Nothing Special   »   [go: up one dir, main page]

CN106777595B - A kind of method of definite ceramic matric composite nonlinear vibration response - Google Patents

A kind of method of definite ceramic matric composite nonlinear vibration response Download PDF

Info

Publication number
CN106777595B
CN106777595B CN201611092274.3A CN201611092274A CN106777595B CN 106777595 B CN106777595 B CN 106777595B CN 201611092274 A CN201611092274 A CN 201611092274A CN 106777595 B CN106777595 B CN 106777595B
Authority
CN
China
Prior art keywords
msub
mrow
epsiv
stress
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611092274.3A
Other languages
Chinese (zh)
Other versions
CN106777595A (en
Inventor
宋迎东
高希光
陈晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201611092274.3A priority Critical patent/CN106777595B/en
Publication of CN106777595A publication Critical patent/CN106777595A/en
Application granted granted Critical
Publication of CN106777595B publication Critical patent/CN106777595B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a kind of method of definite ceramic matric composite nonlinear vibration response, the described method includes:Test obtains the stress-strain diagram of ceramic matric composite CMCs in advance;The first formula, the second formula and the 3rd formula is utilized respectively to be fitted stress-strain diagram, and according to the magnitude relationship between the location of upper stress-strain state and parameters, the stress-strain diagram being fitted in subring;Each stress-strain diagram that above-mentioned fitting is obtained is applied in the finite element model of CMCs, to determine the vibratory response of CMCs.The method of definite ceramic matric composite nonlinear vibration response provided by the invention, stress-strain diagram can be fitted under arbitrary plus unloading, and finite element model is combined, it can realize the calculating process of CMCs nonlinear vibration responses, improve the efficiency of calculating.

Description

Method for determining nonlinear vibration response of ceramic matrix composite
Technical Field
The invention belongs to the technical field of composite material mechanical analysis, and particularly relates to a method for determining nonlinear vibration response of a ceramic matrix composite material.
Background
The Ceramic Matrix Composite (CMCs) has excellent high-temperature mechanical properties and is a key material for designing and manufacturing high-temperature structures. However, the stiffness of the CMCs changes with the change of the external load level, and a significant hysteresis loop exists under the action of cyclic load, so that the response of the CMCs under the vibration load is greatly different from that of a linear elastic material. The variable stiffness and the hysteresis characteristics can cause the amplitude-frequency characteristic curve of the CMCs to jump under a specific load, the jump of the amplitude-frequency characteristic curve is very harmful to the structure, and if the phenomenon cannot be accurately predicted and calculated, the structure can suddenly resonate under a vibration load to cause structural damage.
The existing research mainly focuses on damping test and calculation of CMCs and elastic vibration calculation of beams and plates of CMCs, but lacks on research on nonlinear vibration of the CMCs and mainly lacks on a constitutive model capable of describing the CMCs under any loading and unloading condition. Some scholars establish a CMCs constitutive model by using a mesomechanics method and a finite element method, and are not suitable for nonlinear vibration calculation of the CMCs structure due to overlarge calculated amount.
Disclosure of Invention
The invention aims to provide a method for determining the nonlinear vibration response of a ceramic matrix composite material.
To achieve the above objects, the present invention provides a method for determining the nonlinear vibrational response of a ceramic matrix composite material, the method comprising: testing in advance to obtain a stress-strain curve of the ceramic matrix composite CMCs; the stress-strain curve comprises a compression section, a tension section and at least one loading and unloading cycle; dividing the stress-strain curve into a linear section, a nonlinear section and a hysteresis loop; wherein the nonlinear section includes a transition region and a second linear region, the hysteresis loop includes a main loop and a sub loop of uniform shape, and a division between the linear section and the nonlinear sectionThe boundary point is (epsilon)pp) The boundary point of the transition region and the second linear region is (epsilon)ss) The minimum stress strain point of the hysteresis loop is (epsilon)cc) The current stress-strain state of the CMCs is: (tε,tσ) last stress-strain state of (t-Δtε,t-Δtσ) of the stress-strain curve, the historical maximum strain in the stress-strain curve being εmax(ii) a When epsilonmaxLess than epsilonpTime or epsilonmaxGreater than epsilonpAnd istEpsilon is less than epsiloncFitting a stress-strain curve of the CMCs according to a first formula, wherein the first formula comprisestEpsilon and a predetermined stress E11(ii) a When epsilonmaxIs greater than or equal to epsilonpAnd istEpsilon is greater than epsilonmaxFitting a stress-strain curve of the CMCs according to a second formula, wherein the second formula comprises the slope E of the second linear segment11tε、εs、σsAnd presetting curve parameters; when epsilonmaxIs greater than or equal to epsilonpAnd epsilonctε<εmaxFitting a stress-strain curve on the main ring according to a third formula; according to the position of the last stress-strain state andtε andt-Δtfitting a stress-strain curve on the sub-ring according to the magnitude relation of epsilon; and applying each stress-strain curve obtained by fitting to a finite element model of the CMCs to determine the vibration response of the CMCs.
Further, the first formula is:
tσ=E11·tε
wherein,tσ denotes the stress in the current stress-strain state, E11The pre-set stress is represented by the pre-set stress,tepsilon represents the strain in the current stress-strain state.
Further, the second formula is:
wherein,tσ denotes the stress in the current stress-strain state, c1、c2、c3、c4、c5Representing said predetermined curve parameter, E11Represents the slope, ε, of the second linear segmentpRepresenting the strain at the point of demarcation between the linear and non-linear sections,tε represents the strain in the current stress-strain regime, εsRepresenting the strain, σ, at the point of demarcation of the transition region and the second linear regionsRepresenting the stress at the point of demarcation of the transition region and the second linear region.
Further, the third formula is:
wherein p isdiAnd puiCurve parameters representing the unloading and loading paths, respectively, i 1,2, 4,tsigma denotes the stress in the current stress-strain state,tepsilon represents the strain in the current stress-strain state,t-Δtepsilon represents the strain in the last stress-strain state.
Further, according to the position of the last stress strain state andtε andt-Δtthe fitting of the stress-strain curve on the subring specifically comprises the following steps:
when the last stress-strain state is in the first preset position andtepsilon is less thant-ΔtWhen epsilon, the stress-strain curve on the sub-ring is fitted according to the following formula:
tσ=qd1+qd2 tε+qd3 tε2+qd4 tε3
wherein,
tsigma denotes the stress in the current stress-strain state,tε represents the strain in the current stress-strain regime, pdiCurve parameters representing the unloading path, i 1,2, 4, epsiloncRepresenting the strain, σ, corresponding to the minimum stress-strain point of the hysteresis loopcRepresenting the stress, epsilon, corresponding to the minimum stress-strain point of said hysteresis loopmaxRepresenting the historical maximum strain, σ, in the stress-strain curvemaxRepresenting the historical maximum stress in the stress-strain curve,t-Δtepsilon represents the strain in the last stress-strain state,t-Δtσ represents the stress in the last stress-strain state;
when the last stress-strain state is in the second preset position andtepsilon is greater thant-ΔtWhen epsilon, the stress-strain curve on the sub-ring is fitted according to the following formula:
tσ=qu1+qu2 tε+qu3 tε2+qu4 tε3
wherein,
wherein p isuiCurve parameters representing the loading path, i 1,2, 4.
Therefore, the method can fit the stress-strain curve under any loading and unloading, and can realize the calculation process of the CMCs nonlinear vibration response by combining the finite element model, thereby improving the calculation efficiency.
Drawings
FIG. 1(a) is a first schematic diagram of fitting a stress-strain curve on a sub-ring in an embodiment of the present invention;
FIG. 1(b) is a second schematic diagram of fitting a stress-strain curve on a sub-ring in an embodiment of the present invention;
FIG. 2 is a schematic diagram of a nonlinear vibrational response in an embodiment of the present invention.
Detailed Description
In order to make those skilled in the art better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application, and it is obvious that the described embodiments are only a part of the embodiments of the present application, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art without any inventive work based on the embodiments in the present application shall fall within the scope of protection of the present application.
The present embodiments provide a method for determining the nonlinear vibrational response of a ceramic matrix composite material, the method comprising the following steps.
S1: testing in advance to obtain a stress-strain curve of the ceramic matrix composite CMCs; the stress-strain curve comprises a compression section, a tension section and at least one loading and unloading cycle.
In this embodiment, a stress-strain curve of the CMCs can be obtained by testing using a universal tester.
S2: dividing the stress-strain curve into a linear section, a nonlinear section and a hysteresis loop; wherein the nonlinear section comprises a transition region and a second linear region, the hysteresis loop comprises a main loop and a sub loop which are consistent in shape, and the dividing point between the linear section and the nonlinear section is (epsilon)pp) The boundary point of the transition region and the second linear region is (epsilon)ss) The minimum stress strain point of the hysteresis loop is (epsilon)cc) The current stress-strain state of the CMCs is: (tε,tσ) last stress-strain state of (t-Δtε,t-Δtσ) of the stress-strain curve, the historical maximum strain in the stress-strain curve being εmax
In this embodiment,. epsilon.p=2.0e-4,εc=-1.044e-3,εs=2.22e-3,σp=1.94e7,σc=-1.01e8,σs=1.20e8。
S3: when epsilonmaxLess than epsilonpTime or epsilonmaxGreater than epsilonpAnd istEpsilon is less than epsiloncFitting a stress-strain curve of the CMCs according to a first formula, wherein the first formula comprisestEpsilon and a predetermined stress E11
In this embodiment, the first formula is:
tσ=E11·tε
wherein,tσ denotes the stress in the current stress-strain state, E11The pre-set stress is represented by the pre-set stress,tepsilon represents the strain in the current stress-strain state.
S4: when epsilonmaxIs greater than or equal to epsilonpAnd istEpsilon is greater than epsilonmaxFitting a stress-strain curve of the CMCs according to a second formula, wherein the second formula comprises the slope E of the second linear segment11tε、εs、σsAnd presetting curve parameters.
In this embodiment, the second formula is:
wherein,tσ denotes the stress in the current stress-strain state, c1、c2、c3、c4、c5Representing the preset curve parameter, E'11Represents the slope, ε, of the second linear segmentpRepresenting the strain at the point of demarcation between the linear and non-linear sections,tε represents the strain in the current stress-strain regime, εsRepresenting the strain, σ, at the point of demarcation of the transition region and the second linear regionsRepresenting the stress at the point of demarcation of the transition region and the second linear region.
S5: when epsilonmaxIs greater than or equal to epsilonpAnd epsilonctε<εmaxFitting a stress-strain curve on the main ring according to a third formula; according to the position of the last stress-strain state andtε andt-Δtand e, fitting a stress-strain curve on the sub-ring according to the magnitude relation of the epsilon.
In this embodiment, when εmaxIs greater than or equal to epsilonpAnd epsilonctε<εmaxWhen the CMCs are in the stress-strain state at present, the CMCs fall on a hysteresis loop, and the starting point of a main loop is (epsilon)maxmax) And ends in (epsilon)cc). Referring to FIGS. 1(a) and 1(b), point A indicates (. epsilon.)maxmax) The point C represents (. epsilon.)cc). The main loop is composed of an unload path AC and a load path CA, so that the third formula can be:
wherein p isdiAnd puiCurve parameters representing the unloading and loading paths, respectively, i 1,2, 4,tsigma denotes the stress in the current stress-strain state,tepsilon represents the strain in the current stress-strain state,t - Δtepsilon represents the strain in the last stress-strain state.
The curve parameters of the unloading and loading paths may be obtained by fitting an experimental curve. In this embodiment, the parameters p and ε may be established using polynomialsmaxThe relationship (c) is as follows:
wherein, bdijAnd buijJ is 0,1,2.. is a curve parameter, which can be obtained by fitting an experimental curve.
In the present embodiment, if the last stress-strain state was at the first preset position point B, andtepsilon is less thant-ΔtEpsilon, then the point P of the current stress-strain state falls on the discharge path BC of the sub-ring, so that the expression for path BC can be obtained by transforming path AC. Specifically, the stress-strain curve on the sub-ring can be fitted according to the following formula:
tσ=qd1+qd2 tε+qd3 tε2+qd4 tε3
wherein,
tsigma denotes the stress in the current stress-strain state,tε represents the strain in the current stress-strain regime, pdiCurve parameter, i 1,2, representing the unloading path.,4,εcRepresenting the strain, σ, corresponding to the minimum stress-strain point of the hysteresis loopcRepresenting the stress, epsilon, corresponding to the minimum stress-strain point of said hysteresis loopmaxRepresenting the historical maximum strain, σ, in the stress-strain curvemaxRepresenting the historical maximum stress in the stress-strain curve,t-Δtepsilon represents the strain in the last stress-strain state,t-Δtσ represents the stress in the last stress-strain state.
If the last stress-strain state was at the second predetermined location point D, andtepsilon is greater thant-Δtε, the point P of the current stress-strain state may fall on the load path DA. In this way, an expression of the path DA may be obtained by transforming the main ring loading path CA, and in particular, a stress-strain curve on the sub-ring may be fitted according to the following formula:
tσ=qu1+qu2 tε+qu3 tε2+qu4 tε3
wherein,
wherein p isuiTo representThe curve parameters of the loading path, i, 1,2, 4.
S6: and applying each stress-strain curve obtained by fitting to a finite element model of the CMCs to determine the vibration response of the CMCs.
In this embodiment, a finite element model of the ceramic matrix composite may be established, each stress-strain curve obtained by the fitting may be applied to the finite element model of the CMCs, and a center difference method may be applied to obtain the nonlinear vibration response of the ceramic matrix composite, and the calculation result is shown in fig. 2. In fig. 2, the nonlinear vibration response can be represented by the magnitude of the displacement amount.
Therefore, the method can fit the stress-strain curve under any loading and unloading, and can realize the calculation process of the CMCs nonlinear vibration response by combining the finite element model, thereby improving the calculation efficiency.
The foregoing description of various embodiments of the present application is provided for the purpose of illustration to those skilled in the art. It is not intended to be exhaustive or to limit the invention to a single disclosed embodiment. As described above, various alternatives and modifications of the present application will be apparent to those skilled in the art to which the above-described technology pertains. Thus, while some alternative embodiments have been discussed in detail, other embodiments will be apparent or relatively easy to derive by those of ordinary skill in the art. This application is intended to cover all alternatives, modifications, and variations of the invention that have been discussed herein, as well as other embodiments that fall within the spirit and scope of the above-described application.
The embodiments in the present specification are described in a progressive manner, and the same and similar parts among the embodiments can be referred to each other, and each embodiment focuses on the differences from the other embodiments.
Although the present application has been described in terms of embodiments, those of ordinary skill in the art will recognize that there are numerous variations and permutations of the present application without departing from the spirit of the application, and it is intended that the appended claims encompass such variations and permutations without departing from the spirit of the application.

Claims (2)

1. A method for determining a non-linear vibrational response of a ceramic matrix composite, the method comprising:
testing in advance to obtain a stress-strain curve of the ceramic matrix composite CMCs; the stress-strain curve comprises a compression section, a tension section and at least one loading and unloading cycle;
dividing a stress-strain curve into a linear section, a nonlinear section and a hysteresis loop; wherein the nonlinear section comprises a transition region and a second linear region, the hysteresis loop comprises a main loop and a sub-loop with consistent shapes, and the dividing point between the linear section and the nonlinear section is(εpp),εpRepresenting the strain at the point of demarcation between the linear and non-linear segments; the boundary point between the transition region and the second linear region is (epsilon)ss),εsRepresenting the strain, σ, at the boundary point of the transition region and the second linear regionsRepresenting the stress at the interface of the transition region and the second linear region; the minimum stress strain point of the hysteresis loop is (epsilon)cc),εcRepresenting the strain, σ, corresponding to the minimum stress-strain point of the hysteresis loopcRepresenting the stress corresponding to the minimum stress strain point of the hysteresis loop; the current stress-strain state of the CMCs is (tε,tσ),tEpsilon represents the strain in the current stress-strain state,tσ represents the stress in the current stress-strain state; the last state of stress-strain ist-Δtε,t-Δtσ),t-ΔtEpsilon represents the strain in the last stress-strain state,t-Δtσ represents the stress in the last stress-strain state; historical maximum strain epsilon in stress-strain curvemax
1) When epsilonmaxLess than epsilonpTime or epsilonmaxGreater than epsilonpAnd is andtepsilon is less than epsiloncAnd fitting the stress-strain curve of the CMCs according to a first formula:
the first formula is:tσ=E11·tε
wherein,tσ denotes the stress in the current stress-strain state, E11Which represents a pre-set stress that is,tε represents the strain in the current stress-strain state;
2) when epsilonmaxIs greater than or equal to epsilonpAnd is andtepsilon is greater than epsilonmaxFitting a stress-strain curve of the CMCs according to a second formula;
the second formula is:
<mrow> <mmultiscripts> <mi>&amp;sigma;</mi> <mi>t</mi> </mmultiscripts> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>+</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mi>4</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>c</mi> <mi>5</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>4</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>p</mi> </msub> <mo>&lt;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>&lt;</mo> <msub> <mi>&amp;epsiv;</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>s</mi> </msub> <mo>+</mo> <msubsup> <mi>E</mi> <mn>11</mn> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>s</mi> </msub> <mo>&lt;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
wherein,tσ denotes the stress in the current stress-strain state, c1、c2、c3、c4、c5Represents a preset curve parameter, E'11Represents the slope, ε, of the second linear segmentpRepresenting the strain at the point of demarcation between the linear and non-linear segments,tε represents the strain in the current stress-strain regime, εsRepresenting the strain, σ, at the boundary point of the transition region and the second linear regionsRepresenting the stress at the interface of the transition region and the second linear region;
3) when epsilonmaxIs greater than or equal to epsilonpAnd is epsilonctε<εmaxAccording to the third publicationFitting a stress-strain curve on the main ring;
the third formula is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mmultiscripts> <mi>&amp;sigma;</mi> <mi>t</mi> </mmultiscripts> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>3</mn> </msup> </mrow> </mtd> <mtd> <mrow> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>&lt;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mmultiscripts> <mi>&amp;sigma;</mi> <mi>t</mi> </mmultiscripts> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>2</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>3</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msup> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mn>3</mn> </msup> </mrow> </mtd> <mtd> <mrow> <mmultiscripts> <mi>&amp;epsiv;</mi> <mi>t</mi> </mmultiscripts> <mo>&amp;GreaterEqual;</mo> <mmultiscripts> <mi>&amp;epsiv;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein p isdiAnd puiCurve parameters representing the unloading and loading paths, respectively, i 1,2, 4,tsigma denotes the stress in the current stress-strain state,tepsilon represents the strain in the current stress-strain state,t-Δtε represents the strain in the last stress-strain state;
according to the position of the last stress-strain state andtε andt-▽tfitting a stress-strain curve on the sub-ring according to the magnitude relation of epsilon;
and applying each stress-strain curve obtained by fitting to a finite element model of the CMCs to determine the vibration response of the CMCs.
2. The method for determining the nonlinear vibrational response of a ceramic matrix composite as in claim 1, wherein the position of the previous state of stress-strain is determined based on the position of the previous state of stress-strain andtε andt-Δtthe fitting of the stress-strain curve on the subring specifically comprises the following steps:
when the last stress-strain state is in the first preset position andtepsilon is less thant-ΔtWhen epsilon, the stress-strain curve on the sub-ring is fitted according to the following formula:
tσ=qd1+qd2 tε+qd3 tε2+qd4 tε3
wherein,
<mrow> <msub> <mi>q</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>s</mi> <mi>&amp;delta;</mi> </msub> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> </mrow> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mmultiscripts> <mi>&amp;sigma;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mmultiscripts> <mi>&amp;epsiv;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> </mrow> </mfrac> </mrow>
tsigma denotes the stress in the current stress-strain state,tε represents the strain in the current stress-strain regime, pdiCurve parameters representing the unloading path, i 1,2, 4, epsiloncRepresenting the strain, σ, corresponding to the minimum stress-strain point of the hysteresis loopcRepresenting the stress, epsilon, corresponding to the minimum stress-strain point of the hysteresis loopmaxRepresenting the historical maximum strain, σ, in the stress-strain curvemaxRepresenting the historical maximum stress in the stress-strain curve,t-Δtepsilon represents the strain in the last stress-strain state,t-Δtσ represents the stress in the last stress-strain state;
when the last stress-strain state is in the second preset position andtepsilon is greater thant-ΔtWhen epsilon, the stress-strain curve on the sub-ring is fitted according to the following formula:
tσ=qu1+qu2 tε+qu3 tε2+qu4 tε3
wherein,
<mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>3</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mn>3</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>2</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>3</mn> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msub> <mi>&amp;epsiv;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>q</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <msubsup> <mi>s</mi> <mi>&amp;epsiv;</mi> <mn>3</mn> </msubsup> </mfrac> <msub> <mi>p</mi> <mrow> <mi>u</mi> <mn>4</mn> </mrow> </msub> </mrow>
<mrow> <msub> <mi>s</mi> <mi>&amp;sigma;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mmultiscripts> <mi>&amp;sigma;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>max</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mi>max</mi> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>s</mi> <mi>&amp;epsiv;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mmultiscripts> <mi>&amp;epsiv;</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> </mmultiscripts> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>max</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>&amp;epsiv;</mi> <mi>max</mi> </msub> </mrow> </mfrac> </mrow>
wherein p isuiCurve parameters representing the loading path, i 1,2, 4.
CN201611092274.3A 2016-11-29 2016-11-29 A kind of method of definite ceramic matric composite nonlinear vibration response Active CN106777595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611092274.3A CN106777595B (en) 2016-11-29 2016-11-29 A kind of method of definite ceramic matric composite nonlinear vibration response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611092274.3A CN106777595B (en) 2016-11-29 2016-11-29 A kind of method of definite ceramic matric composite nonlinear vibration response

Publications (2)

Publication Number Publication Date
CN106777595A CN106777595A (en) 2017-05-31
CN106777595B true CN106777595B (en) 2018-05-22

Family

ID=58915726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611092274.3A Active CN106777595B (en) 2016-11-29 2016-11-29 A kind of method of definite ceramic matric composite nonlinear vibration response

Country Status (1)

Country Link
CN (1) CN106777595B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907263B (en) * 2018-09-17 2022-05-20 天津大学 Method for dividing cyclic stress response curve and application
CN109241694B (en) * 2018-11-16 2021-04-13 南京航空航天大学 Macro and micro integrated modeling method for woven ceramic matrix composite preform

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969423B2 (en) * 2003-09-30 2005-11-29 The Regents Of The University Of Michigan Lightweight strain hardening brittle matrix composites
US20140065433A1 (en) * 2010-01-06 2014-03-06 General Electric Company Coatings for dissipating vibration-induced stresses in components and components provided therewith
CN102495085A (en) * 2011-12-01 2012-06-13 昆明理工大学 Method for evaluating transition effect of interface reaction zone of metal matrix composite
CN104596846B (en) * 2014-12-25 2017-02-15 中国科学院力学研究所 Method for correcting elasticity modulus and stress-strain curve in metal material compression test
CN106055763B (en) * 2016-05-26 2019-08-13 清华大学苏州汽车研究院(相城) A kind of data processing method and device for the mechanics of materials

Also Published As

Publication number Publication date
CN106777595A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106886663B (en) Method and device for predicting bending fatigue life of gear
Svendsen A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism
van Doorn et al. Strand plasticity governs fatigue in colloidal gels
CN106777595B (en) A kind of method of definite ceramic matric composite nonlinear vibration response
Kawai et al. A general method for predicting temperature-dependent anisomorphic constant fatigue life diagram for a woven fabric carbon/epoxy laminate
Zhang et al. Nonlinear dynamical model of a soft viscoelastic dielectric elastomer
CN109829231A (en) A kind of propellant mechanics prediction technique based on CMDB propellant damage process
Akbarzadeh et al. Mechanical behaviour of functionally graded plates under static and dynamic loading
Yazdi Applicability of homotopy perturbation method to study the nonlinear vibration of doubly curved cross-ply shells
Grassl et al. A damage-plasticity model for the dynamic failure of concrete
Lange et al. A comparison of an explicit and an implicit transient strain formulation for concrete in fire
Hu et al. Two methods to broaden the bandwidth of a nonlinear piezoelectric bimorph power harvester
JP4299735B2 (en) Method for predicting and designing elastic response performance of rubber products
Liu et al. Failure modeling of folded dielectric elastomer actuator
Sun et al. Design and analysis of an extended buckled beam piezoelectric energy harvester subjected to different axial preload
Sause et al. Advanced compressed elastomer dampers for earthquake hazard reduction to steel frames
Izadifard et al. Application of displacement-based design method to assess the level of structural damage due to blast loads
Pun et al. On constitutive models for ratcheting of a high strength rail steel
Qi et al. Practical elasto-plastic damage model for dynamic loading and nonlinear analysis of Koyna concrete dam
Jiang et al. Effective flange width for composite box girder with corrugated steel webs
Meng et al. Bound-constrained optimization using Lagrange multiplier for a length scale insensitive phase field fracture model
Chu et al. TRANSIENT ANALYSIS OF FUNCTIONALLY GRADED NANOPLATES WITH POROSITIES TAKING INTO ACCOUNT SURFACE STRESS
Böl et al. Simulation of filled polymer networks with reference to the Mullins effect
Wang et al. Influencing factors of self-stressed concrete filled steel tube with segments bearing capacity
Joshi et al. Stress intensity factors for cracks emanating from a circular hole in a finite orthotropic lamina

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant