Nothing Special   »   [go: up one dir, main page]

CN1065683A - 经引入编码草酸氧化酶的基因生产抗桑条菌核病核盘霉攻击的植物 - Google Patents

经引入编码草酸氧化酶的基因生产抗桑条菌核病核盘霉攻击的植物 Download PDF

Info

Publication number
CN1065683A
CN1065683A CN92101989A CN92101989A CN1065683A CN 1065683 A CN1065683 A CN 1065683A CN 92101989 A CN92101989 A CN 92101989A CN 92101989 A CN92101989 A CN 92101989A CN 1065683 A CN1065683 A CN 1065683A
Authority
CN
China
Prior art keywords
plant
ssu
prpa
coding
sclerotinia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92101989A
Other languages
English (en)
Other versions
CN1051576C (zh
Inventor
乔治·弗雷西内
阿兰萨扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience SA
Original Assignee
Rhone Poulenc Agrochimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Agrochimie SA filed Critical Rhone Poulenc Agrochimie SA
Publication of CN1065683A publication Critical patent/CN1065683A/zh
Application granted granted Critical
Publication of CN1051576C publication Critical patent/CN1051576C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/03Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with oxygen as acceptor (1.2.3)
    • C12Y102/03004Oxalate oxidase (1.2.3.4)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Dentistry (AREA)
  • Virology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Agronomy & Crop Science (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Networks Using Active Elements (AREA)

Abstract

1)编码草酸氧化酶的DNA序列。
2)可用于使植物对抗由核盘霉真菌引起的病 害。它可由嵌合基因和含有编码序列的载体提供。
3)它可使植物提高对核盘霉真菌引起之病害的 抵抗力。

Description

本发明涉及编码草酸氧化酶的基因、由该基因编码的蛋白质,包含该基因的嵌合基因、以及将它们用于植物转化以赋予植物抗真菌病抗性的方法。
菌核病是影响大量双子叶植物的主要真菌病。其病原因子桑条菌核病核盘霉(Sclerotinia  Sclerotiorum)是表现有很少宿主特异性的多属主真菌。
该真菌可直接在植物的茎部攻击植物,也可在叶子上攻击然后播散到茎部,也可在花的头状花序水平上攻击植物。前两种情况,植物因营养供应中断而枯萎;后一种情况,则可导致花的萎缩进而损害收成。
该真菌可产生破坏被感染植物细胞壁的溶解酶,并促进其在植物中的发育繁殖。这些酶在致病性中起着重要但似乎并非足够的作用。这种真菌也产生草酸(Godov  et  al,1990)。这种草酸可降低被感染组织的pH值,进而促进溶解酶对细胞壁的水解作用。减少草酸的产生量或破坏之,将会延缓甚至抑制真菌的发育。
为产生“nos”抗性植物,可采用使草酸解毒的战略。破坏该酸将限制被攻击植物组织细胞内pH值的降低,从而使溶解酶只能在远离表现其活性和效力最适pH值之pH值条件下发挥作用。这样便可导致真菌致病性的降低。
可使用催化下列反应的草酸氧化酶实现本发明的目的:
可从各种植物通常是单子叶植物中分离草酸氧化酶(Pieta  et  al,1984),例如,可使用常规层析技术(Sephadex  G-75过滤凝胶和MonoQ离子交换凝胶,Pharmacia)从大麦中纯化这种蛋白质,按照下述比色法(Obzansky和Richardson,1983)监测酶促活性:
MBTH=3-甲基-2-苯并噻唑啉酮腙
DMA=N,N-二甲基α-丙氨酸
经过上述处理后,有可能于变性条件下在丙烯酰胺凝胶上纯化分子量为26,000道尔顿的蛋白质。用一部分纯化的草酸氧化酶制取兔抗草酸氧化酶抗体;将蛋白质的其余部分用来进行天然蛋白质(N末端)的序列分析,或者在溴化氰裂解后,对某些内部肽段作序列分析。所得结果如下:
N末端:SDPDPLQDF-VADLDGKAVSVNGH
内部肽No.2:HFQFNVGKTEAY
CDNA
将上述肽序列与得自蛋白质文库Swiss-Prot的资料相比较,就能够鉴定称为Germine并由Dratewka-kos等人于1989年公开的小麦蛋白质。完成实验,使我们能够确定作者公开的CDNA编码表现出草酸氧化酶活性的含201个氨基酸的蛋白质。涉及本专利申请中提到的其它实验描述部分,我们将使用作者在J.Biol,chem,264,4896-4900-文之图2中的核苷酸序列编号。
该CDNA的序列长度为1075个核苷酸,其中5′非转译区有85个残基,开放读码为672个核苷酸(从86-757位),3′非转译区有318个残基。
根据此CDNA序列推断的蛋白质序列与测定天然蛋白质得知的序列相比较,表明CDNA不仅编码成熟草酸氧化酶,而且还编码N末端部分中23个氨基酸的信号肽。因此草酸氧化酶最初是以前蛋白质的形式合成的(即信号肽加上成熟肽),后者须经过一个成熟过程,除去信号肽以释放出成熟的活性酶。
下文中,我们将使用编码前蛋白质的部分(核苷酸86到757),或只使用编码成熟蛋白质的部分(从155位到757位),在后一种情况下,AUG密码子(编码蛋氨酸)应位于ACC密码子(编码苏氨酸,即成熟蛋白质的第一个氨基酸)的前面。
桑条菌核病核盘霉对植物的攻击基本上是通过植物的茎,这样便有利于在叶绿体组织中或植物的其他不同组织中表达草酸氧化酶;在前一种情况下,可使用1,5-二磷酸核酮糖羧基酶小亚基(Helianthus  annuus)(SSuHa,Waksman  et  al,1987)的启动子,对于后一种情况,我们将使用普遍存在的花椰菜花叶病毒(其一部分是复制的、并被称为“双(CaMV″)的35SRNA(CaMV35S)的启动子。
例如可由下列元件来构造本发明的嵌合基因:
A、双CaMV启动子后面连接一部分编码前蛋白质(信号肽加上成熟肽)的草酸氧化酶cDNA及得自pTi37蓝曙红(nopaline)合成酶基因(Bevan  et  al,1983)的终止子“nos”。
B、双CaMV启动子后面接有部分只编码成熟蛋白质的草酸氧化酶cDNA,再后面是终止子“nos”。
C、基因与“A”相同,但以向日葵1,5-二磷酸核酮糖羧基酶小亚基(SSuHa)的启动子代替双CaMV启动子。
D、基因与“B”相同,但用SSuHa的启动子代替双CaMV启动子。
以使用土壤杆菌的系统或任何已知用于转化植物细胞的其他系统将各嵌合基因导入植物细胞中。由这些转化的细胞再生植物。这些植物均提高了对桑条菌核病核盘霉的抗性。
实施例1:制备两个编码序列
A、前蛋白质:它得自于用HindⅡ消化(在位置66处)的上述cDNA。其粘性末端用klenow聚合酶处理成平头。然后用NheⅠ消化(在位置811处)该DNA。
用SacⅠ平行消化质检PVC19(Yanisch-Perro  et  al.,1985)。
经用Klenow聚合酶处理将所得到粘性末端修成平头。然后用XgaⅠ(与NheⅠ相配合)消化质粒。
连接如上制备的cDNA片段和质粒。如此得到的新质粒定名为pRPA-oxo-01,其酶切图示于图1中。
B、成熟蛋白质:它得自于用BstNI消化(在位置173处)的上述cDNA。连接所得片段和该序列的接头:
5’                    3’
ATGACCGACCCAGACCCTCTCC
TACTGGCTGGGTCTGGGAGAGGT
3’                   5’
如此便导致对跨越TDPDPLQ至MTDPDPLQ之成熟蛋白质N末端序列的修饰。
然后用NheⅠ消化(在位置811处)该cDNA片段,使之能够与按上述方法制得的质粒PUC19相连接。如此形成的新质粒被称为pRPA-oxo-02,其酶切图示于图1中。
实施例2:制备嵌合基因
a、制备含有启动子和终止子nos的载体
以双CaMV为例:该载体得自于按下述方法制得的质粒PRPA-BL-410;
“玉米RuBisCo/AroA基因之SSU的转运肽”融合体:
玉米RuBisCO基因之SSU的转运肽衍生于192bp的EcoRI-SphⅠ片段;它得自于Lebrun等人(1987)所述玉米RuBisco基因之SSu基因的cDNA,带有跨越转移起始密码子的NcoⅠ位点和相当于转送肽之切割位点的SphⅠ位点。
用T4噬菌体聚合酶处理SphⅠ末端,并使其与用EcoRI再切割之pRPA-BL104中的AroA基因并经klenow聚合酶处理的NcoⅠ末端连接,获得玉米转运肽和细菌EPSPS基因间的转移融合体。
“玉米RuBisCO之SSU的转运肽/玉米RuBisCO之SSU成熟部分的22氨基酸序列/AroA基因”融合体:
以相似方式,将玉米RuBisCO基因之SSU的228bp  cDNA的EcoRI-Hind  Ⅱ片段与klenow聚合酶处理的PRPA-BL104中之AroA基因的NcoⅠ末端相连接并用EcoRⅠ再次切割。得到玉米RuBisCO之SSU的转运肽、玉米RuBisCO之SSU成熟部分的22氨基酸和细菌EPSPS基因间的转移融合体。
向日葵RuBisCO之SSU的转换肽:
该片段得自于由Waksman和Freyssinet(1987)分离的cDNA。按照Zoller和Smith(1984)的方法在转换肽的裂解位点产生SphⅠ位点。如此制得的向日葵RuBisCO之SSu的转换肽即为171bp的EcoRⅠ-SphⅠ片段。
“向日葵RuBisCO之SSu的转换肽/玉米RuBisCO之SSU成熟部分22氨基酸序列/AroA基因”融合体:
用相当于所说的向日葵RuBisCO基因之SSU的转换肽的171bp  EcoRⅠ-SphⅠ切割含有“玉米RuBisCO之SSU的转换肽/玉米基因成熟部分之玉米RuBisCO之SSU的22氨基酸序列”融合体的构建体。所得之构建体呈现有EcoRⅠ-SphⅠ片段的取代,并是“向日葵RuBisCO之SSU转运肽/玉米RuBisCO之SSU成熟部分的22氨基酸序列/AroA基因”融合体。
使EcoRⅠ-SalⅠ片段与含有T-DNA之3′nos序列和右侧端的SalⅠ-SstⅠ片段相连接。所得到的含有“向日葵RuBisCO之SSU的转换肽/玉米RuBisCO之SSU成熟部分的22氨基酸序列/AroA基因/3′nos/T-DNA右侧端”的EcoRⅠ-SstⅠ片段取代了含有双CaMV启动子质粒150Aα2的T-DNA右侧端的EcoRⅠ-SstⅠ片段。转移融合体“双CaMV/向日葵RuBisCO之SSU的转换肽/玉米RuBisCO之SSU成熟部分的22氨基酸序列/AroA基因/3′nos“在载体150α2中称为PRPA-BL294。
“向日葵RuBisCO之SSU的转换肽/玉米RuBisCO之SSU的22氨基酸序列/玉米RuBisCO之SSU的转换肽/AroA基因”融合体:
用NcoⅠ-HindⅢ切割上述构建体以释放出AroA基因。然后将其与含有“玉米RuBisCO之SSU的转换肽/AroA基因”融合体的1.5kbp  NcoⅠ-HindⅢ片段相连接。所得构建体呈现NcoⅠ-HindⅢ片段的取代并且是转运融合体“向日葵RuBisCO之SSU的转换肽/玉米基因成熟部分RuBisCO之SSU的22氨基酸序列/玉米RuBisCO之SSU的转运肽/AroA基因”。
a、使EcoRⅠ-SalⅠ片断与含有T-DNA之3′nos序列和右侧端的SalⅠ-SstⅠ片断连续。所得到的含有“向日葵RuBisCO之SSU的转运肽/玉米基因成熟部分RuBisCO之SSU  22氨基酸序列/玉米RuBisCO之SSU的转运肽/AroA基因/3′nos/T-DNA右侧端的EcoRⅠ-SstⅠ片断取代了含有包括双CaMV启动子之质粒150Aα2T-DNA右侧端的EcoRⅠ-SstⅠ片断。转录融合体”双CaMV/向日葵RuBisCO之SSU的转运肽/玉米基因成熟部分RuBisCO之SSU的22氨基酸序列/玉米RuBisCO之SSU的转运肽/3′nos″在载体150Aα2中称为PRPA-BL410。用EcoRⅠ和SalⅠ消化该质粒,以除去结构基因“最佳化转运肽-成熟EPSPS编码区”,即消除PRPA-BL-410(见图1)。
以SSUHa为例:该载体得自于质粒PRPA-BL-207(已在欧洲专利申请,0,337,899中述及),用EcoRⅠ和HindⅢ消化所说的质粒以除去腈水解酶编码区,即消除PRPA-BL-201(见图1)。
b、嵌合基因的构建:
PRPA-oxo-03:它是用EcoRⅠ和SalⅠ消化PRPA-oxo-01得到的。然后将所得到的编码前蛋白质的片段分别插入在双CaMV下游和终止子nos上游的EcoRⅠ和SalⅠ位点之间。
PRPA-oxo-04:它是用EcoRⅠ和SalⅠ消化PRPA-oxo-02得到的。然后将所得到的编码成熟蛋白质的片段分别插入在双CaMV下游和终止子nos上游的EcoRⅠ和SalⅠ之间。
PRPA-oxo-05:它是用EcoRⅠ和HindⅢ消化PRPA-oxo-01得到的。然后将所得的编码前蛋白质的片段分别插入位于双SSUHa下游和终止子nos上游的EcoRⅠ和HindⅢ位点之间。
PRPA-oxo-06:它是用EcoRⅠ和HindⅢ消化PRPA-oxo-02得到的。然后将所得到的编码成熟蛋白质的片断分别插入位于SSUHa启动子下游和终止子nos上游的EcoRⅠ和HindⅢ之间。
表Ⅰ:四个嵌合基因的简略说明
代号  启动子  草酸氧化  终止子
酶编码区
PRPA-oxo-03  dCaMV  前蛋白质  nos
PRPA-oxo-04  dCaMV  成熟蛋白质  nos
PRPA-oxo-05  SSuHa  前蛋白质  nos
PRPA-oxo-06  SSuHa  成熟蛋白质  nos
实施例3:生产转基因油菜
a、转化
将上述各载体导入携带装配型质粒pTVK291(Komari  et  al,1986)的非致瘤性瘤病土壤杆菌菌株EHA101(Hood  et  al,1987)中。
转化油菜(westar变种)的方法基本上与Boulter等人(1990)所述相同,其中使用的细菌浓度为2.5×109个/ml(OD600nm=1)。
b、植株再生
再生方法基本上与Boulter等人(1990)所述相同。植物在De  Block等人所介绍(1989)的培养基中生根。然后在温室内进入开花阶段。
实施例4:检测油菜对桑条菌核病核盘霉的抗性
体外实验:
一叶片:在含有激素、添加1mM草酸的Murashige和Skoog(MS)培养基上生长11天后,对三片叶片称重以检测抗真菌抗性。
在这些条件下,观察到:从使用嵌合基因PRPA-oxo-03、PRPA-oxo-04、PRPA-oxo-05和PRPA-oxo-06之一修饰的油菜得到的叶片之质量有明显增加,而从未经修饰的油菜得到的叶片质量则无变化甚至减少。
一根伸长:在添加5mM草酸的水上生长两天后检查根伸长,体外测定上述抗性。在这种情况下观察到用嵌合基因PRPA-oxo-03,PRPA-oxo-03,PRPA-oxo-04之一修饰之油菜植物的根能够生长并增加了长度,而未修饰的油菜的根则在这些条件下未见生长。
体内实验:
在第一个花出现时,立即在花瓣上涂敷桑条菌核病核盘霉孢子,从而在花落期间自然发生叶子的感染,或者直接将菌丝体系涂敷在叶子上或将浸渍了菌丝体的花瓣置于叶子上,以污染再生形成的油菜植物,然后在温室中体内检测抗性。用嵌合基因PRPA-oxo-03,PRPA-oxo-04、pRPA-oxo-05和pRPA-oxo-06之一修饰的植物使真菌不能发育,而且完全没有出现菌核病的特征性枯萎病症,而未修饰的植物则因桑条菌核病核盘霉的发育迅速枯萎。

Claims (8)

1、编码草酸氧化酶的DNA序列。
2、一种蛋白质,即草酸氧化酶,它可用于使植物对抗由核盘霉真菌引起的病害。
3、包含根据权利要求1之DNA编码序列的嵌合基因。
4、用于转化植物的载体,它包含根据权利要求3的嵌合基因。
5、含有根据权利要求4之载体的被转化的植物细胞。
6、得自根据权利要求5之细胞的被转化的植物。
7、根据权利要求6的植物,其为双子叶植物。
8、根据权利要求7的植物,其为油菜。
CN92101989A 1991-03-05 1992-02-28 经引入编码草酸氧化酶的基因生产抗桑条菌核病核盘霉攻击的植物 Expired - Lifetime CN1051576C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9102874 1991-03-05
FR9102874A FR2673644A1 (fr) 1991-03-05 1991-03-05 Sequence adn codant pour une oxalate oxydase et plantes transformees contenant cette sequence et resistantes au sclerotinia.

Publications (2)

Publication Number Publication Date
CN1065683A true CN1065683A (zh) 1992-10-28
CN1051576C CN1051576C (zh) 2000-04-19

Family

ID=9410559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92101989A Expired - Lifetime CN1051576C (zh) 1991-03-05 1992-02-28 经引入编码草酸氧化酶的基因生产抗桑条菌核病核盘霉攻击的植物

Country Status (24)

Country Link
EP (1) EP0531498B1 (zh)
JP (1) JPH05506582A (zh)
KR (1) KR930700665A (zh)
CN (1) CN1051576C (zh)
AT (1) ATE338129T1 (zh)
AU (1) AU660976B2 (zh)
BG (1) BG61275B1 (zh)
BR (1) BR9204788A (zh)
CA (1) CA2082042C (zh)
CZ (1) CZ289623B6 (zh)
DE (1) DE69233653T2 (zh)
DK (1) DK0531498T3 (zh)
EG (1) EG21465A (zh)
ES (1) ES2273329T3 (zh)
FR (1) FR2673644A1 (zh)
HU (1) HUT65677A (zh)
IE (1) IE920691A1 (zh)
IL (1) IL101117A (zh)
MX (1) MX9200917A (zh)
NZ (1) NZ241829A (zh)
PT (1) PT100203B (zh)
UA (1) UA43308C2 (zh)
WO (1) WO1992015685A1 (zh)
ZA (1) ZA921647B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383239C (zh) * 2004-07-21 2008-04-23 华南农业大学 从小麦麸皮中提取草酸氧化酶的方法
CN103060350A (zh) * 2011-10-21 2013-04-24 华中农业大学 核盘菌草酸脱羧酶基因SsOXDC2及其在大豆抗病改良中的应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504914A (ja) * 1991-02-25 1994-06-09 ゼネカ・リミテッド 新しく特性決定されたシュウ酸塩オキシダーゼ及びその使用
JPH08503851A (ja) * 1992-11-30 1996-04-30 ゼネカ・リミテッド シュウ酸脱炭酸酵素
ES2180567T3 (es) * 1992-12-07 2003-02-16 Biogemma Fr Utilizacion de una secuencia de adn codante para una proteina susceptible de degradar el acido oxalico a titulo de gen de seleccion.
AUPM379294A0 (en) * 1994-02-10 1994-03-03 Commonwealth Scientific And Industrial Research Organisation Expression of the glucose oxidase gene in transgenic organisms
ZA986308B (en) * 1997-07-18 1999-11-24 Pioneer Hi Bred Int The induction of stress-related factors in plants.
US6166291A (en) 1997-07-18 2000-12-26 Pioneer Hi-Bred International, Inc. Production of pathogen resistant plants
WO1999010514A1 (en) * 1997-08-26 1999-03-04 North Carolina State University Fumonosin resistance
FR2844142B1 (fr) 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
FR2848570B1 (fr) 2002-12-12 2005-04-01 Bayer Cropscience Sa Cassette d'expression codant pour une 5-enol pyruvylshikimate-3-phosphate synthase (epsps) et plantes tolerantes aux herbicides la contenant
AR074941A1 (es) 2009-01-07 2011-02-23 Bayer Cropscience Sa Plantas transplastomicas exentas de marcador de seleccion
US20110191903A1 (en) 2009-12-31 2011-08-04 Pioneer Hi-Bred International, Inc. Engineering plant resistance to diseases caused by pathogens
CN103911384B (zh) * 2014-01-21 2016-05-25 江苏大学 一种控制油菜菌核病的基因及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008450A1 (en) * 1987-05-01 1988-11-03 Birdwell Finlayson Gene therapy for metabolite disorders
JPH06504914A (ja) * 1991-02-25 1994-06-09 ゼネカ・リミテッド 新しく特性決定されたシュウ酸塩オキシダーゼ及びその使用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383239C (zh) * 2004-07-21 2008-04-23 华南农业大学 从小麦麸皮中提取草酸氧化酶的方法
CN103060350A (zh) * 2011-10-21 2013-04-24 华中农业大学 核盘菌草酸脱羧酶基因SsOXDC2及其在大豆抗病改良中的应用

Also Published As

Publication number Publication date
EG21465A (en) 2001-11-28
AU1682092A (en) 1992-10-06
HU9203473D0 (en) 1993-01-28
PT100203B (pt) 1999-06-30
KR930700665A (ko) 1993-03-15
UA43308C2 (uk) 2001-12-17
PT100203A (pt) 1993-07-30
IL101117A0 (en) 1992-11-15
CA2082042A1 (en) 1992-09-06
EP0531498A1 (fr) 1993-03-17
BG97042A (bg) 1993-12-24
BR9204788A (pt) 1993-07-27
NZ241829A (en) 1994-04-27
HUT65677A (en) 1994-07-28
WO1992015685A1 (fr) 1992-09-17
FR2673644B1 (zh) 1994-12-02
DE69233653D1 (de) 2006-10-12
CN1051576C (zh) 2000-04-19
MX9200917A (es) 1992-11-01
BG61275B1 (en) 1997-04-30
JPH05506582A (ja) 1993-09-30
IE920691A1 (en) 1992-09-09
ATE338129T1 (de) 2006-09-15
DE69233653T2 (de) 2007-10-04
DK0531498T3 (da) 2007-01-02
CZ289623B6 (cs) 2002-03-13
ES2273329T3 (es) 2007-05-01
EP0531498B1 (fr) 2006-08-30
AU660976B2 (en) 1995-07-13
CA2082042C (en) 2007-05-29
IL101117A (en) 2004-09-27
CZ336992A3 (en) 1994-01-19
ZA921647B (en) 1992-11-25
FR2673644A1 (fr) 1992-09-11

Similar Documents

Publication Publication Date Title
CN1051576C (zh) 经引入编码草酸氧化酶的基因生产抗桑条菌核病核盘霉攻击的植物
CN105543266A (zh) 一种维吉尼亚链霉菌IBL14中的CRISPR-Cas系统及应用其进行基因编辑的方法
CN1444656A (zh) 在绿色植物中高水平地生产对羟基苯甲酸
CN104278017A (zh) 一种重组表达人溶菌酶的方法
US6229065B1 (en) Production of plants resistant to attacks by Sclerotinia sclerotiorum by the introduction of a gene encoding an oxalate oxidase
CN1265704A (zh) 增加植物产量的方法
CN114457062B (zh) 用于制备褐藻寡糖的褐藻胶裂解酶及其用途
US20150082480A1 (en) Methods to alter plant cell wall composition for improved biofuel production and silage digestibility
CN111705048B (zh) 新壳聚糖酶chi2、其编码基因及其应用
CN113429467B (zh) Npf7.6蛋白在调控豆科植物根瘤耐氮性中的应用
CN1093175C (zh) 新构建的l-天门冬酰胺酶工程菌及其发酵培养
CN116716267B (zh) 乙醛氧化酶突变体及其应用
CN116751791B (zh) PvPSK3基因在提高禾本科植物遗传转化效率中的应用
CN86108300A (zh) 编码序列的突变
CN110592054B (zh) 海马孵化酶基因及其编码蛋白和应用
CN1168825C (zh) 一种来源于山菠菜的转录因子、编码它的基因以及培育耐逆植物的方法
CN116622723A (zh) 大豆结荚数及产量调控基因glyma_02g083400、其编码蛋白、表达载体及其应用
CN1161472C (zh) 链霉菌2-硝基丙烷双加氧酶基因及应用
CN113073107A (zh) 一种甘露聚糖酶基因AbMan5、重组表达质粒、重组表达菌株、甘露聚糖酶及其应用
CN115896048A (zh) 一种酶活高、稳定性好的重组人Cu、Zn-SOD及其制备方法和用途
CN117511942A (zh) 一种基于CRISPR/RfxCas13d系统的特异性敲低植物circRNA的方法
CN115927508A (zh) 昆布多糖降解酶OUC-ScLam39在制备昆布寡糖中的应用
CN116814663A (zh) 百合苯丙氨酸解氨酶基因LhSorPAL2及应用
CN118048362A (zh) 一种调控植物氮素利用效率相关蛋白ator1及其应用
CN118956915A (zh) 耐镉基因、酶和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20120228

Granted publication date: 20000419