CN106605257A - 医学成像中具有空间和时间约束的界标检测 - Google Patents
医学成像中具有空间和时间约束的界标检测 Download PDFInfo
- Publication number
- CN106605257A CN106605257A CN201580030902.2A CN201580030902A CN106605257A CN 106605257 A CN106605257 A CN 106605257A CN 201580030902 A CN201580030902 A CN 201580030902A CN 106605257 A CN106605257 A CN 106605257A
- Authority
- CN
- China
- Prior art keywords
- frame
- candidate
- detection
- bounding box
- lobe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 86
- 238000002059 diagnostic imaging Methods 0.000 title claims description 15
- 230000002123 temporal effect Effects 0.000 title abstract description 3
- 210000003484 anatomy Anatomy 0.000 claims abstract description 68
- 210000003540 papillary muscle Anatomy 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 83
- 210000004115 mitral valve Anatomy 0.000 claims description 59
- 238000010801 machine learning Methods 0.000 claims description 40
- 238000002604 ultrasonography Methods 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 33
- 238000013175 transesophageal echocardiography Methods 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 7
- 230000001052 transient effect Effects 0.000 claims description 7
- 210000002435 tendon Anatomy 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 22
- 238000011897 real-time detection Methods 0.000 abstract description 6
- 230000009471 action Effects 0.000 description 50
- 238000003384 imaging method Methods 0.000 description 23
- 230000033001 locomotion Effects 0.000 description 20
- 239000000523 sample Substances 0.000 description 19
- 210000003698 chordae tendineae Anatomy 0.000 description 18
- 238000012360 testing method Methods 0.000 description 14
- 238000012549 training Methods 0.000 description 12
- 230000000747 cardiac effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000012800 visualization Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000002224 dissection Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000003238 esophagus Anatomy 0.000 description 3
- 210000003709 heart valve Anatomy 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 208000020128 Mitral stenosis Diseases 0.000 description 2
- 210000001765 aortic valve Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 208000006887 mitral valve stenosis Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241001269238 Data Species 0.000 description 1
- 208000003430 Mitral Valve Prolapse Diseases 0.000 description 1
- 206010027727 Mitral valve incompetence Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000013155 cardiography Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 208000005907 mitral valve insufficiency Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000003492 pulmonary vein Anatomy 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2136—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on sparsity criteria, e.g. with an overcomplete basis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
- G06F18/295—Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
- G06T7/0016—Biomedical image inspection using an image reference approach involving temporal comparison
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/143—Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/174—Segmentation; Edge detection involving the use of two or more images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/84—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using probabilistic graphical models from image or video features, e.g. Markov models or Bayesian networks
- G06V10/85—Markov-related models; Markov random fields
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/192—Recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references
- G06V30/194—References adjustable by an adaptive method, e.g. learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20132—Image cropping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20164—Salient point detection; Corner detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
Claims (21)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462009512P | 2014-06-09 | 2014-06-09 | |
US62/009512 | 2014-06-09 | ||
US201562128177P | 2015-03-04 | 2015-03-04 | |
US62/128177 | 2015-03-04 | ||
PCT/US2015/034618 WO2015191414A2 (en) | 2014-06-09 | 2015-06-08 | Landmark detection with spatial and temporal constraints in medical imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106605257A true CN106605257A (zh) | 2017-04-26 |
CN106605257B CN106605257B (zh) | 2019-10-11 |
Family
ID=53487426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580030902.2A Active CN106605257B (zh) | 2014-06-09 | 2015-06-08 | 医学成像中具有空间和时间约束的界标检测 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10297027B2 (zh) |
EP (1) | EP3152736B1 (zh) |
KR (1) | KR101908520B1 (zh) |
CN (1) | CN106605257B (zh) |
WO (1) | WO2015191414A2 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108510475A (zh) * | 2018-03-09 | 2018-09-07 | 南京索聚医疗科技有限公司 | 一种肌肉连续超声图像中肌肉肌腱结的测量方法及系统 |
CN109589170A (zh) * | 2017-09-28 | 2019-04-09 | 美国西门子医疗解决公司 | 医学成像中的左心耳闭合引导 |
CN110192893A (zh) * | 2018-02-27 | 2019-09-03 | 美国西门子医疗解决公司 | 量化超声成像的感兴趣区域放置 |
CN110914866A (zh) * | 2017-05-09 | 2020-03-24 | 哈特弗罗公司 | 用于在图像分析中进行解剖结构分割的系统和方法 |
CN111161371A (zh) * | 2019-10-25 | 2020-05-15 | 上海联影智能医疗科技有限公司 | 成像系统和方法 |
CN111611909A (zh) * | 2020-05-18 | 2020-09-01 | 桂林电子科技大学 | 多子空间域自适应人脸识别方法 |
CN112150370A (zh) * | 2019-06-28 | 2020-12-29 | 深圳市恩普电子技术有限公司 | 一种空间复合成像方法和装置 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160032586A (ko) * | 2014-09-16 | 2016-03-24 | 삼성전자주식회사 | 관심영역 크기 전이 모델 기반의 컴퓨터 보조 진단 장치 및 방법 |
US20170086789A1 (en) * | 2015-09-30 | 2017-03-30 | General Electric Company | Methods and systems for providing a mean velocity |
EP3416561B1 (en) | 2016-02-16 | 2020-05-13 | Brainlab AG | Determination of dynamic drrs |
US9928875B2 (en) * | 2016-03-22 | 2018-03-27 | Nec Corporation | Efficient video annotation with optical flow based estimation and suggestion |
US11151721B2 (en) | 2016-07-08 | 2021-10-19 | Avent, Inc. | System and method for automatic detection, localization, and semantic segmentation of anatomical objects |
US10657671B2 (en) | 2016-12-02 | 2020-05-19 | Avent, Inc. | System and method for navigation to a target anatomical object in medical imaging-based procedures |
JP6925824B2 (ja) * | 2017-02-28 | 2021-08-25 | キヤノンメディカルシステムズ株式会社 | 超音波診断装置、画像処理装置、及び画像処理プログラム |
US20190125295A1 (en) * | 2017-10-30 | 2019-05-02 | Siemens Medical Solutions Usa, Inc. | Cardiac flow detection based on morphological modeling in medical diagnostic ultrasound imaging |
KR101919847B1 (ko) * | 2018-01-18 | 2018-11-19 | 주식회사 뷰노 | 동일 피사체에 대하여 시간 간격을 두고 촬영된 영상 간에 동일 관심구역을 자동으로 검출하는 방법 및 이를 이용한 장치 |
EP3537447A1 (en) * | 2018-03-07 | 2019-09-11 | Koninklijke Philips N.V. | Display of medical image data |
KR102030533B1 (ko) * | 2018-03-27 | 2019-10-10 | 울산대학교 산학협력단 | 근감소증 분석지원을 위한 인공 신경망 기반의 인체 형태 분석법을 채용하는 영상 처리 장치 및 이를 이용한 영상 처리 방법 |
EP3549529A1 (en) * | 2018-04-05 | 2019-10-09 | Koninklijke Philips N.V. | Ultrasound imaging system and method |
US11147673B2 (en) | 2018-05-22 | 2021-10-19 | Boston Scientific Scimed, Inc. | Percutaneous papillary muscle relocation |
US10733474B2 (en) | 2018-07-03 | 2020-08-04 | Sony Corporation | Method for 2D feature tracking by cascaded machine learning and visual tracking |
GB201817238D0 (en) * | 2018-10-23 | 2018-12-05 | Univ Sheffield | Medical image processing |
EP3705049A1 (en) | 2019-03-06 | 2020-09-09 | Piur Imaging GmbH | Apparatus and method for determining motion of an ultrasound probe including a forward-backward directedness |
CN111192356B (zh) * | 2019-12-30 | 2023-04-25 | 上海联影智能医疗科技有限公司 | 感兴趣区域的显示方法、装置、设备和存储介质 |
CN115398202A (zh) * | 2020-04-22 | 2022-11-25 | 索尼集团公司 | 测量装置和成像控制方法 |
GB202017510D0 (en) * | 2020-09-29 | 2020-12-23 | Univ Oxford Innovation Ltd | Method of training a machine learning model, method of assessing ultrasound measurement data, method of determining information about an anatomical featur |
KR102481564B1 (ko) * | 2021-03-17 | 2022-12-29 | 재단법인 아산사회복지재단 | 의료영상 처리 장치와 그 의료영상 학습 방법 및 의료영상 처리 방법 |
EP4092621A1 (en) | 2021-05-21 | 2022-11-23 | Siemens Healthcare GmbH | Technique for assigning a perfusion metric to dce mr images |
EP4111982A1 (en) * | 2021-06-29 | 2023-01-04 | Koninklijke Philips N.V. | Systems and apparatuses for navigation and procedural guidance of laser leaflet resection under intracardiac echocardiography |
US20230054641A1 (en) * | 2021-08-20 | 2023-02-23 | Canon Medical Systems Corporation | Medical image processing apparatus and medical image processing method |
US20240013510A1 (en) * | 2022-07-06 | 2024-01-11 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for tracking groups of objects in medical images |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999938A (zh) * | 2011-03-09 | 2013-03-27 | 西门子公司 | 多模态体积图像的基于模型的融合的方法和系统 |
CN103294883A (zh) * | 2011-11-23 | 2013-09-11 | 西门子公司 | 用于针对经导管主动脉瓣植入进行介入规划的方法和系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009153600A (ja) | 2007-12-25 | 2009-07-16 | Toshiba Corp | 超音波診断装置、画像処理装置及びプログラム |
US8771189B2 (en) | 2009-03-18 | 2014-07-08 | Siemens Medical Solutions Usa, Inc. | Valve assessment from medical diagnostic imaging data |
US8682626B2 (en) | 2010-07-21 | 2014-03-25 | Siemens Aktiengesellschaft | Method and system for comprehensive patient-specific modeling of the heart |
US8532352B2 (en) | 2010-10-06 | 2013-09-10 | Siemens Aktiengesellschaft | Method and system for intraoperative guidance using physiological image fusion |
US9245091B2 (en) * | 2011-03-09 | 2016-01-26 | Siemens Aktiengesellschaft | Physically-constrained modeling of a heart in medical imaging |
US9687204B2 (en) | 2011-05-20 | 2017-06-27 | Siemens Healthcare Gmbh | Method and system for registration of ultrasound and physiological models to X-ray fluoroscopic images |
US9730643B2 (en) * | 2013-10-17 | 2017-08-15 | Siemens Healthcare Gmbh | Method and system for anatomical object detection using marginal space deep neural networks |
US10194888B2 (en) | 2015-03-12 | 2019-02-05 | Siemens Medical Solutions Usa, Inc. | Continuously oriented enhanced ultrasound imaging of a sub-volume |
US10835210B2 (en) | 2015-03-30 | 2020-11-17 | Siemens Medical Solutions Usa, Inc. | Three-dimensional volume of interest in ultrasound imaging |
-
2015
- 2015-06-08 KR KR1020177000509A patent/KR101908520B1/ko active IP Right Grant
- 2015-06-08 EP EP15731439.4A patent/EP3152736B1/en active Active
- 2015-06-08 WO PCT/US2015/034618 patent/WO2015191414A2/en active Application Filing
- 2015-06-08 US US15/317,353 patent/US10297027B2/en active Active
- 2015-06-08 CN CN201580030902.2A patent/CN106605257B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102999938A (zh) * | 2011-03-09 | 2013-03-27 | 西门子公司 | 多模态体积图像的基于模型的融合的方法和系统 |
CN103294883A (zh) * | 2011-11-23 | 2013-09-11 | 西门子公司 | 用于针对经导管主动脉瓣植入进行介入规划的方法和系统 |
Non-Patent Citations (2)
Title |
---|
B.MICHAEL KELM等: "Spine detection in CT and MR using iterated marginal space learning", 《MEDICAL IMAGE ANALYSIS》 * |
RAZVAN IOAN IONASEC*等: "Patient-Specific Modeling and Quantification of the Aortic and Mitral Valves From 4-D Cardiac CT and TEE", 《IEEE TRANSACTIONS ON MEDICAL IMAGING》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110914866B (zh) * | 2017-05-09 | 2024-04-30 | 哈特弗罗公司 | 用于在图像分析中进行解剖结构分割的系统和方法 |
CN110914866A (zh) * | 2017-05-09 | 2020-03-24 | 哈特弗罗公司 | 用于在图像分析中进行解剖结构分割的系统和方法 |
US12112483B2 (en) | 2017-05-09 | 2024-10-08 | Heartflow, Inc. | Systems and methods for anatomic structure segmentation in image analysis |
CN109589170A (zh) * | 2017-09-28 | 2019-04-09 | 美国西门子医疗解决公司 | 医学成像中的左心耳闭合引导 |
US11432875B2 (en) | 2017-09-28 | 2022-09-06 | Siemens Medical Solutions Usa, Inc. | Left atrial appendage closure guidance in medical imaging |
US12042232B2 (en) | 2017-09-28 | 2024-07-23 | Siemens Medical Solutions Usa, Inc. | Left atrial appendage closure guidance in medical imaging |
CN110192893A (zh) * | 2018-02-27 | 2019-09-03 | 美国西门子医疗解决公司 | 量化超声成像的感兴趣区域放置 |
CN108510475A (zh) * | 2018-03-09 | 2018-09-07 | 南京索聚医疗科技有限公司 | 一种肌肉连续超声图像中肌肉肌腱结的测量方法及系统 |
CN112150370A (zh) * | 2019-06-28 | 2020-12-29 | 深圳市恩普电子技术有限公司 | 一种空间复合成像方法和装置 |
CN112150370B (zh) * | 2019-06-28 | 2024-02-06 | 深圳市恩普电子技术有限公司 | 一种空间复合成像方法和装置 |
CN111161371A (zh) * | 2019-10-25 | 2020-05-15 | 上海联影智能医疗科技有限公司 | 成像系统和方法 |
CN111161371B (zh) * | 2019-10-25 | 2024-05-03 | 上海联影智能医疗科技有限公司 | 成像系统和方法 |
CN111611909A (zh) * | 2020-05-18 | 2020-09-01 | 桂林电子科技大学 | 多子空间域自适应人脸识别方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3152736A2 (en) | 2017-04-12 |
WO2015191414A3 (en) | 2016-02-25 |
US20170116748A1 (en) | 2017-04-27 |
CN106605257B (zh) | 2019-10-11 |
US10297027B2 (en) | 2019-05-21 |
WO2015191414A2 (en) | 2015-12-17 |
KR101908520B1 (ko) | 2018-10-16 |
KR20170016461A (ko) | 2017-02-13 |
EP3152736B1 (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106605257B (zh) | 医学成像中具有空间和时间约束的界标检测 | |
US12042232B2 (en) | Left atrial appendage closure guidance in medical imaging | |
US20220079552A1 (en) | Cardiac flow detection based on morphological modeling in medical diagnostic ultrasound imaging | |
Lang et al. | EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography | |
US10271817B2 (en) | Valve regurgitant detection for echocardiography | |
CN103997971B (zh) | 用于超声心动描记的自动成像平面选择 | |
CN102763135B (zh) | 用于自动分割和时间跟踪的方法 | |
CN102164545B (zh) | 产生用于审阅3d超声图像数据的标准协议 | |
EP1832233A1 (en) | Cardiac valve data measuring method and device | |
US8218845B2 (en) | Dynamic pulmonary trunk modeling in computed tomography and magnetic resonance imaging based on the detection of bounding boxes, anatomical landmarks, and ribs of a pulmonary artery | |
JP2021520939A (ja) | 適応的超音波スキャニング | |
CN111683600B (zh) | 用于根据超声图像获得解剖测量的设备和方法 | |
US11712224B2 (en) | Method and systems for context awareness enabled ultrasound scanning | |
JP2023502449A (ja) | 超音波撮像並びに関連する装置、システム、及び方法のためのインテリジェントな測定支援 | |
CN112447276A (zh) | 用于提示数据捐赠以用于人工智能工具开发的方法和系统 | |
CN106030657A (zh) | 医学4d成像中的运动自适应可视化 | |
Qamruddin et al. | Advances in 3D echocardiography for mitral valve | |
Muraru et al. | Physical and technical aspects and overview of 3D-echocardiography | |
Carnahan | Towards Patient Specific Mitral Valve Modelling via Dynamic 3D Transesophageal Echocardiography | |
US20240273726A1 (en) | Device Agnostic Systems and Methods for Acquiring and Analyzing Images from an Ultrasound Probe | |
US20240173007A1 (en) | Method and apparatus with user guidance and automated image setting selection for mitral regurgitation evaluation | |
Chen | QUiLT (Quantitative Ultrasound in Longitudinal Tissue Tracking): Stitching 2D images into 3D Volumes for Organ Health Monitoring | |
Vannelli et al. | How Accurately Does Transesophageal Echocardiography Identify the Mitral Valve? | |
Schneider | Semi-Automatic Delineation of the Mitral Valve from Clinical Four-Dimensional Ultrasound Imaging | |
Martín et al. | General Aspects of Transesophageal 3D-Echo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190118 Address after: American Pennsylvania Applicant after: SIEMENS MEDICAL SOLUTIONS USA, Inc. Applicant after: SIEMENS HEALTHCARE GmbH Address before: American Pennsylvania Applicant before: SIEMENS MEDICAL SOLUTIONS USA, Inc. Applicant before: Siemens AG |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190628 Address after: Erlangen, Germany Applicant after: SIEMENS HEALTHCARE GmbH Address before: American Pennsylvania Applicant before: SIEMENS MEDICAL SOLUTIONS USA, Inc. Applicant before: SIEMENS HEALTHCARE GmbH |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: German Phu F Haim Patentee after: Siemens Medical AG Country or region after: Germany Address before: Erlangen, Germany Patentee before: SIEMENS HEALTHCARE GmbH Country or region before: Germany |
|
TR01 | Transfer of patent right |