system using heat energy of an exhaust section includes an external unit 3, an air inlet unit 1, and an exhaust unit 2;
the air inlet fan unit 1 has the following structure and functions:
the fresh air fan section 11, the air inlet primary effect filtering section 12, the first circulation recovery section 13, the evaporation section 14, the second circulation recovery section 15, the surface cooling section 16, the auxiliary heating section 17, the condensation heat recovery section 18, the air inlet intermediate effect filtering section 19 and the auxiliary humidification section 110 are sequentially arranged from the fresh air inlet end to the fresh air outlet end of the air inlet fan unit 1;
the fresh air fan section 11 is used for sucking outside fresh air into the air inlet fan group 1;
the air inlet primary filter section 12 is used for carrying out primary filtration on fresh air;
the surface cooling section 16 is connected with a central air conditioning system and is used for adjusting the temperature of fresh air;
the first circulation recovery section 13, the second circulation recovery section 15 and the third circulation recovery section 23 are communicated with each other and are used for recycling heat in the exhaust fan set 2 and the air inlet fan set 1;
the evaporation section 14 is used for cooling and dehumidifying fresh air, and the condensation heat recovery section 18 and the auxiliary heating section 17 are used for heating the fresh air; the air inlet middle-effect filtering section 19 is used for further filtering fresh air; the humidifying section is used for adjusting the humidity of fresh air.
The exhaust fan set 2 has the following structure and functions:
the exhaust unit 2 is sequentially provided with an exhaust primary filter section 21, a water washing spray section 22, a third circulation recovery section 23, an oxidation disinfection section 24, an active carbon filter section 25 and an exhaust fan section 26 from an exhaust inlet end to an exhaust outlet end;
the primary exhaust filtering section 21 and the water washing spraying section 22 are used for removing harmful substances such as amine and nitrogen contained in the waste gas; the oxidation and disinfection section 24, the activated carbon filtering section 25 and the exhaust fan section 26 are used for purifying waste gas.
The outer unit 3 has the following structure and functions:
the outdoor unit 3 comprises a compressor 31, a refrigerant low-pressure section and a refrigerant high-pressure section, wherein the refrigerant low-pressure section and the refrigerant high-pressure section are connected with the compressor 31, the refrigerant low-pressure section is provided with a refrigerant low-pressure interface 33, and the refrigerant high-pressure section is provided with a refrigerant high-pressure interface 32;
1. the specific structure of the air treatment system using the heat energy of the exhaust section is described as follows:
a condensation heat recovery coil pipe 181 and a condensation heat recovery straight pipe 182 are arranged in the condensation heat recovery section 18;
the inlet end of the condensation heat recovery coil 181 is arranged at the lower part of the condensation heat recovery section 18, the outlet end of the condensation heat recovery coil 181 is arranged at the lower part of the condensation heat recovery section 18, the lower part of the condensation heat recovery section 18 is provided with a first electric three-way valve, the inlet end of the first electric three-way valve is connected with the refrigerant high-pressure interface 32 through a pipeline, the first outlet end of the first electric three-way valve is connected with the inlet end of the condensation heat recovery coil 181, the second outlet end of the first electric three-way valve is connected with the inlet end of the condensation heat recovery straight pipe 182, the outlet end of the condensation heat recovery coil 181 is connected with the inlet end of the condensation heat recovery straight pipe 182, and the outlet end of the condensation heat recovery coil 181 is provided with a one-way two-way valve;
install evaporating coil 141 in the evaporation zone 14, evaporating coil 141 entrance point sets up the upper portion in evaporation zone 14, the lower part of evaporating coil 141 exit end setting in evaporation zone 14, the straight travelling pipe 182 exit end of condensation heat recovery passes through pipe connection evaporating coil 141 entrance point, the junction of the straight travelling pipe 182 exit end of condensation heat recovery and evaporating coil 141 entrance point is equipped with drier-filter and electronic pressure reducing valve 142, evaporating coil 141 exit end passes through pipe connection refrigerant low pressure interface 33.
The first recycling section 13 comprises a first recycling coil 131, the second recycling section 15 comprises a second recycling coil 151 and a second recycling straight pipe, and the third recycling section 23 comprises a third recycling coil; the interior of the first circulation recovery coil 131, the second circulation recovery coil 151, the second circulation recovery straight pipe and the third circulation recovery coil are filled with glycol liquid; and the third circulating recovery coil pipe is provided with an ethylene glycol solution pump.
The inlet end of the second recycling coil 151 is arranged at the upper part in the second recycling section 15, the outlet end of the second recycling coil 151 is arranged at the lower part in the second recycling section 15, the inlet end of the second recycling straight pipe is arranged at the upper part in the second recycling section 15, and the outlet end of the second recycling straight pipe is connected with the outlet end of the second recycling coil 151; the outlet end of the second recycling coil 151 is provided with a one-way valve, the upper part in the second recycling section 15 is provided with a second electric three-way valve, the inlet end of the second electric three-way valve is connected with the outlet end of a third recycling coil through a pipeline, the first outlet end of the second electric three-way valve is connected with the inlet end of the second recycling coil 151, and the second outlet end of the second electric three-way valve is connected with the inlet end of a second recycling straight pipe;
the inlet end of the first recycling coil 131 is arranged at the lower part in the first recycling section 13, and the inlet end of the first recycling coil 131 is connected with the outlet end of the second recycling coil 151 through a pipeline; the outlet end of the first recycling coil 131 is arranged at the upper part in the first recycling section 13;
the outlet end of the third recycling coil is arranged at the lower part in the third recycling section 23, and the inlet end of the third recycling coil is connected with the outlet end of the first recycling coil 131 through a pipeline;
the surface cooling section 16 comprises a surface cooling coil arranged in the surface cooling section 16, and the surface cooling coil is connected to the central air-conditioning system and plays a role in adjusting the temperature of fresh air;
the installation height of the air inlet unit 1 is lower than that of the exhaust unit 2; the fresh air outlet end of the air inlet unit 1 is connected with the upper part of a room through a pipeline, the upper part of the room is connected with the fresh air outlet and provided with a high-efficiency filter, and the air exhaust inlet end of the exhaust unit 2 is connected with the lower part of the room through a pipeline.
The invention also comprises an automatic control system, wherein the automatic control system comprises a central controller for controlling the work of each section body, a compressor 31 frequency controller connected with the central controller, a temperature and humidity preset module, a first temperature sensor and a first humidity sensor arranged at a fresh air inlet end, a second temperature sensor and a second humidity sensor arranged at an exhaust air inlet end, and a proportion electric valve and a humidification section switch controller arranged on the surface cooling coil pipe, wherein the compressor 31 frequency controller, the first temperature sensor, the first humidity sensor, the second temperature sensor, the second humidity sensor, the first electric three-way valve, the second electric three-way valve, the spraying section electric three-way valve, the outer machine 3 electric three-way valve, the proportion electric valve and the humidification section switch controller are respectively connected with the central controller, the temperature and the humidity in a room are preset through the temperature and humidity preset module, and the working state of each section body is automatically adjusted by the central controller according to preset temperature values and humidity values and read by the first temperature sensor, the first humidity sensor, the second temperature sensor and the second humidity sensor.
2. The air treatment system utilizing the heat energy of the air exhaust section is used in different fresh air environments:
because the temperature and the humidity of outdoor fresh air in different areas and different seasons have great difference, the central controller can compare the temperature and the humidity of the fresh air monitored by the first temperature sensor and the first humidity sensor with preset values through presetting the indoor required temperature, and intelligently adjust the valve of each segment and the frequency of the compressor 31 of the outdoor unit 3;
1) Taking low-temperature and low-humidity outdoor fresh air in winter as an example:
if the temperature and humidity of the outdoor fresh air are lower than preset values, the central controller controls the compressor 31 of the outer unit 3 to be turned off, so that the evaporation section 14 does not work; because the surface cooling coil in the surface cooling section 16 is connected with the central air conditioning system, the central air conditioning system heats the fresh air by combining the heating of the surface cooling section 16 with other heating modes such as electric heating in the auxiliary heating section 17, the central controller correspondingly controls the first electric three-way valve, the second electric three-way valve and the proportional electric valve to control the heat exchange efficiency to reach the preset temperature, and controls the humidifying section to humidify the fresh air by the central controller to reach the proper humidity;
2) Taking outdoor fresh air with high temperature and high humidity in summer as an example:
the temperature and humidity of outdoor fresh air are lower than a preset value, so that the central controller adjusts the frequency of the compressor 31 of the outdoor unit 3 according to the difference between the temperature and the preset value monitored by the temperature sensor and the humidity sensor arranged in the fresh air section, the fresh air is dehumidified through the evaporation section 14, the temperature of the fresh air is greatly reduced, the central controller correspondingly controls the first electric three-way valve, the second electric three-way valve and the proportional electric valve to control the heat exchange efficiency, the appropriate temperature is reached, the central controller controls the humidification section to be closed at the moment, and the fresh air does not need to be humidified.
3) Taking the case of outdoor fresh air temperature of 36 ℃ as an example:
assuming that the temperature monitored by the first temperature sensor is 36 ℃ and the temperature detected by the second temperature sensor is 23-25 ℃, at this time, the central controller controls the first outlet end of the first electric three-way valve to be opened and controls the second outlet end of the first electric three-way valve to be closed, so that the condensation heat recovery coil 181 is connected with the refrigerant high-pressure interface 32, the central controller controls the first outlet end of the second electric three-way valve to be opened and controls the second outlet end of the second electric three-way valve to be closed, so that the ethylene glycol in the second circulation recovery coil 151 enters a circulation flow state; at the moment, the fresh air enters the first circulating recovery section 13 after being filtered by the primary filter of the air inlet primary filtering section 12, the temperature of the fresh air is reduced to 26 ℃ through heat exchange with the first circulating recovery coil pipe 131, the temperature of the inlet end of the first circulating recovery coil pipe 131 is 17-23 ℃, and the temperature of the outlet end of the first circulating recovery coil pipe 131 is 24-28 ℃ after heat exchange;
the fresh air passing through the first recycling section 13 flows through the evaporation section 14, the high-pressure refrigerant passing through the condensation heat recycling section 18 in the section is decompressed through the electronic decompression valve 142 before entering the evaporation coil 141, evaporation and heat absorption are carried out, so that when the fresh air passes through the section, moisture in the fresh air is condensed on the outer wall of the evaporation coil 141, the purpose of fresh air dehumidification is achieved, the condensed water flows to a reservoir at the bottom of the evaporation section 14 along the coil, and the temperature of the fresh air after being dehumidified by the evaporation section 14 is reduced to 12 ℃;
the fresh air dehumidified by the evaporation section 14 continuously flows through the second circulation recovery section 15, the temperature of the inlet end of the second circulation recovery coil 151 is 21-23 ℃, the temperature of the outlet end of the second circulation recovery coil 151 is reduced to 17-21 ℃ after heat exchange, and the temperature of the fresh air is raised to 17 ℃ after passing through the section;
the fresh air after passing through the second circulation recovery section 15 continuously flows to the surface cooling section 16, the surface cooling section 16 controls the proportional electric valve through the central controller to control the temperature of the surface cooling section 16, so that heat exchange is carried out between the fresh air and the corresponding fresh air to achieve the proper fresh air temperature;
fresh air passing through the surface cooling section 16 continuously flows through the auxiliary heating section 17 and the condensation heat recovery section 18, a high-pressure refrigerant compressed by the compressor 31 is connected into the condensation heat recovery coil 181, the refrigerant is compressed to release heat and has a high temperature, the refrigerant enters the condensation heat recovery coil 181 to exchange heat with the fresh air of the section, and the dehumidified supercooled fresh air is heated to reach a proper temperature of a room, in order to meet the temperature requirements of partial rooms, the auxiliary heating section 17 adopts an electric heating mode or other heating modes to perform auxiliary heating on the fresh air, and further controls the temperature of the fresh air;
the heated fresh air continuously flows through the air inlet middle-effect filtering section 19 and other sections and then enters the room;
waste gas exhausted from a room enters an exhaust fan unit 2 and sequentially passes through a primary filtering section and a washing spraying section 22, and the temperature of the waste gas after passing through the washing spraying section 22 is assumed to be 18-21 ℃;
the waste gas after passing through the water washing spray section 22 continuously flows through a third circulating recovery section 23, the temperature of the waste gas after heat exchange with a third circulating recovery coil pipe is increased to 25-29 ℃, the temperature of the inlet end of the third circulating recovery coil pipe in the section is 24-28 ℃, and the temperature of the outlet end of the third circulating recovery coil pipe in the section is 21-23 ℃;
the waste gas after passing through the third recycling coil pipe is discharged to the outside after continuously passing through other sections such as the oxidation and disinfection section 24, the active carbon filtering section 25 and the like.
Example 2
On the basis of embodiment 1, a reservoir is arranged at the bottom of an evaporation section 14, a spray section electric three-way valve is arranged at the water inlet end of a washing spray section 22, the spray section electric three-way valve is connected with a central controller, the first inlet end of the spray section electric three-way valve is connected with a tap water source, the second inlet end of the spray section electric three-way valve is connected with the reservoir at the bottom of the evaporation section 14 through a pipeline, the outlet end of the spray section electric three-way valve is connected with a spray pipe, the spray pipe is provided with a washing spray pump, the reservoir is provided with a liquid level sensor, the liquid level sensor comprises a high-water level liquid level sensor and a low-water level liquid level sensor, the liquid level sensor is connected with the central controller, and a valve controlled by the central controller is arranged at the connection part of the bottom of the reservoir and the pipeline;
when the water level in the water storage tank is lower than the high water level liquid level sensor, the central controller controls the valve to be opened, meanwhile, the central controller controls the first inlet end of the spraying section electric three-way valve to be closed, and the second inlet end of the spraying section electric three-way valve to be opened, so that the water storage tank and the spraying pipe are communicated, water is supplied to the spraying pipe from the water storage tank, and condensed water collected by the evaporation section 14 is effectively utilized; when the water level in the reservoir is lower than the low water level liquid level sensor, the central controller controls the valve to be closed, and simultaneously, the central controller controls the second inlet end of the spray section electric three-way valve to be closed and opens the first inlet end of the spray section electric three-way valve, so that water is supplied to the spray pipe through the tap water pipe, the automation of water supply of the washing spray section 22 and condensate water treatment of the evaporation section 14 is realized, the problem of condensate water treatment of the evaporation section 14 is solved, and a water source required by washing spray is saved.
Example 3
The air treatment system utilizing the heat energy of the air exhaust section according to embodiment 1, the refrigerant high-pressure section is a refrigerant high-pressure coil pipe wound inside the side wall of the external unit 3, the refrigerant high-pressure coil pipe is cooled by a cooling fan installed inside the external unit 3, the external unit 3 further comprises a cooling spray pipe arranged on the upper portion of the refrigerant high-pressure coil pipe, the water inlet end of the cooling spray pipe is provided with an external unit 3 electric three-way valve, the external unit 3 electric three-way valve is connected with a central controller, the first inlet end of the external unit 3 electric three-way valve is connected with a tap water source, the second inlet end of the external unit 3 electric three-way valve is connected with a reservoir at the bottom of the evaporation section 14 through a pipeline, the outlet end of the external unit 3 electric three-way valve is connected with the cooling spray pipe, the cooling spray pipe is provided with a cooling spray pump, the reservoir is provided with a liquid level sensor, the liquid level sensor comprises a high-level liquid level sensor and a low-level liquid sensor, the liquid level sensor is connected with the central controller, and a valve controlled by the central controller is arranged at the connection position of the bottom of the reservoir and the pipeline;
when the water level in the reservoir is higher than the high water level liquid level sensor, the central controller controls the valve to be opened, meanwhile, the central controller controls the first inlet end of the electric three-way valve of the outer machine 3 to be closed, and the second inlet end of the electric three-way valve of the outer machine 3 to be opened, so that the reservoir is communicated with the cooling spray pipe, water is supplied to the cooling spray pipe from the reservoir, and condensed water collected by the evaporation section 14 is effectively utilized; when the water level in the reservoir is lower than the low water level liquid level sensor, the central controller controls the valve to be closed, meanwhile, the central controller controls the second inlet end of the electric three-way valve of the outer unit 3 to be closed, and the first inlet end of the electric three-way valve of the outer unit 3 is opened, so that water is supplied to the cooling spray pipe through the tap water pipe, the automation of water supply of the cooling spray pipe of the outer unit 3 and condensate water treatment of the evaporation section 14 is realized, the problem of condensate water treatment of the evaporation section 14 is solved, and a water source required by water cooling of the outer unit 3 is saved.
Example 4
According to the air treatment system utilizing the heat energy of the exhaust section in the embodiment 1, the primary air return opening 111 is additionally arranged behind the evaporation section 14, and the secondary air return opening 112 is additionally arranged behind the condensation heat recovery section 18; correspondingly, a secondary air return system is additionally arranged at the rear section of the exhaust fan section 26, the secondary air return system comprises an air return pipe connected behind the exhaust fan section 26, the air return pipe comprises an air return main pipe, a primary exhaust pipe and a secondary air return pipe, the primary exhaust pipe is branched from the air return main pipe, the primary air return pipe is connected with a primary air return port 111, and the secondary air return pipe is connected with a secondary air return port 112; the shunting positions of the primary air return pipe, the secondary air return pipe and the air return main pipe are provided with shunting valves, the air flow shunted by the primary air return pipe is 30% of the air flow of the air return main pipe, and the air flow shunted by the secondary air return pipe is 70% of the air flow of the air return main pipe;
the bottom in the washing spray segment 22 is equipped with circulation tank, circulation tank arranges along waste gas entering direction and is connected with a plurality of shower, the shower extends to the upper portion in the washing spray segment 22, the shower is connected with spray pump, be equipped with a plurality of atomizer on the shower.
Still be equipped with the explosive box in the washing spray section 22, the acidic solution is equipped with in the explosive box, the explosive box passes through the inlet pipe and connects circulating water tank, the inlet pipe is equipped with the stagnant water valve, be equipped with the acidity controller that is used for controlling the stagnant water valve and opens or close in the circulating water tank.
Because the indoor humiture reaches predetermined suitable degree, the humiture through exhaust fan set 2 exhaust waste gas is closer with indoor suitable humiture, through secondary return air, effectively utilize indoor humiture, reduce the admission capacity of outdoor new trend, or realize the circulation of indoor air, reduce because the humiture of outdoor new trend and the energy waste that leads to of predetermineeing the difference of humiture, improve exhaust fan set 2 correspondingly, through the improvement of washing shower section 22 fully get rid of harmful substance such as amine in the waste gas, nitrogen, in order to reach the requirement that the return air utilized.
In summary, the air processing system using heat energy of the exhaust section provided by the invention is provided with the multiple-effect circulating recovery coil, and comprises a first circulating recovery section arranged in front of the evaporation section, a second circulating recovery section arranged behind the evaporation section, and a third circulating recovery section arranged behind the water washing spray section; the temperature difference between the waste gas in the exhaust unit and the fresh air unit is effectively utilized, so that the heat source of the exhaust section is fully utilized, and the energy is further saved.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all equivalent changes made by using the contents of the present specification and the drawings, or applied directly or indirectly to the related technical fields, are included in the scope of the present invention.