CN106506090B - A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform - Google Patents
A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform Download PDFInfo
- Publication number
- CN106506090B CN106506090B CN201610877177.9A CN201610877177A CN106506090B CN 106506090 B CN106506090 B CN 106506090B CN 201610877177 A CN201610877177 A CN 201610877177A CN 106506090 B CN106506090 B CN 106506090B
- Authority
- CN
- China
- Prior art keywords
- terahertz
- pulse
- optical
- mach
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 52
- 238000004891 communication Methods 0.000 title claims abstract description 32
- 238000007493 shaping process Methods 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 11
- 239000013307 optical fiber Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 10
- 238000013461 design Methods 0.000 abstract description 2
- 230000009977 dual effect Effects 0.000 abstract description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
- H04B10/541—Digital intensity or amplitude modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/524—Pulse modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种太赫兹超宽带通信波形的光外差调控系统,包括高重复频率脉冲激光源、可编程脉冲整形器、连续激光器、双平行马赫曾德尔调制器、耦合器、太赫兹发射器,本发明采用连续光和脉冲光的外差混频方式光电产生太赫兹脉冲序列,双平行马赫曾德尔调制器调制连续光实现太赫兹通信脉冲的调制,可编程脉冲整形器在光域上整形光脉冲来设计太赫兹脉冲形状;该方案可实现太赫兹高速脉冲通信信号的调制。
The invention discloses an optical heterodyne control system for terahertz ultra-broadband communication waveforms, which includes a high repetition frequency pulse laser source, a programmable pulse shaper, a continuous laser, a dual-parallel Mach-Zehnder modulator, a coupler, and a terahertz transmitter The present invention adopts the heterodyne frequency mixing method of continuous light and pulsed light to photoelectrically generate terahertz pulse sequences, dual parallel Mach-Zehnder modulators modulate continuous light to realize the modulation of terahertz communication pulses, and programmable pulse shapers in the optical domain Shaping optical pulses to design terahertz pulse shapes; this scheme can realize the modulation of terahertz high-speed pulse communication signals.
Description
技术领域technical field
本发明属于无线通信领域,具体涉及一种太赫兹超宽带通信波形的光外差调控系统。The invention belongs to the field of wireless communication, and in particular relates to an optical heterodyne control system for terahertz ultra-wideband communication waveforms.
背景技术Background technique
为解决现有无线通信系统频谱资源和容量有限的问题,近年来,太赫兹通信受到了广泛的重视。太赫兹频段通常指0.1~10THz,通信带宽远大于微波毫米波,基于光电方式的太赫兹通信系统可携带高达几十到几百吉比特(Gbps)的数据信息。In order to solve the problem of limited spectrum resources and capacity in existing wireless communication systems, terahertz communication has received extensive attention in recent years. The terahertz frequency band usually refers to 0.1-10THz, and the communication bandwidth is much larger than that of microwave and millimeter waves. The terahertz communication system based on the photoelectric method can carry data information up to tens to hundreds of gigabits (Gbps).
太赫兹通信的方法主要有连续太赫兹载波调制和太赫兹脉冲调制。连续太赫兹波载波一般采用光外差混频(photo-mixing)两路连续激光的方式产生,通过调制其中一路连续激光实现太赫兹通信信号的调制。而常见的太赫兹脉冲的光电产生方式为超短光脉冲照射非线性晶体和飞秒脉冲激励光电导天线等。非线性效应和光电导效应都需要很高的光学峰值功率,且大大超过光电调制器的损坏光功率,所以飞秒脉冲的重复频率通常都很低(50-100MHz),而且不利于太赫兹信号的光学调制。Terahertz communication methods mainly include continuous terahertz carrier modulation and terahertz pulse modulation. The continuous terahertz wave carrier is generally generated by means of photo-mixing two continuous lasers, and the modulation of the terahertz communication signal is realized by modulating one of the continuous lasers. The common photoelectric generation methods of terahertz pulses are ultrashort light pulses irradiating nonlinear crystals and femtosecond pulses exciting photoconductive antennas. Both the nonlinear effect and the photoconductive effect require high optical peak power, which greatly exceeds the damaged optical power of the photoelectric modulator, so the repetition frequency of femtosecond pulses is usually very low (50-100MHz), and it is not conducive to the detection of terahertz signals. optical modulation.
常见的太赫兹脉冲发射接收系统由飞秒脉冲源(femtosecond laser)、斩波器(optical chopper)、波束分割器(BS)、THz发射器(THz emitter)、接收器(THz detector)等组成。通过瞬时光电导开关(photoconductive switching)的原理,当光电流随时间变化时,其产生的光电流大小对应入射激光束强度的时间微分,从而将飞秒激光脉冲转换成宽带太赫兹脉冲。A common terahertz pulse transmitting and receiving system consists of a femtosecond laser, an optical chopper, a beam splitter (BS), a THz transmitter (THz emitter), and a receiver (THz detector). Through the principle of instantaneous photoconductive switching (photoconductive switching), when the photocurrent changes with time, the magnitude of the photocurrent generated corresponds to the time differential of the incident laser beam intensity, thereby converting femtosecond laser pulses into broadband terahertz pulses.
公布号为CN 104155825 A的专利公开了一种大能量太赫兹脉冲产生方法和装置,具体是将一束高能量的飞秒脉冲均匀的分成两束或多束,将它们分别入射到参数完全相同的ZeTn晶体中,通过飞秒脉冲光整流过程在晶体中分别产生太赫兹脉冲,通过调节时间延迟使产生的太赫兹脉冲同时到达探测器,可以得到相干合成的太赫兹脉冲。该方法的重复频率比较低,而且不利于太赫兹信号的光学调制。The patent with the publication number CN 104155825 A discloses a method and device for generating high-energy terahertz pulses. Specifically, a beam of high-energy femtosecond pulses is evenly divided into two or more beams, and they are respectively incident on In the ZeTn crystal, the terahertz pulses are generated in the crystal through the femtosecond pulse light rectification process, and the coherently synthesized terahertz pulses can be obtained by adjusting the time delay so that the generated terahertz pulses reach the detector at the same time. The repetition rate of this method is relatively low, and it is not conducive to the optical modulation of terahertz signals.
发明内容Contents of the invention
本发明提供了一种太赫兹超宽带通信波形的光外差调控系统,采用连续光和脉冲光的外差混频方式实现太赫兹脉冲的产生,并能实现太赫兹高速脉冲通信信号的调制。The invention provides an optical heterodyne control system for terahertz ultra-broadband communication waveforms, which adopts the heterodyne frequency mixing method of continuous light and pulsed light to realize the generation of terahertz pulses and realize the modulation of terahertz high-speed pulse communication signals.
一种太赫兹超宽带通信波形的光外差调控系统,包括高重复频率脉冲激光源、可编程脉冲整形器、连续激光器、双平行马赫曾德尔调制器(DPMZM)、光纤延迟线、耦合器、太赫兹发射器(UTC-PD);所述的可编程脉冲整形器对高重复频率光脉冲源进行波形整形,并将整形的脉冲信号输送到耦合器;所述的双平行马赫曾德尔调制器对连续激光器进行调制,并将调制的光信号经光纤延迟线输送到耦合器,所述的耦合器将整形的脉冲信号与调制的光信号耦合后照射到太赫兹发射器,产生太赫兹脉冲。An optical heterodyne control system for terahertz ultra-broadband communication waveforms, including a high repetition rate pulsed laser source, a programmable pulse shaper, a continuous laser, a dual-parallel Mach-Zehnder modulator (DPMZM), a fiber delay line, a coupler, Terahertz transmitter (UTC-PD); the programmable pulse shaper performs waveform shaping on the high repetition rate optical pulse source, and sends the shaped pulse signal to the coupler; the dual parallel Mach-Zehnder modulator The continuous laser is modulated, and the modulated optical signal is sent to the coupler through the fiber delay line, and the coupler couples the shaped pulse signal and the modulated optical signal to the terahertz transmitter to generate a terahertz pulse.
所述的高重复频率脉冲激光源用于发射1550nm光通信波段高重复频率(≥10GHz)的脉冲源。The high repetition rate pulsed laser source is used to emit a pulse source with a high repetition rate (≥10GHz) in the 1550nm optical communication band.
所述的高重复频率脉冲激光源为可调谐半导体激光器或光纤激光器。The high repetition rate pulsed laser source is a tunable semiconductor laser or fiber laser.
所述的可编程脉冲整形器对高重复频率为f0的光脉冲源进行波形整形。脉冲源在频域上呈现为频率间隔为f0的梳状谱,通过频谱的精细整形,可以对脉冲的形状进行设计。The programmable pulse shaper performs waveform shaping on an optical pulse source with a high repetition frequency f 0 . The pulse source appears as a comb-like spectrum with a frequency interval of f 0 in the frequency domain, and the shape of the pulse can be designed through fine shaping of the spectrum.
所述的可编程脉冲整形器对高重复频率的梳状谱逐线(line-by-line)作幅度和相位处理。通过对频域的光脉冲源频谱逐线处理,在光域上灵活调控设计脉冲时域波形,例如高斯形、抛物线形、洛伦兹形等。根据时域波形和频域频谱的傅立叶变换对应关系,例如,当可编程脉冲整形器的整形后输出梳状谱呈现高斯包络时,脉冲在时域上为重复频率f0的高斯脉冲。The programmable pulse shaper performs amplitude and phase processing on the high repetition frequency comb spectrum line-by-line. Through the line-by-line processing of the optical pulse source spectrum in the frequency domain, the pulse time-domain waveform can be flexibly regulated and designed in the optical domain, such as Gaussian, parabolic, and Lorentzian. According to the Fourier transform correspondence between the time-domain waveform and the frequency-domain spectrum, for example, when the output comb spectrum of the programmable pulse shaper presents a Gaussian envelope, the pulse is a Gaussian pulse with a repetition frequency f 0 in the time domain.
高重复频率为f0对应的时域脉冲时间间隔为T。The time interval of time-domain pulses corresponding to the high repetition frequency f 0 is T.
所述的连续激光器产生连续的稳态光信号。The continuous laser generates continuous steady-state optical signals.
所述的双平行马赫曾德尔调制器由两个子马赫曾德尔调制器(MZM)和一个主马赫曾德尔调制器构成,其中两个子马赫曾德尔调制器内嵌在主马赫曾德尔调制器的两个调制臂上。双平行马赫曾德尔调制器通过在两个子马赫曾德尔调制器上调制数字基带信号,并通过主马赫曾德尔调制器实现对输入连续激光的正交相位控制,从而可以实现如正交相移键控(QPSK)等复杂调制方式。The dual-parallel Mach-Zehnder modulator is composed of two sub-Mach-Zehnder modulators (MZM) and a main Mach-Zehnder modulator, wherein the two sub-Mach-Zehnder modulators are embedded in the two sub-MZMs of the main Mach-Zehnder modulator. on a modulation arm. The dual-parallel Mach-Zehnder modulator modulates the digital baseband signal on the two sub-Mach-Zehnder modulators, and realizes the quadrature phase control of the input continuous laser through the main Mach-Zehnder modulator, so that the quadrature phase shift key can be realized. control (QPSK) and other complex modulation methods.
所述的光纤延迟线采用基于光纤的1550nm光通信用可调延迟控制线。The optical fiber delay line adopts an adjustable delay control line for 1550nm optical communication based on optical fiber.
所述的光纤延迟线用于调节数字信号到达耦合器的时间,实现数字信号和光脉冲的同步,一比特数字信号对应N个脉冲。The fiber delay line is used to adjust the time when the digital signal arrives at the coupler to realize the synchronization between the digital signal and the optical pulse, and one bit digital signal corresponds to N pulses.
所述的耦合器将连接在耦合器输入端的两路1550nm波段光信号耦合在一路并输出。The coupler couples the two 1550nm band optical signals connected to the input end of the coupler together and outputs them together.
所述的太赫兹发射器采用天线集成的单行载流子光电探测器,太赫兹发射器相对于传统的光电探测器,只有高速移动的电子是激发态的载流子,因而具有超快的皮秒量级光子响应速度和超大的带宽。The terahertz emitter uses an antenna-integrated single-line carrier photodetector. Compared with the traditional photodetector, the terahertz emitter only has high-speed moving electrons as the carriers in the excited state, so it has ultra-fast skin Second-level photon response speed and ultra-large bandwidth.
在时域上,每个数字比特将同时调制N个脉冲,产生太赫兹脉冲的中心频率由整形的脉冲信号与调制的连续光信号的中心波长差决定。例如,整形后的脉冲光中心波长和连续激光的中心波长相差2.4nm时,产生的太赫兹脉冲中心频率在300GHz。In the time domain, each digital bit will modulate N pulses at the same time, and the center frequency of the generated terahertz pulse is determined by the center wavelength difference between the shaped pulse signal and the modulated continuous optical signal. For example, when the center wavelength of the shaped pulsed light is 2.4 nm different from that of the continuous laser, the center frequency of the generated terahertz pulse is 300 GHz.
一般情况下,太赫兹发射天线为偶极子(Dipole)或领结(Bow-Tie)两种电极结构的小孔径天线,在时域上太赫兹辐射电磁波为探测器中瞬态光电流的一阶微分。因此,太赫兹辐射脉冲的形状设计由光脉冲滤波整形灵活处理。In general, the terahertz transmitting antenna is a small-aperture antenna with two electrode structures, dipole (Dipole) or bow-tie (Bow-Tie). In the time domain, the terahertz radiation electromagnetic wave is the first order of the transient photocurrent in the detector differential. Therefore, the shape design of terahertz radiation pulses is flexibly handled by optical pulse filter shaping.
太赫兹脉冲的调制格式(如OOK、BPSK、QPSK等)由调制连续光这种简单的方式实现。Modulation formats of terahertz pulses (such as OOK, BPSK, QPSK, etc.) are realized by the simple way of modulating continuous light.
太赫兹超宽带通信波形的光外差调控系统的工作工程如下:The working engineering of the optical heterodyne control system of terahertz ultra-wideband communication waveform is as follows:
可编程脉冲整形器对高重复频率光脉冲源进行波形整形,马赫曾德尔调制器对连续激光器进行相对低速(f0/N)的调制,整形的脉冲源与调制的连续光信号通过耦合器耦合在一起后照射太赫兹发射器,产生太赫兹脉冲,在光外差混频机制下,一个光脉冲将对应产生一个太赫兹脉冲。The programmable pulse shaper performs waveform shaping on the high repetition frequency optical pulse source, and the Mach-Zehnder modulator performs relatively low-speed (f 0 /N) modulation on the continuous laser, and the shaped pulse source and the modulated continuous optical signal are coupled through a coupler Together, the terahertz emitter is irradiated to generate a terahertz pulse. Under the optical heterodyne mixing mechanism, one light pulse will correspondingly generate a terahertz pulse.
本发明采用连续光和脉冲光的外差混频方式光电产生太赫兹调制脉冲序列。太赫兹脉冲的调控都在光域进行,太赫兹通信脉冲的调制通过调制连续光实现,太赫兹脉冲形状由可编程脉冲整形器在光域上整形光脉冲进行设计。该方案可实现太赫兹高速脉冲通信信号的调制。The invention adopts the heterodyne frequency mixing mode of continuous light and pulse light to photoelectrically generate terahertz modulation pulse sequence. The regulation of terahertz pulses is carried out in the optical domain. The modulation of terahertz communication pulses is realized by modulating continuous light. The shape of terahertz pulses is designed by shaping optical pulses in the optical domain by a programmable pulse shaper. This scheme can realize the modulation of terahertz high-speed pulse communication signals.
本发明与其他太赫兹脉冲发射接收系统相比,具有的优势为:Compared with other terahertz pulse transmitting and receiving systems, the present invention has the following advantages:
(1)太赫兹脉冲的中心频率由外差两个激光器中心波长差决定,简单易控。(1) The center frequency of the terahertz pulse is determined by the center wavelength difference of two heterodyned lasers, which is simple and easy to control.
(2)太赫兹时域脉冲波形通过可编程脉冲整形器在光域灵活设计。(2) The terahertz time-domain pulse waveform is flexibly designed in the optical domain through a programmable pulse shaper.
(3)脉冲编码通过调制连续光实现,可实现太赫兹脉冲的高速通信。(3) Pulse encoding is realized by modulating continuous light, which can realize high-speed communication of terahertz pulses.
附图说明Description of drawings
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是QPSK调制的太赫兹波形。Figure 2 is a QPSK modulated terahertz waveform.
具体实施方式Detailed ways
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。In order to describe the present invention more specifically, the technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,太赫兹超宽带通信波形的光外差调控系统,包括高重复频率脉冲激光源、可编程脉冲整形器、连续激光器、双平行马赫曾德尔调制器、光纤延迟线、耦合器、太赫兹发射器。As shown in Figure 1, the optical heterodyne control system for terahertz ultra-wideband communication waveforms includes a high repetition rate pulsed laser source, a programmable pulse shaper, a continuous laser, a dual-parallel Mach-Zehnder modulator, a fiber delay line, and a coupler , Terahertz transmitter.
脉冲激光源采用1550nm光通信波段的高重复频率脉冲源,例如10GHz重复频率,还可以通过光时分复用的方式获得更高的重复频率,例如40GHz甚至更高。The pulsed laser source adopts a high repetition rate pulse source in the 1550nm optical communication band, such as a 10GHz repetition rate, and can also obtain a higher repetition rate through optical time division multiplexing, such as 40GHz or even higher.
可编程脉冲整形器采用基于固态硅基液晶技术的10GHz分辨率1550nm波段可编程光处理器,对高重复频率的频谱逐线(line-by-line)作幅度和相位处理。根据时域波形和频域频谱的傅立叶变换对应关系,通过频域的频谱精细处理,设计光学处理器的输出频域包络形状,例如高斯形、抛物线形、洛伦兹形等,从而在光域上调控脉冲波形。太赫兹时域辐射电磁波为相应波形的一阶微分,因此,太赫兹脉冲形状由在光域设计的光脉冲形状决定,例如高斯型光脉冲的一阶微分为高斯型单周期脉冲(Gaussian monocycle)。The programmable pulse shaper adopts a 10GHz resolution 1550nm band programmable optical processor based on solid-state liquid crystal-on-silicon technology, and performs amplitude and phase processing line-by-line for high repetition frequency spectrum. According to the Fourier transform correspondence between the time domain waveform and the frequency domain spectrum, through fine processing of the frequency domain spectrum, the output frequency domain envelope shape of the optical processor is designed, such as Gaussian, parabolic, Lorentzian, etc. Regulate the pulse waveform on the domain. Terahertz time-domain radiated electromagnetic wave is the first-order differential of the corresponding waveform. Therefore, the shape of the terahertz pulse is determined by the shape of the optical pulse designed in the optical domain. For example, the first-order differential of a Gaussian optical pulse is a Gaussian monocycle (Gaussian monocycle) .
连续激光器采用常用的光通信用1550nm波段波长可调谐半导体激光器或光纤激光器。The continuous laser adopts the commonly used 1550nm band wavelength tunable semiconductor laser or fiber laser for optical communication.
光纤延迟线采用基于光纤的1550nm光通信用可调延迟控制线。The optical fiber delay line adopts an adjustable delay control line for 1550nm optical communication based on optical fiber.
双平行马赫曾德尔调制器采用1550nm波段的低射频带宽(小于10GHz)的商用DPMZM调制器,对连续激光器进行f0/N的二进制数字信号调制,N为整数。调制后的连续激光通过光纤延迟线控制延时,以同步数字比特和光脉冲(一比特对应N个脉冲)。在3dB光纤耦合器之后,同步的调制连续激光和整形后的脉冲光合为一路并送入天线集成的太赫兹发射器。目前日本NTT商用化UTC-PD的响应带宽可达1.5THz,300GHz频率的发射功率高达0dBm,另外英国UCL和法国IEMN研制的UTC-PD也具有相当好的带宽和响应度等性能。The dual-parallel Mach-Zehnder modulator uses a commercial DPMZM modulator with a low RF bandwidth (less than 10GHz) in the 1550nm band to modulate the continuous laser with a binary digital signal of f 0 /N, where N is an integer. The modulated continuous laser is delayed through the fiber delay line to synchronize digital bits and optical pulses (one bit corresponds to N pulses). After the 3dB fiber coupler, the synchronously modulated continuous laser light and the shaped pulsed light are combined into one path and sent to the antenna-integrated terahertz transmitter. At present, the response bandwidth of UTC-PD commercialized by NTT in Japan can reach 1.5THz, and the transmission power at 300GHz frequency is as high as 0dBm. In addition, the UTC-PD developed by UCL in the UK and IEMN in France also has quite good performance in bandwidth and responsivity.
在太赫兹发射器的外差混频机制下,两路光的中心波长差将决定太赫兹中心频率,例如,整形后的脉冲光中心波长和连续激光的中心波长相差2.4nm时,产生的太赫兹脉冲中心频率在300GHz。同时,在一个比特数字信号和N个光脉冲同步的情况下,N个脉冲将被同一比特调制,从而具有相同的太赫兹脉冲波形、幅度和相位。Under the heterodyne mixing mechanism of the terahertz transmitter, the center wavelength difference of the two paths of light will determine the terahertz center frequency. Hertz pulse center frequency is 300GHz. Meanwhile, under the condition that one bit digital signal and N optical pulses are synchronized, N pulses will be modulated by the same bit, thus having the same terahertz pulse shape, amplitude and phase.
图2示例了QPSK调制的太赫兹波形,天线辐射的00和11波形为互为反向的高斯二阶微分(doublet)脉冲,01和10则为互为反向的高斯型单周期脉冲(monocycle)。因此,通过低速调制连续光,避免使用大带宽调制器,实现高速太赫兹通信脉冲的编码。Figure 2 illustrates the terahertz waveform of QPSK modulation. The 00 and 11 waveforms radiated by the antenna are mutually opposite Gaussian second-order differential (doublet) pulses, and the 01 and 10 are mutually opposite Gaussian monocycle pulses (monocycle ). Therefore, encoding of high-speed terahertz communication pulses can be realized by modulating continuous light at low speed and avoiding the use of large-bandwidth modulators.
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The above-mentioned specific embodiments have described the technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned are only the most preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, supplements and equivalent replacements made within the scope shall be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610877177.9A CN106506090B (en) | 2016-10-08 | 2016-10-08 | A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610877177.9A CN106506090B (en) | 2016-10-08 | 2016-10-08 | A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106506090A CN106506090A (en) | 2017-03-15 |
CN106506090B true CN106506090B (en) | 2018-09-11 |
Family
ID=58294759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610877177.9A Active CN106506090B (en) | 2016-10-08 | 2016-10-08 | A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106506090B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108712214B (en) * | 2018-05-08 | 2019-10-18 | 浙江大学 | A tunable multi-band terahertz pulse wireless communication transmitter |
CN110808789B (en) * | 2019-11-12 | 2022-06-03 | 中国舰船研究设计中心 | Ultra-wideband high-frequency electromagnetic environment signal generation method based on optical heterodyne technology |
CN111541490B (en) * | 2020-05-26 | 2023-03-10 | 重庆邮电大学 | A QPSK to BPSK all-optical modulation format conversion system based on DPMZM |
CN114301535B (en) * | 2021-12-29 | 2024-03-26 | 杭州电子科技大学 | Method and system for generating optical arbitrary waveform of multiple weighted continuous lights |
CN116192173B (en) * | 2023-03-02 | 2024-09-27 | 电子科技大学 | Terahertz channel monitoring receiver based on optoelectronic mixer |
CN118694442B (en) * | 2024-08-28 | 2024-11-15 | 浙江大学 | A terahertz secure communication system based on chaotic signals |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101692627A (en) * | 2009-10-15 | 2010-04-07 | 复旦大学 | System for generating optical cable-carried terahertz signal based on two-stage single-side band modulation |
CN102854695A (en) * | 2012-09-03 | 2013-01-02 | 文鸿 | Device and method for generating terahertz wave based on nested Mach-Zehnder modulator |
CN103235463A (en) * | 2013-04-15 | 2013-08-07 | 湖南大学 | High-stability high-frequency-space optical frequency comb with adjustable frequency space |
CN105337144A (en) * | 2015-09-23 | 2016-02-17 | 宁波大学 | System and method for generating terahertz wave on the basis of taper chalcogenide fiber four-wave mixing |
US9297638B1 (en) * | 2014-10-21 | 2016-03-29 | Sandia Corporation | Two-path plasmonic interferometer with integrated detector |
-
2016
- 2016-10-08 CN CN201610877177.9A patent/CN106506090B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101692627A (en) * | 2009-10-15 | 2010-04-07 | 复旦大学 | System for generating optical cable-carried terahertz signal based on two-stage single-side band modulation |
CN102854695A (en) * | 2012-09-03 | 2013-01-02 | 文鸿 | Device and method for generating terahertz wave based on nested Mach-Zehnder modulator |
CN103235463A (en) * | 2013-04-15 | 2013-08-07 | 湖南大学 | High-stability high-frequency-space optical frequency comb with adjustable frequency space |
US9297638B1 (en) * | 2014-10-21 | 2016-03-29 | Sandia Corporation | Two-path plasmonic interferometer with integrated detector |
CN105337144A (en) * | 2015-09-23 | 2016-02-17 | 宁波大学 | System and method for generating terahertz wave on the basis of taper chalcogenide fiber four-wave mixing |
Non-Patent Citations (2)
Title |
---|
THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band;Jia Shi et al;《Optics Express》;20161004;第23777-23783页 * |
基于光学频率乘法器的太赫兹波信号产生方法;李明亮;《Proceedings of the 30th Chinese Control Conference》;20110724;第3196-3201页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106506090A (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106506090B (en) | A kind of optical heterodyne regulator control system of Terahertz ultra-wideband communications waveform | |
CN108712214B (en) | A tunable multi-band terahertz pulse wireless communication transmitter | |
CN102013924B (en) | Device and method for generating frequency doubling single side band optical carrier millimeter waves | |
CN101873172B (en) | Millimeter wave generating device based on optic-fiber ring resonator and method thereof | |
CN107231227B (en) | A communication system and communication method based on ultra-wideband spread spectrum chaotic carrier | |
CN108155949A (en) | A kind of microwave photon multifrequency Binary Phase Coded Signals generation device and method | |
CN106299978B (en) | System occurs for the Terahertz based on unidirectional carrier transport photodetector | |
CN204886978U (en) | A No-filter Frequency Carrier Suppression Ratio Adjustable 36 Multiplier Signal Generator | |
Thomas et al. | The\" Rap\" on ROF: Radio over Fiber Using Radio Access Point for High Data Rate Wireless Personal Area Networks | |
CN103023531A (en) | Full-gloss ultra wide band pulse generation method based on semiconductor light amplifier and light time delay line | |
CN101556377B (en) | Optical generator of Ultra wideband Gauss monocyclic pulse | |
Singh et al. | Mode division multiplexing free space optics system with 3D hybrid modulation under dust and fog | |
CN101000411A (en) | Method and device for generating millimeter wave by directly regulating laser | |
Lyu et al. | Multi-channel photonic THz-ISAC system based on integrated LFM-QAM WaveForm | |
CN113489551B (en) | Centimeter wave/millimeter wave ultra-wideband signal generating device | |
Luo et al. | Bandwidth-tunable single-carrier UWB monocycle generation using a nonlinear optical loop mirror | |
CN116170084A (en) | A photonics ultra-broadband terahertz frequency hopping source based on four-wave mixing | |
Revathi et al. | Analysis of radio over fiber link based on optical carrier suppression | |
Nagatsuma | 300-GHz-band wireless communications with high-power photonic sources | |
Ronghui | New Optoelectronic Devices and Technologies for RoF | |
CN101388728A (en) | Millimeter wave generation device based on stimulated Brillouin scattering and photon frequency doubling | |
CN206340819U (en) | System occurs for the Terahertz based on unidirectional carrier transport photodetector | |
Sun et al. | Microwave photonic down-conversion based on a wideband tunable optoelectronic oscillator | |
Ding et al. | THz PAM-4 signal generation by a modulator driven by binary scheme with different driving voltages | |
Du et al. | Photonic generation of MMW-UWB monocycle and doublet signals based on frequency up-conversion and delay-line filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |