CN106532725A - Power distribution network voltage control method based on virtual synchronous generator type distributed generation - Google Patents
Power distribution network voltage control method based on virtual synchronous generator type distributed generation Download PDFInfo
- Publication number
- CN106532725A CN106532725A CN201610994651.6A CN201610994651A CN106532725A CN 106532725 A CN106532725 A CN 106532725A CN 201610994651 A CN201610994651 A CN 201610994651A CN 106532725 A CN106532725 A CN 106532725A
- Authority
- CN
- China
- Prior art keywords
- voltage
- vsg
- control module
- output
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 230000003068 static effect Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种基于虚拟同步发电机型分布式电源的配电网电压控制方法,本方法使用的VSG‑DG控制系统通过电压电流采集模块采集VSG‑DG的内环电流、输出电流和VSG‑DG并网的PCC处电压,经过功率计算模块、有功‑频率控制模块和无功‑电压控制模块,用以模拟同步发电机的有功调频与无功调压功能,再通过电压转换模块、电压补偿控制模块、直流电压控制模块和电流控制模块,实现VSG‑DG的输出外特性与同步发电机外特性一致,其中无功‑电压控制模块根据PCC电压波动情况,自适应设置PCC电压补偿参考值,有效抑制PCC处电压波动。
The invention discloses a distribution network voltage control method based on a virtual synchronous generator type distributed power supply. The VSG-DG control system used in the method collects the inner loop current, output current and VSG of the VSG-DG through a voltage and current acquisition module The voltage at the PCC of ‑DG connected to the grid is used to simulate the active frequency regulation and reactive voltage regulation functions of the synchronous generator through the power calculation module, active power‑frequency control module and reactive power voltage control module, and then through the voltage conversion module, voltage The compensation control module, the DC voltage control module and the current control module realize that the external characteristics of the output of the VSG-DG are consistent with the external characteristics of the synchronous generator, and the reactive power-voltage control module adaptively sets the PCC voltage compensation reference value according to the fluctuation of the PCC voltage , to effectively suppress voltage fluctuations at the PCC.
Description
技术领域technical field
本发明属于分布式发电主动配电网的电能质量管理领域,具体涉及一种基于虚拟同步发电机型分布式电源的配电网电压控制方法。The invention belongs to the field of power quality management of active distribution networks for distributed generation, and in particular relates to a distribution network voltage control method based on a virtual synchronous generator type distributed power supply.
背景技术Background technique
传统的配电网通常依靠灵活的网络结构和较大的容量裕度来应对负荷的不确定性,以保证电力系统的安全可靠,其运行控制方法相对简单。近十几年来,电力电子技术的快速发展解决了分布式电源(distributed generation,DG)在中低压配电网的并网运行问题,促进了DG被广泛应用在电力系统各层级上。但是,传统的配电网仍然存在可再生能源消纳能力不足、一次网架薄弱、自动化水平不高、调度方式落后以及用电互动化水平较低等问题,严重制约了DG的高度渗透,不利于能源结构的优化调整。面对负荷增长缓慢、配电网发展空间资源有限、网络规模较难扩展的现状,主动配电网技术应运而生,旨在解决电网兼容及应用大规模间歇式可再生能源提升绿色能源利用率、优化一次能源结构等问题。The traditional distribution network usually relies on a flexible network structure and a large capacity margin to cope with the uncertainty of the load, so as to ensure the safety and reliability of the power system, and its operation control method is relatively simple. In the past ten years, the rapid development of power electronics technology has solved the problem of grid-connected operation of distributed generation (DG) in the medium and low voltage distribution network, and promoted the wide application of DG at all levels of the power system. However, the traditional distribution network still has problems such as insufficient renewable energy consumption capacity, weak primary network structure, low level of automation, backward dispatching methods, and low level of electricity interaction, which seriously restrict the high penetration of DG. Conducive to the optimization and adjustment of energy structure. Faced with the current situation of slow load growth, limited space resources for distribution network development, and difficult network expansion, active distribution network technology has emerged to solve grid compatibility and apply large-scale intermittent renewable energy to improve green energy utilization. , Optimizing primary energy structure and other issues.
传统的被动式配电网采用就地消纳间歇式能源模式。当DG接入配电网后,由于DG具有间歇性、随机性、非线性等特征,若间歇式能源所发电力过剩,配电网本身没有调节能力无法上送配电网,只能降低其出力运行。而主动配电网具有消纳间歇式能源的调节能力,若间歇式能源所发电力过剩,在满足配电网运行约束的条件下通过柔性负荷以及多层次电网的分层消纳能力消纳过剩的能源。然而,这会导致配电网出现潮流反向,在主动配电网(AND)馈线的任何位置都有可能出现电压调整问题,电压质量控制面临更加严峻的挑战。The traditional passive distribution network adopts the mode of absorbing intermittent energy locally. When DG is connected to the distribution network, due to the intermittent, random, and non-linear characteristics of DG, if the intermittent energy generates excess power, the distribution network itself has no adjustment ability and cannot be sent to the distribution network. Run hard. The active distribution network has the ability to accommodate intermittent energy. If the intermittent energy generates excess power, it can absorb the excess through flexible loads and the hierarchical capacity of the multi-level grid under the condition of satisfying the operating constraints of the distribution network. of energy. However, this will lead to a reverse power flow in the distribution network, voltage regulation problems may occur at any location of the active distribution network (AND) feeder, and voltage quality control faces more severe challenges.
近年来,集成了同步发电机控制模型的虚拟同步发电机型分布式电源(VSG-DG)得到了普遍的关注。由于其实现了可再生能源并网单元与同步发电机在物理上和数学上的等效,可有效降低大规模可再生能源并网对电网的冲击,引起了全球范围内的广泛研究兴趣。In recent years, virtual synchronous generator-type distributed generation (VSG-DG) integrated with synchronous generator control model has received widespread attention. Because it realizes the physical and mathematical equivalence of renewable energy grid-connected units and synchronous generators, it can effectively reduce the impact of large-scale renewable energy grid-connected on the grid, and has aroused extensive research interest worldwide.
图1所示为接入了VSG-DG的主动配电网的一条馈线,包括三个公共母线PCC和三组负荷,每个公共母线PCC处均接入若干DG和VSG-DG。DG包括直流微源、三相全桥逆变器、LC滤波电路以及DG控制系统,VSG-DG包括直流侧电容、三相全桥逆变器、LC滤波电路以及VSG-DG控制系统。VSG-DG是通过VSG-DG控制系统的控制使DG的输出外特性与同步发电机外特性一致,其中VSG-DG控制系统主要包括有功-频率控制模块和无功-电压控制模块,VSG-DG控制方法是通过采集VSG-DG的出口电压电流,经过有功-频率控制模块和无功-电压控制模块,输出脉冲宽度调制信号,脉冲宽度调制信号输入到三相全桥逆变器,改变逆变器输出功率,从而模拟同步发电机的运行机制。目前接入主动配电网的VSG-DG的功能主要是改善电网的频率稳定性。当电网出现电压波动问题时,VSG-DG无法快速响应而提高主动配电网电压控制水平。这一切都与主动配电网的要求不相符。Figure 1 shows a feeder connected to the active distribution network of VSG-DG, including three common bus PCCs and three groups of loads, and each common bus PCC is connected to several DGs and VSG-DGs. DG includes DC micro-source, three-phase full-bridge inverter, LC filter circuit and DG control system, VSG-DG includes DC side capacitor, three-phase full-bridge inverter, LC filter circuit and VSG-DG control system. VSG-DG makes the output external characteristics of DG consistent with the external characteristics of synchronous generator through the control of VSG-DG control system. The VSG-DG control system mainly includes active power-frequency control module and reactive power-voltage control module. VSG-DG The control method is to collect the outlet voltage and current of the VSG-DG, pass through the active-frequency control module and the reactive-voltage control module, output the pulse width modulation signal, and input the pulse width modulation signal to the three-phase full-bridge inverter to change the inverter The output power of the generator is used to simulate the operation mechanism of the synchronous generator. At present, the function of the VSG-DG connected to the active distribution network is mainly to improve the frequency stability of the power grid. When the voltage fluctuation problem occurs in the power grid, the VSG-DG cannot respond quickly to improve the voltage control level of the active distribution network. All this is inconsistent with the requirements of the active distribution network.
发明内容Contents of the invention
本发明解决的技术问题是:现有的VSG-DG控制方法未能很好地模拟同步发电机外特性且无法抑制主动配电网ADN公共母线PCC电压波动。The technical problem solved by the invention is: the existing VSG-DG control method cannot simulate the external characteristics of the synchronous generator well and cannot suppress the voltage fluctuation of the common busbar PCC of the active distribution network ADN.
本发明的具体技术方案如下:一种基于虚拟同步发电机型分布式电源的配电网电压控制方法,其特征在于,包括以下步骤:The specific technical scheme of the present invention is as follows: a distribution network voltage control method based on a virtual synchronous generator type distributed power supply, characterized in that it includes the following steps:
S1、构建虚拟同步发电机型分布式电源VSG-DG的控制系统,主要包括电压电流采集模块、功率计算模块、有功-频率控制模块、无功-电压控制模块、电压转换模块、电压补偿控制模块、直流电压控制模块和电流控制模块,电压电流采集模块用于采集VSG-DG的内环电流值、输出电流值及VSG-DG并网的公共母线PCC处电压值,电压电流采集模块的输出端连接功率计算模块的输入端、无功-电压控制模块的输入端和电流控制模块的输入端,功率计算模块的输出端连接有功-频率控制模块的输入端、无功-电压控制模块的输入端和电压补偿模块的输入端,有功-频率控制模块的输出端和无功-电压控制模块的输出端均连接电压转换模块的输入端,电压转换模块的输出端连接电压补偿控制模块的输入端,电压补偿控制模块的输出端和直流电压控制模块的输出端均连接电流控制模块的输入端,电流控制模块的输出端连接VSG-DG的三相全桥逆变器;S1. Construct the control system of virtual synchronous generator type distributed power supply VSG-DG, mainly including voltage and current acquisition module, power calculation module, active power-frequency control module, reactive power-voltage control module, voltage conversion module, voltage compensation control module , DC voltage control module and current control module, the voltage and current acquisition module is used to collect the inner loop current value of VSG-DG, the output current value and the voltage value at the common bus PCC of VSG-DG connected to the grid, the output terminal of the voltage and current acquisition module Connect the input terminal of the power calculation module, the input terminal of the reactive power-voltage control module and the input terminal of the current control module, and the output terminal of the power calculation module is connected with the input terminal of the active power-frequency control module and the input terminal of the reactive power-voltage control module and the input end of the voltage compensation module, the output end of the active-frequency control module and the output end of the reactive power-voltage control module are all connected to the input end of the voltage conversion module, and the output end of the voltage conversion module is connected to the input end of the voltage compensation control module, Both the output end of the voltage compensation control module and the output end of the DC voltage control module are connected to the input end of the current control module, and the output end of the current control module is connected to the three-phase full-bridge inverter of VSG-DG;
S2、电压电流采集模块采集VSG-DGi接入的PCC处电压在三相静止abc坐标系的值vabc和VSG-DGi的输出电流在三相静止abc坐标系的值iabc,i,计算PCC处电压vabc的模值V,并将其转换为在两相静止αβ坐标系中的实时电压值vαβ,其中VSG-DGi为接入PCC的第i个VSG-DG;S2. The voltage and current acquisition module collects the value v abc of the voltage at the PCC connected to the VSG-DG i in the three-phase static abc coordinate system and the value i abc,i of the output current of the VSG-DG i in the three-phase static abc coordinate system, Calculate the modulus V of the voltage v abc at the PCC, and convert it into a real-time voltage value v αβ in the two-phase stationary αβ coordinate system, where VSG-DG i is the ith VSG-DG connected to the PCC;
S3、功率计算模块计算VSG-DGi的输出无功Qi和输出有功Pi;S3. The power calculation module calculates the output reactive power Q i and the output active power P i of the VSG-DG i ;
S4、无功-电压控制模块根据PCC电压波动情况,自适应设置PCC电压补偿参考值Vref;S4. The reactive power-voltage control module adaptively sets the PCC voltage compensation reference value V ref according to the PCC voltage fluctuation;
S5、设置VSG-DGi的输出无功参考值Qref,i和输出有功参考值Pref,i,无功-电压控制模块根据电压补偿参考值Vref、输出无功Qi和输出无功参考值Qref,i,输出VSG-DGi的虚拟定子内电动势其中,ku和K分别是无功-电压控制模块的下垂系数与积分系数;有功-频率控制模块根据输出有功Pi和输出有功参考值Pref,i,输出VSG-DGi的虚拟电角度其中,J为转动惯量,D为阻尼系数,ω为VSG转子角频率;S5. Set the output reactive power reference value Q ref,i and output active power reference value Pre ref,i of VSG-DG i , and the reactive power-voltage control module compensates the reference value V ref , output reactive power Q i and output reactive power according to the voltage compensation Reference value Q ref,i , output virtual stator electromotive force of VSG-DG i Among them, k u and K are the droop coefficient and integral coefficient of the reactive power-voltage control module respectively; the active power-frequency control module outputs the virtual electrical angle of VSG-DG i according to the output active power P i and the output active power reference value Pre ref,i Among them, J is the moment of inertia, D is the damping coefficient, ω is the angular frequency of the VSG rotor;
S6、电压转换模块通过虚拟定子内电动势Ei和虚拟电角度θ1,i,计算控制参考电压S6. The voltage conversion module calculates the control reference voltage through the electromotive force E i in the virtual stator and the virtual electrical angle θ 1,i
其中 in
S7、电压补偿模块根据控制参考电压实时电压vαβ和输出无功Qi,计算VSG-DGi的输出电流参考过程量其中nP,i为有功分配系数,ke,p为电压误差比例系数,kP,P、kI,P分别为电压补偿模块的比例系数和积分系数;S7. The voltage compensation module controls the reference voltage according to Real-time voltage v αβ and output reactive power Q i , calculate the output current reference process quantity of VSG-DG i in n P, i are active power distribution coefficients, k e, p are voltage error proportional coefficients, k P, P , k I, P are proportional coefficients and integral coefficients of the voltage compensation module, respectively;
S8、设置VSG-DGi的额定直流电压采集VSG-DGi的直流侧电压VDC,i,直流电压控制模块计算为将实时直流电压维持在额定直流电压而VSG-DGi需吸收的有功功率其中kP,DC和kI,DC分别为直流电压控制模块的比例系数和积分系数,并计算需吸收的有功电流 S8. Set the rated DC voltage of VSG-DG i Collect the DC side voltage V DC,i of VSG-DG i , and the DC voltage control module calculates the active power that VSG-DG i needs to absorb to maintain the real-time DC voltage at the rated DC voltage Among them, k P,DC and k I,DC are the proportional coefficient and integral coefficient of the DC voltage control module respectively, and calculate the active current to be absorbed
S9、电流控制模块将输出电流参考值与VSG-DGi的额定电流IN比较后,合成脉冲宽度调制输入信号,经过脉冲宽度调制后输出给VSG-DGi的三相全桥逆变器。S9, the current control module will output the current reference value After comparing with the rated current I N of VSG-DG i , the pulse width modulation input signal is synthesized, and output to the three-phase full-bridge inverter of VSG-DG i after pulse width modulation.
进一步,S4的具体步骤为:若PCC处电压模值V>1.07VN,电压补偿参考值若PCC处电压模值V<0.93VN,电压补偿参考值若0.93VN<V<1.07VN,电压补偿参考值Vref=VN;其中VN是配电网额定电压,H为采样率,ΔVs2为PCC电压波动后第2个采样周期的电压变化量,t为从电压波动开始计时的时刻,电压补偿参考值调节时间为 Further, the specific steps of S4 are: if the voltage modulus V at the PCC>1.07V N , the voltage compensation reference value If the modulus value of the voltage at PCC is V<0.93V N , the voltage compensation reference value If 0.93V N <V<1.07V N , the voltage compensation reference value V ref =V N ; where V N is the rated voltage of the distribution network, H is the sampling rate, ΔV s2 is the voltage of the second sampling cycle after the PCC voltage fluctuation The amount of change, t is the moment when the voltage fluctuation starts to count, and the adjustment time of the voltage compensation reference value is
PCC电压波动后,根据PCC电压偏差程度确定自适应反正切曲率控制的轨迹曲率,根据PCC电压变化率确定电压调节时间,提高了主动配电网电压和频率的鲁棒性。After the PCC voltage fluctuates, the trajectory curvature of the adaptive arctangent curvature control is determined according to the PCC voltage deviation degree, and the voltage adjustment time is determined according to the PCC voltage change rate, which improves the robustness of the voltage and frequency of the active distribution network.
进一步,S9中电流控制模块的具体执行步骤为:Further, the specific execution steps of the current control module in S9 are:
S9.1合成VSG-DGi的输出电流参考值若输出电流参考值超过VSG-DGi的额定电流IN,则 S9.1 Synthesize the output current reference value of VSG-DG i If the output current reference value exceeds the rated current I N of VSG-DG i , then
S9.2输出电流参考值和电压电流采集模块采集的输出电流值iαβ,i通过第一比例谐振控制器,得到VSG-DGi的内环电流参考值 S9.2 Output current reference value And the output current value i αβ,i collected by the voltage and current acquisition module passes through the first proportional resonant controller to obtain the inner loop current reference value of VSG-DG i
S9.3内环电流参考值减去内环电流值iL,αβ,i后经过第二比例谐振控制器,得到两相静止αβ坐标系下的PWM控制输入信号UPWM,i,αβ;S9.3 Inner loop current reference value After subtracting the inner loop current value i L, αβ, i , through the second proportional resonance controller, the PWM control input signal U PWM,i, αβ under the two-phase static αβ coordinate system is obtained;
S9.4经过两相静止αβ坐标系到三相静止abc坐标系的变换,得到三相静止abc坐标系下的PWM控制输入信号UPWM,i,abc,输入PWM生成单元进行脉冲宽度调制,脉冲调制后输出给VSG-DGi的三相全桥逆变器。S9.4 Through the transformation from the two-phase static αβ coordinate system to the three-phase static abc coordinate system, the PWM control input signal U PWM,i,abc in the three-phase static abc coordinate system is obtained, and input to the PWM generation unit for pulse width modulation. After modulation, it is output to the three-phase full-bridge inverter of VSG-DG i .
步骤S9.1中VSG-DG输出电流参考值达到或超出极限时进行输出电流参考值限幅,避免VSG-DG过载。In step S9.1, when the output current reference value of the VSG-DG reaches or exceeds the limit, limit the output current reference value to avoid overloading the VSG-DG.
本发明的有益效果是:(1)本方法使用的VSG-DG控制系统通过电压电流采集模块采集VSG-DG的内环电流、输出电流和VSG-DG并网的PCC处电压,经过功率计算模块、有功-频率控制模块和无功-电压控制模块,用以模拟同步发电机的有功调频与无功调压功能,再通过电压转换模块、电压补偿控制模块、直流电压控制模块和电流控制模块,实现VSG-DG的输出外特性与同步发电机外特性一致,其中无功-电压控制模块根据PCC电压波动情况,自适应设置PCC电压补偿参考值,有效抑制PCC处电压波动;(2)PCC电压波动后,根据PCC电压偏差程度确定自适应反正切曲率控制的轨迹曲率,根据PCC电压变化率确定电压调节时间,提高了主动配电网电压和频率的鲁棒性;(3)采用该控制方法的VSG-DG不仅可以独立运行,也能实现无互联线并联运行,具有很高的灵活性和可靠裕度,解决了不同容量VSG-DG并联运行时的功率分配问题,更加契合智能电网对于电力电子设备即插即用的要求;(4)在VSG-DG输出电流达到或超出极限时进行输出电流参考值限幅,避免VSG-DG过载。该方法满足了配电网DG渗透率不断增高的现实需求,实现了PCC电能质量的综合控制,弥补了DG功率不确定性带来的电压质量降低问题,提高来配电网局部和区域电压质量,实现了配电网的安全和稳定运行。The beneficial effects of the present invention are: (1) the VSG-DG control system that this method uses collects the inner loop current of VSG-DG, the output current and the PCC place voltage of VSG-DG grid-connected through the voltage and current acquisition module, through the power calculation module , Active power-frequency control module and reactive power-voltage control module are used to simulate the active frequency modulation and reactive power voltage regulation functions of synchronous generators, and then through the voltage conversion module, voltage compensation control module, DC voltage control module and current control module, Realize that the output external characteristics of VSG-DG are consistent with the external characteristics of synchronous generators, wherein the reactive power-voltage control module adaptively sets the PCC voltage compensation reference value according to the PCC voltage fluctuations, effectively suppressing the voltage fluctuations at the PCC; (2) PCC voltage After the fluctuation, the trajectory curvature of the adaptive arctangent curvature control is determined according to the PCC voltage deviation degree, and the voltage adjustment time is determined according to the PCC voltage change rate, which improves the robustness of the voltage and frequency of the active distribution network; (3) Adopting this control method The VSG-DG can not only operate independently, but also realize parallel operation without interconnection wires. It has high flexibility and reliability margin, and solves the power distribution problem when VSG-DGs with different capacities are operated in parallel, which is more suitable for smart grids. Plug-and-play requirements for electronic equipment; (4) When the output current of the VSG-DG reaches or exceeds the limit, limit the reference value of the output current to avoid overloading the VSG-DG. This method satisfies the actual demand of increasing DG penetration rate in the distribution network, realizes the comprehensive control of PCC power quality, makes up for the problem of voltage quality reduction caused by DG power uncertainty, and improves the local and regional voltage quality of the distribution network. , to achieve the safe and stable operation of the distribution network.
附图说明Description of drawings
图1为含有多个DG和VSG-DG的主动配电网的一条馈线结构示意图。Fig. 1 is a schematic diagram of a feeder structure of an active distribution network containing multiple DGs and VSG-DGs.
图2为一个VSG-DG的一次电路结构和控制系统结构示意图。Fig. 2 is a schematic diagram of the primary circuit structure and control system structure of a VSG-DG.
图3为具有自适应调节特性的电压参考值变化示意图。Fig. 3 is a schematic diagram of voltage reference value changes with adaptive adjustment characteristics.
具体实施方式detailed description
下面结合附图和实施例对本发明进行说明。The present invention will be described below in conjunction with the accompanying drawings and embodiments.
如图2所示,本发明一个VSG-DG包括一次电路和VSG-DG控制系统,VSG-DG控制系统主要包括电压电流采集模块、功率计算模块、有功-频率控制模块、无功-电压控制模块、电压转换模块、电压补偿控制模块、直流电压控制模块和电流控制模块,电压电流采集模块用于采集VSG-DG的内环电流值、输出电流值及该VSG-DG并网的PCC处电压值,电压电流采集模块的输出端连接功率计算模块的输入端、无功-电压控制模块的输入端和电流控制模块的输入端,功率计算模块的输出端连接有功-频率控制模块的输入端、无功-电压控制模块的输入端和电压补偿模块的输入端,有功-频率控制模块的输出端和无功-电压控制模块的输出端均连接电压转换模块的输入端,电压转换模块的输出端连接电压补偿控制模块的输入端,电压补偿控制模块的输出端和直流电压控制模块的输出端均连接电流控制模块的输入端,电流控制模块的输出端连接VSG-DG的三相全桥逆变器。As shown in Figure 2, a VSG-DG of the present invention includes a primary circuit and a VSG-DG control system, and the VSG-DG control system mainly includes a voltage and current acquisition module, a power calculation module, an active power-frequency control module, and a reactive power-voltage control module , voltage conversion module, voltage compensation control module, DC voltage control module and current control module, the voltage and current acquisition module is used to collect the inner loop current value of VSG-DG, the output current value and the voltage value at the PCC of the VSG-DG connected to the grid , the output terminal of the voltage and current acquisition module is connected to the input terminal of the power calculation module, the input terminal of the reactive power-voltage control module and the input terminal of the current control module, the output terminal of the power calculation module is connected to the input terminal of the active power-frequency control module, The input terminal of the power-voltage control module and the input terminal of the voltage compensation module, the output terminal of the active power-frequency control module and the output terminal of the reactive power-voltage control module are all connected to the input terminal of the voltage conversion module, and the output terminal of the voltage conversion module is connected to The input terminal of the voltage compensation control module, the output terminal of the voltage compensation control module and the output terminal of the DC voltage control module are all connected to the input terminal of the current control module, and the output terminal of the current control module is connected to the three-phase full-bridge inverter of VSG-DG .
下面以接入PCC的第i个VSG-DGi为例说明本发明控制方法。The following takes the i-th VSG-DG i connected to the PCC as an example to illustrate the control method of the present invention.
一种基于虚拟同步发电机型分布式电源的配电网电压控制方法,包括以下步骤:A distribution network voltage control method based on a virtual synchronous generator type distributed power supply, comprising the following steps:
步骤1、搭建如上所述VSG-DGi的控制系统。Step 1. Build the control system of VSG-DG i as mentioned above.
步骤2、电流电压采集模块采集PCC处电压在三相静止abc坐标系的值vabc=[va vbvc]T和VSG-DGi的输出电流在三相静止abc坐标系的值iabc,i=[ia,i ib,i ic,i]T,计算PCC处电压vabc的模值V,并将vabc和iabc,i通过式(1)转换为两相静止αβ坐标系中的电压值vαβ和输出电流值iαβ,i,Step 2, the current and voltage acquisition module collects the value of the voltage at the PCC in the three-phase static abc coordinate system v abc =[v a v b v c ] T and the value i of the output current of VSG-DG i in the three-phase static abc coordinate system abc,i =[i a,i i b,i i c,i ] T , calculate the modulus V of the voltage v abc at the PCC, and convert v abc and i abc,i into two-phase static The voltage value v αβ and the output current value i αβ,i in the αβ coordinate system,
其中 in
步骤3、功率计算模块计算VSG-DGi的输出无功Qi和输出有功Pi:Step 3. The power calculation module calculates the output reactive power Q i and output active power P i of VSG-DG i :
步骤4、无功-电压控制模块自适应设置PCC的电压控制参考值Vref,具体步骤为:Step 4. The reactive power-voltage control module adaptively sets the voltage control reference value V ref of the PCC. The specific steps are:
(1)在PCC电压发生波动后,计算PCC电压波动后第2个采样周期电压变化量ΔVs2:(1) After the PCC voltage fluctuates, calculate the voltage variation ΔV s2 in the second sampling period after the PCC voltage fluctuates:
ΔVs2=Vs2-Vs1 (3)ΔV s2 =V s2 -V s1 (3)
其中Vs1、Vs2分别为第一个采样点和第二个采样点的电压值。Wherein V s1 and V s2 are the voltage values of the first sampling point and the second sampling point respectively.
(2)根据电力系统对于35kV以下配电网电压的要求,正常情况下,PCC电压的偏差应在±7%以内。考虑电压波动分为暂升或暂降两种情况,对Vref的设置方法为三种:(2) According to the requirements of the power system for the distribution network voltage below 35kV, under normal circumstances, the deviation of the PCC voltage should be within ±7%. Considering that the voltage fluctuation is divided into two situations: swell or sag, there are three ways to set V ref :
(a)V>1.07VN时,(a) When V>1.07V N ,
其中VN是配电网额定电压,H为采样率(kHz)。如图3中实线所示,电压控制参考值Vref的控制具有自适应反正切曲率控制特性:在电压控制起始阶段,电压控制参考值Vref的变化率小,一方面躲避配电网电压波动的暂态过程,另一方面等待配电网其他电压调节设备共同参与电压控制,减小VSG-DGi的输出功率压力;在电压控制最后阶段,电压控制参考值Vref的变化率也很小,目的是精确平缓的恢复配电网PCC电压至额定电压值。其中t为从电压波动开始计时的时刻,电压补偿参考值调节时间为Vref的调节时间依据PCC电压波动后第2个采样周期电压变化率进行自适应调整,PCC电压变化率越大,调节时间越久。Among them, V N is the rated voltage of the distribution network, and H is the sampling rate (kHz). As shown by the solid line in Figure 3, the control of the voltage control reference value V ref has the characteristic of adaptive arctangent curvature control: in the initial stage of voltage control, the change rate of the voltage control reference value V ref is small, on the one hand, it avoids the distribution network The transient process of voltage fluctuation, on the other hand, waits for other voltage regulation equipment in the distribution network to participate in voltage control to reduce the output power pressure of VSG-DG i ; in the final stage of voltage control, the change rate of voltage control reference value V ref also It is very small, and the purpose is to accurately and gently restore the PCC voltage of the distribution network to the rated voltage value. Where t is the timing from the voltage fluctuation, and the voltage compensation reference value adjustment time is The adjustment time of V ref is adaptively adjusted according to the voltage change rate of the second sampling period after the PCC voltage fluctuates. The greater the PCC voltage change rate, the longer the adjustment time.
(b)V<0.93VN时,(b) When V<0.93V N ,
如图3中虚线所示,电压控制参考值Vref也具有自适应反正切曲率控制特性:在电压控制起始阶段,电压控制参考值Vref的变化率小,一方面躲避配电网电压波动的暂态过程,另一方面等待配电网其他电压调节设备共同参与电压控制,减小VSG-DGi的输出功率压力;在电压控制最后阶段,电压控制参考值Vref的变化率也很小,目的是精确平缓的恢复配电网PCC电压至额定电压值。As shown by the dotted line in Figure 3, the voltage control reference value V ref also has the characteristic of adaptive arctangent curvature control: in the initial stage of voltage control, the change rate of the voltage control reference value V ref is small, on the one hand, it avoids voltage fluctuations in the distribution network On the other hand, it waits for other voltage regulation equipment in the distribution network to participate in voltage control to reduce the output power pressure of VSG-DG i ; in the final stage of voltage control, the change rate of the voltage control reference value V ref is also very small , the purpose is to accurately and gently restore the PCC voltage of the distribution network to the rated voltage value.
(c)0.93VN<V<1.07VN时,此时配电网出现了轻微的电压波动,可以按照正常运行状态设定电压参考值:(c) When 0.93V N < V < 1.07V N , there is a slight voltage fluctuation in the distribution network at this time, and the voltage reference value can be set according to the normal operation state:
Vref=VN (6)V ref = V N (6)
步骤5、(1)设置VSG-DGi的输出无功参考值Qref,i和输出有功参考值Pref,i。Step 5, (1) Set the output reactive power reference value Q ref,i and the output active power reference value Pre ref ,i of VSG-DG i .
(2)将Vref、Qref,i和Qi输入至无功-电压控制模块,得到VSG-DGi的虚拟定子内电动势Ei,控制公式如下:(2) Input V ref , Q ref,i and Q i to the reactive power-voltage control module to obtain the virtual internal electromotive force E i of the VSG-DG i , and the control formula is as follows:
其中,ku和K分别是无功-电压控制器的下垂系数与积分系数。Among them, k u and K are the droop coefficient and integral coefficient of the reactive power-voltage controller, respectively.
(3)将Pref,i和Pi输入至VSG有功-频率控制模块,得到VSG-DGi的虚拟电角度θ1,i,控制公式如下:(3) Input Pre ref,i and P i to the VSG active-frequency control module to obtain the virtual electrical angle θ 1,i of VSG-DG i , and the control formula is as follows:
其中,J为转动惯量,D为阻尼系数,ω为VSG转子角频率。Among them, J is the moment of inertia, D is the damping coefficient, and ω is the angular frequency of the VSG rotor.
步骤6、电压转换模块将Ei和θ1,i合成控制参考电压和 Step 6. The voltage conversion module synthesizes E i and θ 1,i into a control reference voltage with
其中 in
步骤7、电压补偿模块分为α电压补偿模块和β电压补偿模块,分别根据输入参考值和得到VSG-DGi的输出电流参考过程量可以表示为:Step 7. The voltage compensation module is divided into α voltage compensation module and β voltage compensation module, respectively according to the input reference value with Obtain the output current reference process quantity of VSG-DG i It can be expressed as:
其中nP,i为VSG-DGi的有功分配系数,ke,p为电压误差比例系数;电压补偿模块设计成PI控制器,kP,P、kI,P分别为PI控制器的比例系数和积分系数。in n P,i is the active power distribution coefficient of VSG-DG i , k e,p is the voltage error proportional coefficient; the voltage compensation module is designed as a PI controller, and k P,P , k I,P are the proportional coefficients of the PI controller and integral coefficients.
当系统进入稳态时,由于ke,P为固定常数,接入同一PCC处的和vαβ均相同,因此接入同一PCC处的nP,iQi均相等,按照VSC-DGi的额定容量设置nP,i,则并联的VSC-DG将按照各自额定容量成比例输出无功功率。When the system enters a steady state, Since k e,P is a fixed constant, the and v αβ are the same, so n P,i Q i connected to the same PCC are equal, and n P,i is set according to the rated capacity of VSC-DG i , then the parallel VSC-DG will output proportionally according to their respective rated capacities reactive power.
步骤8、设置VSG-DGi直流母线电压的额定值采集VSG-DGi的直流侧电压VDC,i,直流电压控制模块也设计成PI控制器,则VSG-DGi需吸收有功功率其中kP,DC和kI,DC为比例积分控制参数。计算维持直流母线电压稳定的有功电流具体为:Step 8. Set the rated value of the VSG-DG i DC bus voltage Collect the DC side voltage V DC,i of VSG-DG i , and the DC voltage control module is also designed as a PI controller, then VSG-DG i needs to absorb active power Among them, k P, DC and k I, DC are proportional-integral control parameters. Calculation of active current to maintain DC bus voltage stability Specifically:
步骤9、电流控制模块采用了比例谐振控制器(PR),具体步骤为:Step 9. The current control module adopts a proportional resonant controller (PR), and the specific steps are:
(1)电流控制模块先合成VSG-DGi的输出电流参考值在运行过程中,若输出电流参考值超过VSG-DGi的额定电流IN,则 (1) The current control module first synthesizes the output current reference value of VSG-DG i During operation, if the output current reference value exceeds the rated current I N of VSG-DG i , then
(2)输出电流参考值和输出电流值iαβ,i通过第一比例谐振控制器,得到VSG-DGi的内环电流参考值 (2) Output current reference value And the output current value i αβ,i passes through the first proportional resonant controller to get the inner loop current reference value of VSG-DG i
(3)内环电流参考值减去内环电流值iL,αβ,i后经过第二比例谐振控制器,得到两相静止αβ坐标系下的PWM控制输入信号UPWM,i,αβ;(3) Inner loop current reference value After subtracting the inner loop current value i L, αβ, i , through the second proportional resonance controller, the PWM control input signal U PWM,i, αβ under the two-phase static αβ coordinate system is obtained;
(4)经过两相静止αβ坐标系到三相静止abc坐标系的变换,得到三相静止abc坐标系下的PWM控制输入信号UPWM,i,abc,输入PWM生成单元进行脉冲宽度调制,脉冲调制后输出给VSG-DGi的三相全桥逆变器。(4) After transforming the two-phase static αβ coordinate system to the three-phase static abc coordinate system, the PWM control input signal U PWM,i,abc in the three-phase static abc coordinate system is obtained, and input to the PWM generation unit for pulse width modulation, pulse After modulation, it is output to the three-phase full-bridge inverter of VSG-DG i .
其中比例谐振控制器的传递函数为:The transfer function of the proportional resonant controller is:
其中,kPRp和kPRr分别是比例谐振控制器的比例系数和谐振增益,ωc为截止频率。Among them, k PRp and k PRr are the proportional coefficient and resonance gain of the proportional resonant controller respectively, and ω c is the cut-off frequency.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610994651.6A CN106532725B (en) | 2016-11-11 | 2016-11-11 | Virtual synchronous generator type distributed power supply-based power distribution network voltage control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610994651.6A CN106532725B (en) | 2016-11-11 | 2016-11-11 | Virtual synchronous generator type distributed power supply-based power distribution network voltage control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106532725A true CN106532725A (en) | 2017-03-22 |
CN106532725B CN106532725B (en) | 2023-06-27 |
Family
ID=58350784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610994651.6A Active CN106532725B (en) | 2016-11-11 | 2016-11-11 | Virtual synchronous generator type distributed power supply-based power distribution network voltage control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106532725B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107102568A (en) * | 2017-06-14 | 2017-08-29 | 华北电力科学研究院有限责任公司 | Photovoltaic virtual synchronous machine stability of grid connection hardware-in―the-loop test system and method |
CN107656436A (en) * | 2017-08-11 | 2018-02-02 | 中国电力科学研究院 | The simulated inertia control method for coordinating and device of a kind of virtual plant |
CN108173278A (en) * | 2018-01-15 | 2018-06-15 | 清华大学 | New energy VSG frequency modulation DC voltage control device, method and optimization method |
CN114865656A (en) * | 2022-05-25 | 2022-08-05 | 江苏大学 | Pi-type virtual synchronous generator control method of interface converter in alternating current-direct current hybrid micro-grid |
CN115102301A (en) * | 2022-07-15 | 2022-09-23 | 广东泰坦智能动力有限公司 | Vehicle end synchronous control method for wireless power transmission |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037777A (en) * | 2014-04-11 | 2014-09-10 | 天津大学 | Method for suppressing voltage vluctuation and harmonic distortion through static synchronous compensator in distribution network |
-
2016
- 2016-11-11 CN CN201610994651.6A patent/CN106532725B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037777A (en) * | 2014-04-11 | 2014-09-10 | 天津大学 | Method for suppressing voltage vluctuation and harmonic distortion through static synchronous compensator in distribution network |
Non-Patent Citations (1)
Title |
---|
张玮亚等: "《基于静止同步补偿器的主动配电网分区电压控制》", 《基于静止同步补偿器的主动配电网分区电压控制》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107102568A (en) * | 2017-06-14 | 2017-08-29 | 华北电力科学研究院有限责任公司 | Photovoltaic virtual synchronous machine stability of grid connection hardware-in―the-loop test system and method |
CN107102568B (en) * | 2017-06-14 | 2020-08-04 | 华北电力科学研究院有限责任公司 | Hardware-in-the-loop test system and method for grid-connected stability of photovoltaic virtual synchronous machine |
CN107656436A (en) * | 2017-08-11 | 2018-02-02 | 中国电力科学研究院 | The simulated inertia control method for coordinating and device of a kind of virtual plant |
CN108173278A (en) * | 2018-01-15 | 2018-06-15 | 清华大学 | New energy VSG frequency modulation DC voltage control device, method and optimization method |
CN108173278B (en) * | 2018-01-15 | 2019-12-20 | 清华大学 | Direct-current voltage control device and method for VSG frequency modulation of new energy and optimization method |
CN114865656A (en) * | 2022-05-25 | 2022-08-05 | 江苏大学 | Pi-type virtual synchronous generator control method of interface converter in alternating current-direct current hybrid micro-grid |
CN115102301A (en) * | 2022-07-15 | 2022-09-23 | 广东泰坦智能动力有限公司 | Vehicle end synchronous control method for wireless power transmission |
CN115102301B (en) * | 2022-07-15 | 2024-07-23 | 广东泰坦智能动力有限公司 | Vehicle end synchronous control method for wireless power transmission |
Also Published As
Publication number | Publication date |
---|---|
CN106532725B (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110970933B (en) | Active support control-based virtual inertia compensation method for light-storage combined power generation system | |
CN109586343A (en) | Photovoltaic-energy-storing and power-generating system and method based on virtual synchronous generator control | |
CN109586269B (en) | Direct-current micro-grid virtual inertia control method and system considering parameter self-optimization | |
CN106532725B (en) | Virtual synchronous generator type distributed power supply-based power distribution network voltage control method | |
TW202127787A (en) | Ac load power supply system and method | |
CN110198045B (en) | A VSC-MTDC Additional Frequency Adaptive Droop Control Method | |
CN110048457B (en) | A virtual synchronous control method for doubly-fed wind turbines with low voltage ride-through function | |
CN109390927A (en) | It is a kind of based on SOC without interconnected communication distributed energy storage droop control method | |
CN112542849A (en) | Self-adaptive virtual inertia frequency modulation control method for flexible direct current power transmission system | |
CN106410839A (en) | Active and reactive current coordination control-based photovoltaic grid-connected inverter control method | |
CN101860043A (en) | Low-voltage ride-through control device and control method for series-type wind turbines | |
CN110601272A (en) | Back-to-back converter control method and system based on virtual synchronous machine | |
Kanellos et al. | Control of variable speed wind turbines equipped with synchronous or doubly fed induction generators supplying islanded power systems | |
CN104037777B (en) | Distribution Static Compensator suppresses the method for voltage pulsation and harmonic distortion | |
CN114629136A (en) | Offshore wind power soft direct-sending system based on super capacitor and inertia coordination method thereof | |
CN115764929A (en) | Backup voltage frequency supporting method for 100% new energy source sending end power grid | |
CN108448644A (en) | A control method and system for a virtual synchronous generator used in a battery energy storage system | |
CN115347614A (en) | A control method for a photovoltaic virtual synchronous generator system | |
CN205141702U (en) | Double -fed aerogenerator low voltage ride through system | |
Song et al. | Stability and control of a grid integrated DFIM based variable speed pumped storage system | |
CN106712032A (en) | Optimal power flow model construction method considering active power voltage regulation capacity of wind turbine generator set | |
CN112803488A (en) | Direct-drive fan transient synchronous stable domain construction method based on energy function method | |
CN115800296B (en) | Voltage frequency collaborative supporting method for open sea wind power through VSC-MTDC grid-connected system | |
CN113852099B (en) | Rapid frequency response control system and method for direct-driven wind turbine generator | |
CN116937546A (en) | Wind storage grid connection considered power grid low-frequency oscillation suppression method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: No. 251 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, China Patentee after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. NANJING POWER SUPPLY BRANCH Country or region after: Zhong Guo Patentee after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. Country or region after: China Patentee after: STATE GRID CORPORATION OF CHINA Address before: No.1, OTI street, Jianye District, Nanjing City, Jiangsu Province, 210019 Patentee before: STATE GRID JIANGSU ELECTRIC POWER COMPANY NANJING POWER SUPPLY Co. Country or region before: Zhong Guo Patentee before: STATE GRID JIANGSU ELECTRIC POWER Co. Country or region before: China Patentee before: State Grid Corporation of China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240320 Address after: No. 16, Longfei Road, Yuhuatai District, Nanjing, Jiangsu 210039 Patentee after: Nanjing Electric Power Design and Research Institute Co.,Ltd. Country or region after: Zhong Guo Patentee after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. NANJING POWER SUPPLY BRANCH Address before: No. 251 Zhongshan Road, Gulou District, Nanjing City, Jiangsu Province, China Patentee before: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. NANJING POWER SUPPLY BRANCH Country or region before: Zhong Guo Patentee before: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. Country or region before: China Patentee before: STATE GRID CORPORATION OF CHINA |