Nothing Special   »   [go: up one dir, main page]

CN107002160A - 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法 - Google Patents

用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法 Download PDF

Info

Publication number
CN107002160A
CN107002160A CN201580023936.9A CN201580023936A CN107002160A CN 107002160 A CN107002160 A CN 107002160A CN 201580023936 A CN201580023936 A CN 201580023936A CN 107002160 A CN107002160 A CN 107002160A
Authority
CN
China
Prior art keywords
thickness
cold
cold rolling
slab
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580023936.9A
Other languages
English (en)
Inventor
S·扶隽纳提
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centro Sviluppo Materiali SpA
Original Assignee
Centro Sviluppo Materiali SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Sviluppo Materiali SpA filed Critical Centro Sviluppo Materiali SpA
Publication of CN107002160A publication Critical patent/CN107002160A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及用于制备晶粒非取向的电炉Fe‑Si钢带材的方法,该带材具有优异的电学特征和/或磁性特征,优选待用于构建发电机。

Description

用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的 方法
本发明涉及用于制备晶粒非取向的电炉Fe-Si钢带材的方法,该带材具有优异的电学特性和/或磁性特征,优选待用于构建发电机。
现有技术
晶粒非取向的电炉钢带材(electric steel strip)主要用于制造旋转式发电机的芯。
市售的产品根据其磁性性质进行分类(由UNI EN 10106标准规定)。
这种磁性特征与组分的晶体结构有关,特征为晶粒平均尺寸通常不大于0.25mm,轧制产品的平面中尽量各向同性的晶体排列来确保在发电机操作过程中各种角度施加磁场的磁性行为相似。
主要的定性磁性特征是根据标准IEC 60404-2和IEC 60404-3,在施加特定值的磁场时可获得的特定感应加工条件和磁化频率以及极化水平条件下测量的磁损耗。
现有的制备晶粒非取向的电炉钢带材的技术有多种,并且为了减少磁损耗,开发了一些策略,如减少轧制产品的最终厚度和/或通过添加元素如Si,Al,Mn…增加金属合金的电阻率,等。
用于改进产品磁性而研究的另一个冶金特征是所述钢的金属基质中存在的第二非金属相(例如硫化物、氮化物、碳化物和氧化物)的最大容量。出于该目的,最新的生产实践包括在板坯浇铸过程中已在熔融钢的固化阶段中制备具有极少硫、氮、碳和氧含量的钢。
轧制产品中另一个受控的物理特征是板材的表面性质。具体地,最好的产品的特征是具有低粗糙程度和无(或几乎无)热氧化的表面。
通常由Fe-Si合金制成,具有在0.1重量%-3.3重量%之间可变的硅含量的晶粒非取向的电炉钢带材由熔融合金开始制备并固化为板坯;板坯进行热轧以得到轧制产品的板材,然后进行冷轧直到获得最终应用厚度。
除了有时在科技文献和国际专利文献中描述但目前未包括任何工业实施的直接薄带连铸固化,用于制造晶粒非取向带材的板坯根据使用的技术通过连续固化以在20mm-300mm之间可变的厚度生产。
板坯的热轧有时根据使用的技术和设备以非常不同的方式进行,但对所有的情况温度范围为1300℃至700℃,用于获得厚度在2.5mm-1mm之间变化的热轧产品。
通常市场上提供的用于最终用途的产品的厚度在1mm至0.35mm之间变化,用于常规应用,最高至0.2mm的较低厚度用于特殊的高频应用。
所有已有的生产方法的特征为通过热轧(通常温度>700℃)压下率90-95%(薄板坯技术)和98-99%(厚板坯技术)的量并通过冷轧(通常温度<300℃)压下率通常60%-80%的量。
那么,具体地,在最新的技术中,趋势是制备更薄的热轧板材,以尽量减少施加冷轧的量。其优势是降低成本和改进与较便宜的冷轧相关的性能,以及同时改进磁性,其与完成的产品中可获得的晶体排列相关。
US 676412公开了制备晶粒非取向的磁性带材的方法,由厚度小于1.5mm的热轧板材开始制备。该文献中描述的方法包括受限的硅和铝含量([%S]+2[%Al]≤1.8),以及即使其包括可能加入其它合金元素如P,Sn,Sb,Zr,V,Ti,N,Ni,Co,Nb,B,这些元素的总量也不超过1.5%,因此可获得的磁损耗对目前市场所需的高质量产品而言质量很差。
US 2005/0067053 A1描述了热轧制备带材的方法,该方法适合制造最大热轧条带厚度为1.8mm或1.2mm的晶粒非取向的磁性带材。在该情况中可采用的Si和Al含量较高,但对任何情况都限制为[%Si]+2[%Al]≤5%。在描述热轧产品基质的具体晶体结构的文献中,采用这种方法就实现产品的高磁性而言,并没有具体的优势。
要解决的技术问题
晶粒非取向的带材的磁性(特别是与高频工作的发电机中的使用目的相关)主要由合金(含有元素如Si,Al,Mn,..)的电阻率、带材厚度和磁场转动平面内的材料的可极化性调节。此外,产品晶粒的平均尺寸必须在特定的极窄尺寸范围内调节,并针对其最终用途的发电机的工作频率进行优化。
但是,在这些产品的工业制造中,对冶金工具(metallurgic lever)的研发对于质量控制存在重要的限制,主要与实际因素有关,具体来说如下:
-合金元素的增加使金属合金的电阻率增加,导致机械脆性增加至临界水平,在此临界水平下,物理制造性能的降低使得生产方法不再具有优势;冷轧至极小的厚度产生高成本,特别是与所涉及的合金的脆性特征的问题相关时;难以保证控制产品的微结构(关于粒径分布和晶体结构),微结构关键性地影响磁损耗和磁性极化特征,这是由于微结构对合金化学组成的甚至小波动和热-机械处理条件和最终退火的高敏感性。
发明内容
本发明涉及晶粒非取向的电炉钢带材的制造方法,其中通过冷轧获得的整体厚度压下率不小于80%。本发明的带材优选用于制备发电机的铁磁芯。
因此,本发明的一个目的是制备晶粒非取向的电炉钢带材的方法,其中所述钢包括以下组分,以重量百分数计:
Si 1.8%-6%
Al 0.2%-4%
Mn 0.2%-3%
S 0.0005%-0.01%
N 0.001%-0.01%
C 0.001%-0.01%
Mn%/S%>100且Al%/N%>200,
浇铸和固化之后为板坯形式,该板坯的厚度Sp等于或大于20mm,该板坯进行以下热-机械处理:
-任选地,在1000-1330℃的温度下加热所述板坯;
-将所述板坯热轧至1300-700℃的温度,总体压下率为70%-99%,得到热轧板材(NAC),其厚度为2.5mm-12.0mm,
-根据以下顺序对之前的热轧板材进行冷轧,总体压下率不小于80%:
a)在低于300℃的温度下进行第一步压下率为20%-70%的冷轧(LAF),
b)在700℃-1100℃的温度下进行中间退火软化,持续时间10-900s,
c)进行至少第二步压下率为20%-70%的冷轧(LAF),如果重复所述第二步骤,在重复所述第二步骤之前任选地在700℃-1100℃的温度下再进行中间退火软化,持续时间10-900s。
-以连续方式对冷轧板材在800-1200℃温度下进行最后的退火,持续时间10-900s,用于重结晶和晶体生长。
在一种优选实施方式中,所述钢还包含:Sn 0.01%-0.15%,或更优选还包含:Ti0.001%-0.004%,Cu 0.01%-0.20%,Nb 0.001%-0.004%,Cr 0.02%-0.20%。
在另一个优选的实施方式中,所述钢中存在Ti,V,Zr,Nb,Mo,Ta,W,Cr,Co,Ni,Cu中的一种或多种元素,且它们的重量%之和小于1.5%,且包含P,Sb,Sn,Pb,Bi,Se中一种或多种元素,它们的含量的重量%之和小于1.0%。
在本发明的一个方面,所述方法步骤如下:
所述冷轧步骤是单向的并通过依次排列的一个或多个轧制机架获得,优选通过将浓度为1-8体积%的水包油乳液插入层叠柱筒之间作为润滑剂进行。
b)所述冷轧之后的中间退火软化连续进行。
在本发明一个优选的实施方式中,所述以板坯形式固化的钢的厚度Sp<120mm,带材热轧(NAC)至最终厚度以如下方式进行:相对的热施加的压下率(D_热;T>700℃)和相对的冷施加的变形(D_冷;T<300℃)满足如下关系:
D_热*D_冷*>0.77
其中
D_热=(sp板坯-sp NAC)/sp板坯
D_冷=(sp NAC-sp LAF)/sp NAC。
最后一次冷轧之后的板材更优选具有0.15-0.50mm的最终厚度。
在优选的一个方面,最终的连续重结晶退火和晶粒生长在一个或多个退火室中进行,温度为850-1200℃,持续时间5-90秒。
在另一个优选的方面,所述第一冷轧使用直径为150-350mm的加工柱筒进行,板材温度为30-300℃,并向所述板材施加小于500N/mm2的轧制强度。
本发明的另一个目的是可根据所述方法获得的非取向的晶粒电炉钢带材,其厚度(sp)为0.15-1.0mm,在1.5特斯拉和50Hz条件下测量的磁损耗(P15)小于或等于以下关系式的结果:
P15(w/kg)<[4,6*(sp)^2-1.6*(sp)+2]。
本发明的方法能克服现有制备方法的特性限制,特别是关于制备的合金中使用的硅和铝的最大含量以及严格可靠地控制制备具有优良磁性和机械特性的晶粒非取向的磁性带材时产品的晶体微结构。
本发明提出了一种基于起始热带材的高冷轧度(>80%)的制备循环,所述带材具有与常规工业方法使用的典型厚度(通常<2.5mm)相比更大的厚度(2.5mm–12mm)。
该处理由于冷变形产生极大量的网状缺陷至临界限制密度,这样在带材之后的退火中,轧制产品的结构中非常均匀的重结晶过程被激活。重结晶退火之后获得的晶粒结构有助于钢的机械加工性,所述钢具有与常规制备的那些钢相比更高的硅和铝含量:Si高达6%且Al高达4%。此外,在最终退火过程(跟在最终冷轧步骤之后)中,获得设计的最终微结构的更可靠的结果(晶粒尺寸和排列);所述微结构的演变对于采用的非金属内含物含量和热处理条件的波动的敏感性较低,能获得具有高性能和再现性的多种级别的产品所需的磁性特征。
现有技术包括将整体冷变形进一步分为多个阶段与中间退火交替进行,从而从改进磁性特性的角度出发改进重结晶和晶体排列的均匀性,不能获得本发明所述的结果。
出于该目的必须将热带材的厚度增加至超过2.5mm,并施用大于80%的整体冷轧压下率,而不对热带材进行预先退火。
该方法对于由固化形式开始的整体压下率受限的情况(例如薄板坯)是特别有效的,特别是能生产具有良好定性特征和性能的磁性带材,优于常规方法。
本发明的另一个目的是所述方法的一个特定变化形式,基于具有大厚度的板材的热处理,它能压缩生产循环并降低晶粒非取向带材的生产成本,它包括以连续循环的方式实现以下基本方法步骤:
展开所述板材,
使用一个或多个呈一条线排列的轧制机架进行冷变形;
对冷轧板材进行退火,
使用一个或多个呈一条线排列的轧制机架进行进一步冷轧;
再卷绕所述板材,送至后续处理步骤。
上述冷轧压缩和退火使得制备成本显著降低,使所提出的方法与目前使用的方法相比更经济,同时保证了极高的产品质量。
在本发明中已可确定特定的工艺条件,这是现有技术未知的,这能得到具有优良电学特征和/或磁性特征的产品,保证最终结果的高度可靠性以优良的产品功能特征的稳定性和高生产性能。
本发明已总体上描述了这一点,现在,结合以下本发明示例性和非限制性的实施例,说明书将给出其实施方式,以更好地描述本发明的目的、特征、优点和施用模式。
实施例1
制备Fe-Si合金,其硅含量为3.9%,铝1.1%,锰1.2%,硫0.002%,氮0.005%和碳0.003%。将所述钢浇铸成板坯,厚度为50mm,直接热轧为6.0mm厚度,厚度压下率88%。轧制所述板坯的起始温度控制在1160-1140℃的范围内,而最终轧制温度范围为900–860℃。然后将热轧产品进行冷轧直至厚度为2.7mm,第一次冷轧的压下率为55%,并在750℃的温度连续退火30秒并空气冷却。然后对这样得到的轧制产品进行打磨、酸洗并冷轧至厚度为0.50mm,第二次冷轧的压下率大于81%,总的冷轧压下率大于91%,之后在干燥的氮气-氢气气氛中在1020℃的温度下退火60秒。
然后对这样得到的带材根据UNI EC 10106标准通过磁性测试进行表征。所有测试的轧制产品满足以下磁性特征:
B5000(磁性极化)≥1.65特斯拉
P10(感应为1.0特斯拉和50Hz时的磁损耗)≤0.75W/Kg
P15(感应为1.5特斯拉和50Hz时的磁损耗)≤1.78W/Kg
实施例2
制备具有不同组成的四种钢材,如表1所示。由其制备一些厚度为40mm的实验板坯。
然后对板坯使用以下步骤进行热轧:加热至最高1200℃,保持15分钟,然后热轧至厚度为5.0mm,压下率为87.5%。
表1
然后将热轧产品进行冷轧直至厚度为2.5mm,使用5%水-油乳液作为润滑剂,在950℃的温度下连续退火20秒并空气冷却。然后对这样得到的轧制产品进行打磨、酸洗和冷轧至厚度为0.50,总的冷轧压下率为90%,之后在干燥的氮气-氢气气氛中在1000℃的温度下退火40秒。
表2显示根据本发明的说明书处理的四种不同实验钢材样品的测试的磁性特征。B5000是5000A/m的施加磁场中以特斯拉测量的磁感应,P1O和P15是工作感应分别为1.0和1.5特斯拉和50Hz时以瓦特每千克测量的磁损耗。
表2
实施例3
包含3.8重量%硅,0.004重量%碳,2.1重量%锰,0.01重量%铜,1.2重量%铝,0.006%重量硫,0.005重量%氮,0.002重量%钛,0.001重量%铌,0.09重量%锡,0.02%重量铬的钢材固化为板坯形式,厚度为70mm,生产的系列工件在1150℃的温度下加热约20分钟,并冷轧至不同的厚度(NAC厚度);之后,用可逆辊将其冷轧,使用3%水-油乳液作为润滑剂,如表3所示,其中记录了单次测试中第一步冷轧之后的厚度值(1st LAF厚度)。然后对所有的轧制产品在980℃温度下在干燥氮气气氛中进行退火60秒。然后对退火的产品进行第二冷轧阶段,至不同的最终厚度(最终厚度)。
表3
表3中,用D_热标记的栏表示热压下率,表示为D_热=(板坯厚度-NAC厚度)/板坯厚度,D_冷栏表示施加的总压下量,表示为D_冷=(NAC厚度-LAF最终厚度)/NAC厚度,以及H*C栏涉及产品H*C=D_热*D_冷。在循环一栏中,inv=根据本发明。
轧制至最终厚度的多种轧制产品在干燥氢气中进行退火工艺。
然后对实验中所有的轧制产品进行取样并进行磁性表征。获得的结果示于表3中。可以看出通过本发明的教导(inv)可以获得具有良好磁性特征的产品,优于不采用本发明教导的方式处理的那些情况。
实施例4
制备具有不同组成的四种钢材,如表4所示。由其制备一些厚度为200mm的实验板坯。
对板坯使用以下步骤进行热轧:加热至最高1,250℃,保持20分钟,然后热轧至厚度为4.0mm,压下率为98%。
表4
然后对这样生产的轧制带材进行冷轧至厚度为2mm,在氮气气氛下900℃退火60秒,然后冷轧至厚度为0.50mm,最后在干燥氢气中在1040℃退火20秒。然后对这样加工的板材进行磁性表征,结果示于表5。
表5

Claims (10)

1.一种制备晶粒非取向的电炉钢带材的方法,其中所述钢包含以下组分,以重量百分数计:
Si 1.8%-6%
Al 0.2%-4%
Mn 0.2%-3%
S 0.0005%-0.01%
N 0.001%-0.01%
C 0.001%-0.01%
Mn%/S%>100且Al%/N%>200,
浇铸和固化之后为板坯形式,该板坯厚度Sp等于或大于20mm,该板坯进行以下热-机械处理:
-任选地,在1000-1330℃的温度下加热所述板坯;
-将所述板坯热轧至1300℃-700℃,总体压下率为70%-99%,得到热轧板材(NAC),该板材的厚度为2.5mm-12.0mm,
-按照以下顺序对之前的热轧板材进行冷轧,总体压下率不小于80%:
a)在低于300℃的温度下进行第一步的冷轧(LAF),压下率为20%-70%,
b)在700℃-1100℃的温度下进行中间退火软化,持续时间10-900s,
c)进行至少第二步压下率为20%-70%的冷轧(LAF),如果重复进行所述第二步骤,在重复进行所述第二步骤之前任选地在700℃-1100℃的温度下再进行中间退火软化,持续时间10-900s,
-以连续方式对冷轧板材在800-1200℃温度下进行最后的退火,持续时间10-900s,用于重结晶和晶粒生长。
2.如权利要求1所述的方法,其特征在于,所述钢进一步包含以下组分,以重量%计:
Sn 0:01%-0:15%。
3.如权利要求2所述的方法,其特征在于,所述钢进一步包含以下组分,以重量%计:
Ti 0.001%-0.004%
Cu 0:01%-0:20%
Nb 0.001%-0.004%
Cr 0.02%-0:20%。
4.如权利要求3所述的方法,其特征在于,所述钢中存在Ti,V,Zr,Nb,Mo,Ta,W,Cr,Co,Ni,Cu中的一种或多种元素,它们的重量%之和小于1.5%,且所述钢中存在P,Sb,Sn,Pb,Bi,Se中的一种或多种元素,它们含量的重量%之和小于1.0%。
5.如前述权利要求中任一项所述的方法,其中:
a)所述冷轧步骤是单向的并通过依次排列的一个或多个轧制机架获得,优选通过将浓度为1-8体积%的水包油乳液插入层叠柱筒之间作为润滑剂进行;
b)所述冷轧之后的中间退火软化连续进行。
6.如前述权利要求中任一项所述的方法,其中,所述板坯形式的固化的钢的厚度Sp<120mm,带材热轧(NAC)至最终厚度以如下方式进行:相对的热施加的压下率(D_热;T>700℃)和相对的冷施加的变形(D_冷;T<300℃)满足如下关系:
D_热D_冷*>0.77
其中
D_热=(sp板坯-sp NAC)/sp板坯
D_冷=(sp NAC-sp LAF)/sp NAC。.
7.如前述权利要求中任一项所述的方法,其中,最后一次冷轧之后的板材的最终厚度为0.15-0.50mm。
8.如前述权利要求中任一项所述的方法,其中,最终的连续重结晶退火和晶粒生长在一个或多个退火室中进行,温度为850-1200℃,持续时间5-90秒。
9.如前述权利要求中任一项所述的方法,其中,所述第一冷轧使用直径为150-350mm的加工柱筒进行,板材温度为30-300℃,并向所述板材施加小于500N/mm2的轧制强度。
10.如前述权利要求所述的方法制备得到的非取向的晶粒电炉钢带材,其特征在于,所述钢带材的厚度(sp)为0.15-1.0mm,在1.5特斯拉和50Hz条件下测量的磁损耗(P15)小于或等于以下关系式的结果:P15(w/kg)<[4,6*(sp)^2-1.6*(sp)+2]。
CN201580023936.9A 2014-05-08 2015-05-07 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法 Pending CN107002160A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITRM2014A000231 2014-05-08
ITRM20140231 2014-05-08
PCT/IB2015/053323 WO2015170271A1 (en) 2014-05-08 2015-05-07 Process for the production of grain non- oriented electric steel strip, with an high degree of cold reduction

Publications (1)

Publication Number Publication Date
CN107002160A true CN107002160A (zh) 2017-08-01

Family

ID=51494420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580023936.9A Pending CN107002160A (zh) 2014-05-08 2015-05-07 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法

Country Status (5)

Country Link
US (1) US10337080B2 (zh)
EP (1) EP3140430B1 (zh)
CN (1) CN107002160A (zh)
PL (1) PL3140430T3 (zh)
WO (1) WO2015170271A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699270A (zh) * 2018-02-02 2020-09-22 蒂森克虏伯钢铁欧洲股份公司 能够但非强制再退火的电工带材
CN112840041A (zh) * 2018-10-15 2021-05-25 蒂森克虏伯钢铁欧洲股份公司 用于制造具有中间厚度的no-电工带的方法
CN114616353A (zh) * 2019-11-15 2022-06-10 日本制铁株式会社 无方向性电磁钢板

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6903996B2 (ja) * 2017-03-28 2021-07-14 日本製鉄株式会社 無方向性電磁鋼板
DE102017208146B4 (de) * 2017-05-15 2019-06-19 Thyssenkrupp Ag NO-Elektroband für E-Motoren
JP7107113B2 (ja) * 2018-09-10 2022-07-27 日本製鉄株式会社 圧延方法
KR102105530B1 (ko) * 2018-09-27 2020-04-28 주식회사 포스코 무방향성 전기강판 및 그 제조방법
EP3875624A4 (en) * 2018-10-30 2022-08-31 NIPPON STEEL Stainless Steel Corporation SHEET MADE OF AUSTENITIC STAINLESS STEEL
WO2020094230A1 (de) 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Elektroband oder -blech für höherfrequente elektromotoranwendungen mit verbesserter polarisation und geringen ummagnetisierungsverlusten
KR102178341B1 (ko) * 2018-11-30 2020-11-12 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법
CN112430776B (zh) * 2019-08-26 2022-06-28 宝山钢铁股份有限公司 一种磁各向异性小的无取向电工钢板及其制造方法
EP4060059A4 (en) * 2019-11-15 2023-01-18 Nippon Steel Corporation PROCESS FOR MANUFACTURING NON-ORIENTED ELECTROMAGNETIC STEEL SHEET
US20220356549A1 (en) * 2019-11-15 2022-11-10 Nippon Steel Corporation Non-oriented electrical steel sheet
CN114341383B (zh) * 2019-11-15 2023-01-10 日本制铁株式会社 无方向性电磁钢板的制造方法
CZ2021110A3 (cs) * 2021-03-09 2022-02-23 Bilstein Gmbh & Co. Kg Způsob výroby magneticky měkkého polotovaru z kovu

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078270A (zh) * 1991-10-22 1993-11-10 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制法
CN1380908A (zh) * 2000-06-19 2002-11-20 日本钢管株式会社 无取向电工钢板及其制造方法
CN1665943A (zh) * 2002-05-08 2005-09-07 Ak资产公司 非取向电工钢带的连铸方法
JP2011084761A (ja) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法
JP4724431B2 (ja) * 2005-02-08 2011-07-13 新日本製鐵株式会社 無方向性電磁鋼板
CN102453838A (zh) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种较高磁感的高强度无取向电工钢及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US676412A (en) 1901-02-14 1901-06-18 Alfonso Bouchey Hay or grain stacker.
JP3178270B2 (ja) 1994-10-06 2001-06-18 住友金属工業株式会社 無方向性電磁鋼板の製造方法
DE10153234A1 (de) 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Für die Herstellung von nichtkornorientiertem Elektroblech bestimmtes, warmgewalztes Stahlband und Verfahren zu seiner Herstellung
CN1796015A (zh) 2004-12-28 2006-07-05 宝山钢铁股份有限公司 薄板坯连铸连轧生产冷轧无取向电工钢的方法
KR100973627B1 (ko) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 무방향성 전자 강판 및 그 제조 방법
KR101453224B1 (ko) 2010-08-04 2014-10-22 신닛테츠스미킨 카부시키카이샤 무방향성 전자기 강판의 제조 방법
CN103290190A (zh) * 2012-03-02 2013-09-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078270A (zh) * 1991-10-22 1993-11-10 浦项综合制铁株式会社 磁性能优良的无取向电工钢板及其制法
CN1380908A (zh) * 2000-06-19 2002-11-20 日本钢管株式会社 无取向电工钢板及其制造方法
CN1665943A (zh) * 2002-05-08 2005-09-07 Ak资产公司 非取向电工钢带的连铸方法
JP4724431B2 (ja) * 2005-02-08 2011-07-13 新日本製鐵株式会社 無方向性電磁鋼板
JP2011084761A (ja) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法
CN102453838A (zh) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种较高磁感的高强度无取向电工钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李小玉等: "《轧制工艺润滑》", 31 August 1981, 冶金工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699270A (zh) * 2018-02-02 2020-09-22 蒂森克虏伯钢铁欧洲股份公司 能够但非强制再退火的电工带材
US11788168B2 (en) 2018-02-02 2023-10-17 Thyssenkrupp Steel Europe Ag Electrical steel strip that can be but doesn't have to be reannealed
CN112840041A (zh) * 2018-10-15 2021-05-25 蒂森克虏伯钢铁欧洲股份公司 用于制造具有中间厚度的no-电工带的方法
CN112840041B (zh) * 2018-10-15 2023-01-06 蒂森克虏伯钢铁欧洲股份公司 用于制造具有中间厚度的no-电工带的方法
CN114616353A (zh) * 2019-11-15 2022-06-10 日本制铁株式会社 无方向性电磁钢板
CN114616353B (zh) * 2019-11-15 2023-08-11 日本制铁株式会社 无方向性电磁钢板

Also Published As

Publication number Publication date
US20170044641A1 (en) 2017-02-16
WO2015170271A1 (en) 2015-11-12
PL3140430T3 (pl) 2021-08-30
US10337080B2 (en) 2019-07-02
EP3140430A1 (en) 2017-03-15
EP3140430B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
CN107002160A (zh) 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法
KR101404101B1 (ko) 고 자기유도를 가지는 무방향성 규소강의 제조 방법
JP6457951B2 (ja) アモルファス微細構造、部分的アモルファス微細構造又は微結晶微細構造を備えた平鋼製品を製造するための方法及びこのような特性を備えた平鋼製品
EP2147127B8 (en) Process for the production of a grain oriented magnetic strip
JP2013525596A5 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
BR112017001223B1 (pt) chapa de aço eletromagnética não orientada
CN104404396A (zh) 一种无需常化的高磁感无取向硅钢及用薄板坯生产方法
CN1242077C (zh) 用于生产晶粒定向电工钢带的工艺
CN104178617A (zh) 控制双辊薄带连铸无取向硅钢磁性能的快速热处理方法
JP2002514269A (ja) 低イヤリングアルミニウム合金製造のための連続的鋳造工程
JP2008127659A (ja) 異方性の小さい無方向性電磁鋼板
CN104136636B (zh) 用于制备具有高水平冷轧收缩率的晶粒取向的磁性片材的方法
BR112014017264B1 (pt) partes estampadas formadas de um aço elétrico e métodos de fabricação das mesmas
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
CN102834528B (zh) 晶粒取向磁性片材的生产方法
Zhou et al. Relationship between Austenite‐Stabilizing Elements and Austenite Fraction in Near‐Rapidly Solidified Fe–Mn–Al–C Lightweight Steel
CN100348741C (zh) 在生产晶粒取向电工钢带中控制抑止剂分布的方法
MX2022001811A (es) Placa de acero electrico no orientado y metodo de fabricacion de la misma.
EP0449289A2 (en) Method of manufacturing high permeability Fe-Ni system alloy
RU2637848C1 (ru) Способ производства высокопроницаемой анизотропной электротехнической стали
WO2014046181A1 (ja) マルエージング鋼コイルの製造方法
US20220154318A1 (en) High strength alloy steels and methods of making the same
TW202436641A (zh) 無方向性電磁鋼板
JP6872786B2 (ja) 異方性が小さく経年変化の少ない低熱膨張鋳鋼及び鍛鋼品
RU2208055C2 (ru) Способ получения кристаллографической кубической ориентационной текстуры рекристаллизационного отжига в холоднокатаной железокремнистой текстурованной стали и сплавах

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170801