CN106229411A - A kind of perovskite solar cell of backlight substrate and preparation method thereof - Google Patents
A kind of perovskite solar cell of backlight substrate and preparation method thereof Download PDFInfo
- Publication number
- CN106229411A CN106229411A CN201610630346.9A CN201610630346A CN106229411A CN 106229411 A CN106229411 A CN 106229411A CN 201610630346 A CN201610630346 A CN 201610630346A CN 106229411 A CN106229411 A CN 106229411A
- Authority
- CN
- China
- Prior art keywords
- layer
- transport layer
- perovskite
- solar cell
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 230000005525 hole transport Effects 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 239000006096 absorbing agent Substances 0.000 claims abstract description 6
- 238000004140 cleaning Methods 0.000 claims description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 10
- 238000004528 spin coating Methods 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 238000007738 vacuum evaporation Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 5
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 4
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000002207 thermal evaporation Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 3
- 239000010935 stainless steel Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/451—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种背光基底的钙钛矿太阳电池及其制备方法。该钙钛矿太阳电池包括背光的基底,金属背反射层,电子传输层,钙钛矿吸收层,空穴传输层以及接受入射太阳光的透明导电膜。本发明钙钛矿太阳电池不仅结构简单,且能显著提升钙钛矿太阳电池的光学吸收,且能降低钙钛矿太阳电池的成本。
The invention relates to a perovskite solar cell with a backlight substrate and a preparation method thereof. The perovskite solar cell includes a backlight substrate, a metal back reflection layer, an electron transport layer, a perovskite absorber layer, a hole transport layer and a transparent conductive film for receiving incident sunlight. The perovskite solar cell of the present invention not only has a simple structure, but also can significantly improve the optical absorption of the perovskite solar cell, and can reduce the cost of the perovskite solar cell.
Description
技术领域technical field
本发明属于钛矿太阳电池技术领域,具体涉及一种背光基底的钙钛矿太阳电池及其制备方法。The invention belongs to the technical field of titanium ore solar cells, and in particular relates to a perovskite solar cell with a backlight substrate and a preparation method thereof.
背景技术Background technique
钙钛矿太阳电池自2009年首次被报道以来,便吸引了大量科研工作者的兴趣。经过短短几年的发展,其器件效率便从3.8%提升到22%,被《科学》杂志评为2013年十大科学突破之一。钙钛矿太阳电池受到全世界光伏领域高度关注的原因,除了它在短时间内达到第一代晶体硅电池的高效率水平,更重要的是其低成本的制备方法,这为低迷中的光伏行业带来了曙光。在现有技术基础上,进一步提高效率和降低成本并推进其产业化,是其必然的发展趋势。Perovskite solar cells have attracted the interest of a large number of researchers since they were first reported in 2009. After just a few years of development, its device efficiency has increased from 3.8% to 22%, and was named one of the top ten scientific breakthroughs in 2013 by the "Science" magazine. The reason why perovskite solar cells are highly concerned by the photovoltaic field all over the world is that, in addition to reaching the high efficiency level of the first generation of crystalline silicon cells in a short period of time, more importantly, it is its low-cost preparation method. The industry has brought light. On the basis of existing technologies, it is an inevitable development trend to further improve efficiency, reduce costs and promote its industrialization.
到目前为止,钙钛矿太阳电池主要形成了两种结构,一种是n-i-p型结构,另一种是p-i-n型结构。其中n型层指的是电子传输层,i指的是钙钛矿吸收层或带介孔结构的钙钛矿吸收层,p指的是空穴传输层。这两种结构的主要区别是沉积n型层和p型层的顺序不同。对于n-i-p型结构,首先在透明导电基底上沉积n型层,而后顺序沉积i型层和p型层,最后沉积背电极;对于p-i-n型结构,则首先在透明导电基底上沉积p型层,而后顺序沉积i型层和n型层,最后沉积背电极。无论是n-i-p型还是p-i-n结构,二者有个共同特点,那就是光从透明导电基底方向入射。为了便于描述,我们统称上述两种结构钙钛矿太阳电池为面光基底钙钛矿太阳电池。So far, perovskite solar cells have mainly formed two structures, one is n-i-p type structure, and the other is p-i-n type structure. The n-type layer refers to the electron transport layer, i refers to the perovskite absorbing layer or the perovskite absorbing layer with a mesoporous structure, and p refers to the hole transport layer. The main difference between the two structures is the order in which the n-type and p-type layers are deposited. For the n-i-p type structure, first deposit the n-type layer on the transparent conductive substrate, then deposit the i-type layer and p-type layer in sequence, and finally deposit the back electrode; for the p-i-n type structure, first deposit the p-type layer on the transparent conductive substrate, and then The i-type layer and the n-type layer are deposited sequentially, and finally the back electrode is deposited. Whether it is n-i-p type or p-i-n structure, both have a common feature, that is, the light is incident from the direction of the transparent conductive substrate. For the convenience of description, we collectively refer to the perovskite solar cells with the above two structures as surface-light substrate perovskite solar cells.
面光基底钙钛矿太阳电池目前已获得了超过22%的效率,但是在进一步提高效率和降低成本方面存在以下问题。首先是面光基底不可能达到100%的透光效果,并且与空气界面存在反射,由此会给太阳电池带来10%左右的表面反射损失以及基底自身吸收损失,影响效率提升;并且透过率越高的基底其成本也越高,不利于降低成本。其次,对于柔性太阳电池而言,面光基底只能采用一些高透过的PET或PEN等塑料衬底。这些塑料衬底只能耐受低温,而常规的高效率钙钛矿太阳电池的TiO2电子传输层和介孔层需要用到500℃左右的高温烧结。因此采用面光基底结构还会严重影响柔性衬底钙钛矿太阳电池效率的提升。Surface-based perovskite solar cells have achieved an efficiency of more than 22%, but there are the following problems in further improving efficiency and reducing costs. First of all, it is impossible for the surface light substrate to achieve 100% light transmission effect, and there is reflection at the interface with the air, which will bring about 10% surface reflection loss and substrate self-absorption loss to the solar cell, which will affect the efficiency improvement; The higher the base rate, the higher the cost, which is not conducive to reducing costs. Secondly, for flexible solar cells, only some high-transmittance plastic substrates such as PET or PEN can be used as surface-light substrates. These plastic substrates can only withstand low temperatures, while the TiO2 electron transport layer and mesoporous layer of conventional high-efficiency perovskite solar cells need to be sintered at a high temperature of around 500 °C. Therefore, the use of surface light substrate structure will also seriously affect the improvement of the efficiency of perovskite solar cells on flexible substrates.
发明内容Contents of the invention
本发明的目的在于解决上述的技术问题而提供一种背光基底的的钙钛矿太阳电池及其制备方法,该钙钛矿太阳电池不仅结构简单,而且能显著提升电池的光学吸收。The purpose of the present invention is to solve the above technical problems and provide a perovskite solar cell with a backlight substrate and a preparation method thereof. The perovskite solar cell not only has a simple structure, but also can significantly improve the optical absorption of the cell.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种背光基底的钙钛矿太阳电池,包括背光的基底,金属背反射层,电子传输层,钙钛矿吸收层,空穴传输层以及接受入射太阳光的透明导电膜;所述金属背反射层、电子传输层、钙钛矿吸收层、空穴传输层、透明导电膜的在所述基底表面的沉积顺序为金属背反射层、电子传输层、钙钛矿吸收层、空穴传输层、透明导电膜;或是金属背反射层、空穴传输层、钙钛矿吸收层、电子传输层、透明导电膜。A perovskite solar cell with a backlight substrate, comprising a backlight substrate, a metal back reflection layer, an electron transport layer, a perovskite absorption layer, a hole transport layer and a transparent conductive film that accepts incident sunlight; the metal back reflection Layer, electron transport layer, perovskite absorption layer, hole transport layer, and transparent conductive film are deposited on the surface of the substrate in the order of metal back reflection layer, electron transport layer, perovskite absorption layer, hole transport layer, Transparent conductive film; or metal back reflection layer, hole transport layer, perovskite absorber layer, electron transport layer, transparent conductive film.
所述金属背反射层为Au、Ag或Al中的一种或者两种的合金,厚度为10-500nm。The metal back reflection layer is one or two alloys of Au, Ag or Al, with a thickness of 10-500nm.
所述电子传输层为二氧化钛、氧化锌、Al或B或Ga掺杂氧化锌AZO或BZO或GZO、缓冲层修饰的氧化锌、缓冲层修饰的二氧化钛中的至少一种,厚度为30-300nm。The electron transport layer is at least one of titanium dioxide, zinc oxide, Al or B or Ga doped zinc oxide AZO or BZO or GZO, buffer layer modified zinc oxide, buffer layer modified titanium dioxide, and has a thickness of 30-300nm.
所述钙钛矿吸收层为含有介孔结构或不含介孔结构的CH3NH3PbI3和CH3NH3PbI(3-x)Clx中的一种,厚度为100-1000nm。The perovskite absorbing layer is one of CH 3 NH 3 PbI 3 and CH 3 NH 3 PbI (3-x) Cl x with or without mesoporous structure, and has a thickness of 100-1000 nm.
所述空穴传输层为Spiro-OMeTAD、P3HT、PEDOT:PSS中的至少一种,厚度为10-100nm。The hole transport layer is at least one of Spiro-OMeTAD, P3HT, PEDOT:PSS, with a thickness of 10-100nm.
所述透明导电膜为氧化铟锡ITO。The transparent conductive film is indium tin oxide ITO.
所述基底为柔性或刚性基底,所述基底可以为透明的基底,也可以是不透明的基底。The substrate is a flexible or rigid substrate, and the substrate can be a transparent substrate or an opaque substrate.
本发明的目的还在于提供一种背光基底的钙钛矿太阳电池制备方法,包括如下步骤:The object of the present invention is also to provide a method for preparing a perovskite solar cell with a backlight substrate, comprising the steps of:
(1)基底清洗;(1) Base cleaning;
(2)在所述基底上顺序沉积金属背反射层、电子传输层、钙钛矿吸收层、空穴传输层、透明导电膜;或是在所述基底上顺序沉积金属背反射层、空穴传输层、钙钛矿吸收层、电子传输层、透明导电膜。(2) sequentially depositing a metal back reflection layer, an electron transport layer, a perovskite absorbing layer, a hole transport layer, and a transparent conductive film on the substrate; or sequentially depositing a metal back reflection layer, a hole Transport layer, perovskite absorber layer, electron transport layer, transparent conductive film.
其中,所述金属背反射层采用热蒸发或磁控溅射沉积在基底上;Wherein, the metal back reflection layer is deposited on the substrate by thermal evaporation or magnetron sputtering;
所述电子传输层采用采用真空蒸镀或旋涂的方法制备;The electron transport layer is prepared by vacuum evaporation or spin coating;
所述钙钛矿吸收层采用真空蒸镀或旋涂的方法制备;The perovskite absorbing layer is prepared by vacuum evaporation or spin coating;
所述空穴传输层采用真空蒸镀或旋涂的方法制备;The hole transport layer is prepared by vacuum evaporation or spin coating;
所述透明导电膜采用热蒸发、电子束蒸发或射频磁控溅射的方法制备。The transparent conductive film is prepared by thermal evaporation, electron beam evaporation or radio frequency magnetron sputtering.
本发明钙钛矿太阳电池,有助于提升电池光学吸收。光直接入射到电池的透明导电膜上,透明导电膜没有基底遮挡,因此可以消除基底寄生吸收损失及基底的表面反射损失;通过调控透明导电膜的厚度,还可实现电池前表面的减反功能,透明导电膜具有减反效果,能使更多的光进入电池内部,再加上金属背反射层的高反射高散射特性能使到达电池底部的光充分反射回电池内部进行再次吸收,提升电池的光利用率。The perovskite solar cell of the present invention helps to improve the optical absorption of the cell. The light is directly incident on the transparent conductive film of the battery, and the transparent conductive film is not blocked by the substrate, so the parasitic absorption loss of the substrate and the surface reflection loss of the substrate can be eliminated; by adjusting the thickness of the transparent conductive film, the anti-reflection function of the front surface of the battery can also be realized , the transparent conductive film has an anti-reflection effect, allowing more light to enter the interior of the battery, coupled with the high reflection and high scattering characteristics of the metal back reflection layer, the light reaching the bottom of the battery can be fully reflected back to the interior of the battery for re-absorption, improving the performance of the battery. light utilization rate.
本发明钙钛矿太阳电池,有助于降低成本。基底透过率越高,则其成本也越高(尤其是柔性基底)。由于背光基底钙钛矿太阳电池对基底的透过性无要求,因此可以采用廉价的普通玻璃衬底或柔性衬底(如不锈钢基底)。The perovskite solar cell of the present invention contributes to cost reduction. The higher the transmittance of the substrate, the higher its cost (especially flexible substrates). Since the backlight substrate perovskite solar cells do not require the transparency of the substrate, cheap ordinary glass substrates or flexible substrates (such as stainless steel substrates) can be used.
本发明钙钛矿太阳电池,有助于提升柔性钙钛矿太阳电池效率。本发明中,柔性电池的基底可以采用耐高温的不锈钢衬底或聚酰亚胺(PI)衬底等,提升各膜层的沉积质量,甚至可以引入需要高温烧结的介孔层,进一步提升电池效率。The perovskite solar cell of the present invention helps to improve the efficiency of the flexible perovskite solar cell. In the present invention, the base of the flexible battery can use a high-temperature-resistant stainless steel substrate or polyimide (PI) substrate, etc., to improve the deposition quality of each film layer, and even introduce a mesoporous layer that requires high-temperature sintering to further improve the performance of the battery. efficiency.
本发明中,入射光不从基底入射而从透明导电膜方向入射,因此基底既可以是透明的柔性或刚性基底,也可以是不透明的柔性或刚性基底。In the present invention, the incident light does not enter from the substrate but from the direction of the transparent conductive film, so the substrate can be either a transparent flexible or rigid substrate or an opaque flexible or rigid substrate.
附图说明Description of drawings
图1出示了本发明的一种背光基底的的钙钛矿太阳电池的结构示意图;Fig. 1 has shown the structural representation of the perovskite solar cell of a kind of backlight substrate of the present invention;
图2出示了本发明又一种背光基底的的钙钛矿太阳电池的结构示意图。FIG. 2 shows a schematic structural view of another perovskite solar cell with a backlight substrate according to the present invention.
具体实施方式detailed description
下面,结合实例对本发明的实质性特点和优势作进一步的说明,但本发明并不局限于所列的实施例。Below, the substantive features and advantages of the present invention will be further described in conjunction with examples, but the present invention is not limited to the listed examples.
实施例1Example 1
参见图1所示,一种背光基底的钙钛矿太阳电池,包括:Referring to Figure 1, a perovskite solar cell with a backlight substrate includes:
基底1;金属背反射层2;电子传输层3;钙钛矿吸收层4;空穴传输层5;透明导电膜6,入射太阳光7从透明导电膜6方向入射;Substrate 1; metal back reflection layer 2; electron transport layer 3; perovskite absorbing layer 4; hole transport layer 5; transparent conductive film 6, incident sunlight 7 is incident from the direction of transparent conductive film 6;
该实施例1中,基底1采用不锈钢基底,金属背反射层2采用Ag,电子传输层3采用AZO,钙钛矿吸收层4采用CH3NH3PbI3,空穴传输层5采用Spiro-OMeTAD,透明导电膜6采用ITO。In this embodiment 1, the substrate 1 is made of stainless steel, the metal back reflection layer 2 is made of Ag, the electron transport layer 3 is made of AZO, the perovskite absorbing layer 4 is made of CH 3 NH 3 PbI 3 , and the hole transport layer 5 is made of Spiro-OMeTAD , The transparent conductive film 6 is made of ITO.
其制备过程包括如下步骤:Its preparation process comprises the following steps:
基底清洗:首先将不锈钢基底置于含电子清洗液的清洗槽中超声振荡清洗,水温40-100℃,清洗时间30-100min;而后将不锈钢基底移至不加任何清洗剂的去离子水槽中,作进一步超声振荡清洗,水温40-100℃,清洗时间30-100min;清洗完成后,使用氮气枪吹干。Substrate cleaning: first place the stainless steel substrate in a cleaning tank containing electronic cleaning solution for ultrasonic cleaning, the water temperature is 40-100°C, and the cleaning time is 30-100min; then move the stainless steel substrate to a deionized water tank without any cleaning agent, For further ultrasonic vibration cleaning, the water temperature is 40-100°C, and the cleaning time is 30-100min; after cleaning, use a nitrogen gun to blow dry.
采用脉冲直流磁控溅射的方法在基底上沉积金属背反射层Ag:基底温度0-400℃,溅射气压0.1-10Pa,溅射功率50-300W,Ag膜厚度50-300nm。A metal back reflection layer Ag is deposited on the substrate by pulsed DC magnetron sputtering: the substrate temperature is 0-400°C, the sputtering pressure is 0.1-10Pa, the sputtering power is 50-300W, and the thickness of the Ag film is 50-300nm.
采用射频磁控溅射的方法在Ag膜上沉积电子传输层TiO2:基底温度300-500℃,溅射气压0.1-10Pa,溅射功率50-300W,膜厚50-100nm。The electron transport layer TiO 2 is deposited on the Ag film by radio frequency magnetron sputtering: the substrate temperature is 300-500°C, the sputtering pressure is 0.1-10Pa, the sputtering power is 50-300W, and the film thickness is 50-100nm.
采用两步顺序真空沉积的方法在电子传输层上沉积CH3NH3PbI3吸收层:首先在真空环境下热蒸发PbI2粉末,而后热蒸发CH3NH3I粉末,取出后在加热板上进行退火形成钙钛矿吸收层,退火温度50-200℃,膜厚100-500nm。The CH 3 NH 3 PbI 3 absorber layer was deposited on the electron transport layer by a two-step sequential vacuum deposition method: first thermally evaporate the PbI 2 powder in a vacuum environment, then thermally evaporate the CH 3 NH 3 I powder, take it out and put it on the heating plate Annealing is performed to form a perovskite absorbing layer, the annealing temperature is 50-200°C, and the film thickness is 100-500nm.
采用旋涂的方法在钙钛矿吸收层上沉积空穴传输层Spiro-OMeTAD:转速1000-2000rpm,膜层厚度10-100nm。The hole transport layer Spiro-OMeTAD is deposited on the perovskite absorbing layer by spin coating: the rotation speed is 1000-2000rpm, and the film thickness is 10-100nm.
采用热蒸发铟锡合金的方法在空穴传输层上沉积ITO:温度100-400℃,氧气压0.1-10Pa,膜层厚度50-300nm。ITO is deposited on the hole transport layer by thermally evaporating indium tin alloy: the temperature is 100-400°C, the oxygen pressure is 0.1-10Pa, and the film thickness is 50-300nm.
实施例2:Example 2:
参阅图2所示,本发明提供另一种背光基底钙钛矿太阳电池,包括:Referring to Fig. 2, the present invention provides another backlight substrate perovskite solar cell, comprising:
1-不锈钢基底;2-金属背反射层Ag;3-空穴传输层PEDOT:PSS;4-钙钛矿吸收层-CH3NH3PbI3;5-电子传输层PCBM;6-透明导电膜ITO;7-入射光,光从ITO表面入射。其制备过程包括如下步骤:1-stainless steel substrate; 2-metal back reflector Ag; 3-hole transport layer PEDOT:PSS; 4-perovskite absorption layer-CH 3 NH 3 PbI 3 ; 5-electron transport layer PCBM; 6-transparent conductive film ITO; 7-incident light, the light is incident from the ITO surface. Its preparation process comprises the following steps:
基底清洗:首先将不锈钢基底置于含电子清洗液的清洗槽中超声振荡清洗,水温40-100℃,清洗时间30-100min;而后将不锈钢基底移至不加任何清洗剂的去离子水槽中,作进一步超声振荡清洗,水温40-100℃,清洗时间30-100min;清洗完成后,使用氮气枪吹干。Substrate cleaning: first place the stainless steel substrate in a cleaning tank containing electronic cleaning solution for ultrasonic cleaning, the water temperature is 40-100°C, and the cleaning time is 30-100min; then move the stainless steel substrate to a deionized water tank without any cleaning agent, For further ultrasonic vibration cleaning, the water temperature is 40-100°C, and the cleaning time is 30-100min; after cleaning, use a nitrogen gun to blow dry.
采用脉冲直流磁控溅射的方法在基底上沉积金属背反射层Ag:基底温度0-400℃,溅射气压0.1-10Pa,溅射功率50-300W,Ag膜厚度50-300nm。A metal back reflection layer Ag is deposited on the substrate by pulsed DC magnetron sputtering: the substrate temperature is 0-400°C, the sputtering pressure is 0.1-10Pa, the sputtering power is 50-300W, and the thickness of the Ag film is 50-300nm.
采用旋涂的方法在Ag膜上沉积空穴传输层PEDOT:PSS:转速1000-2000rpm,膜层厚度10-100nm。The hole transport layer PEDOT:PSS is deposited on the Ag film by spin coating: the rotation speed is 1000-2000rpm, and the film thickness is 10-100nm.
采用两步顺序真空沉积的方法在电子传输层上沉积CH3NH3PbI3吸收层:首先在真空环境下热蒸发PbI2粉末,而后热蒸发CH3NH3I粉末,取出后在加热板上进行退火形成钙钛矿吸收层,退火温度50-200℃,膜厚100-500nm。The CH 3 NH 3 PbI 3 absorber layer was deposited on the electron transport layer by a two-step sequential vacuum deposition method: first thermally evaporate the PbI 2 powder in a vacuum environment, then thermally evaporate the CH 3 NH 3 I powder, take it out and put it on the heating plate Annealing is performed to form a perovskite absorbing layer, the annealing temperature is 50-200°C, and the film thickness is 100-500nm.
采用旋涂的方法在钙钛矿吸收层上沉积电子传输层PCBM:转速1000-2000rpm,膜层厚度20-100nm。The electron transport layer PCBM is deposited on the perovskite absorbing layer by spin coating: the rotation speed is 1000-2000rpm, and the film thickness is 20-100nm.
采用热蒸发铟锡合金的方法在空穴传输层上沉积ITO:温度100-400℃,氧气压0.1-10Pa,膜层厚度50-300nm。ITO is deposited on the hole transport layer by thermally evaporating indium tin alloy: the temperature is 100-400°C, the oxygen pressure is 0.1-10Pa, and the film thickness is 50-300nm.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610630346.9A CN106229411A (en) | 2016-08-02 | 2016-08-02 | A kind of perovskite solar cell of backlight substrate and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610630346.9A CN106229411A (en) | 2016-08-02 | 2016-08-02 | A kind of perovskite solar cell of backlight substrate and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106229411A true CN106229411A (en) | 2016-12-14 |
Family
ID=57535193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610630346.9A Pending CN106229411A (en) | 2016-08-02 | 2016-08-02 | A kind of perovskite solar cell of backlight substrate and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106229411A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107093668A (en) * | 2017-04-01 | 2017-08-25 | 大连理工大学 | Original position prepares substrate, compacted zone, porous layer integrated type perovskite solar cell and its method |
CN107394044A (en) * | 2017-07-10 | 2017-11-24 | 陕西师范大学 | A kind of perovskite solar cell of high-performance conductive electrode and electron transfer layer and preparation method thereof |
CN107742611A (en) * | 2017-10-09 | 2018-02-27 | 河海大学常州校区 | Electroluminescence test method for perovskite solar cells based on rare earth luminescent materials |
CN107799654A (en) * | 2017-09-15 | 2018-03-13 | 华南师范大学 | A kind of high efficiency plane perovskite solar cell and preparation method thereof |
CN108281552A (en) * | 2018-03-06 | 2018-07-13 | 电子科技大学 | A kind of perovskite solar cell and preparation method thereof with energy band gradient |
CN112501561A (en) * | 2020-11-13 | 2021-03-16 | 中国科学院大连化学物理研究所 | High-flux physical vapor deposition method for large-area preparation of oxide functional layer in perovskite battery |
CN112599679A (en) * | 2020-12-14 | 2021-04-02 | 中国科学院大连化学物理研究所 | Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522506A (en) * | 2011-12-22 | 2012-06-27 | 南开大学 | Organic solar cell of suede light trapping electrode and manufacturing method thereof |
CN103078013A (en) * | 2013-01-29 | 2013-05-01 | 上海交通大学 | Method for preparing bismuth vanadate/bismuth ferrite heterojunction film solar cells |
CN103367472A (en) * | 2013-08-02 | 2013-10-23 | 南通大学 | T-type top electrode back-reflection thin film solar cell |
CN104465804A (en) * | 2014-11-24 | 2015-03-25 | 华东师范大学 | Alloy electrode capable of improving efficiency and stability of solar cell |
CN104769736A (en) * | 2012-09-18 | 2015-07-08 | 埃西斯创新有限公司 | Optoelectronic devices |
CN105428535A (en) * | 2015-11-15 | 2016-03-23 | 河北工业大学 | Manufacturing method for thin film crystal silicon perovskite heterojunction solar cell |
-
2016
- 2016-08-02 CN CN201610630346.9A patent/CN106229411A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522506A (en) * | 2011-12-22 | 2012-06-27 | 南开大学 | Organic solar cell of suede light trapping electrode and manufacturing method thereof |
CN104769736A (en) * | 2012-09-18 | 2015-07-08 | 埃西斯创新有限公司 | Optoelectronic devices |
CN103078013A (en) * | 2013-01-29 | 2013-05-01 | 上海交通大学 | Method for preparing bismuth vanadate/bismuth ferrite heterojunction film solar cells |
CN103367472A (en) * | 2013-08-02 | 2013-10-23 | 南通大学 | T-type top electrode back-reflection thin film solar cell |
CN104465804A (en) * | 2014-11-24 | 2015-03-25 | 华东师范大学 | Alloy electrode capable of improving efficiency and stability of solar cell |
CN105428535A (en) * | 2015-11-15 | 2016-03-23 | 河北工业大学 | Manufacturing method for thin film crystal silicon perovskite heterojunction solar cell |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107093668A (en) * | 2017-04-01 | 2017-08-25 | 大连理工大学 | Original position prepares substrate, compacted zone, porous layer integrated type perovskite solar cell and its method |
CN107093668B (en) * | 2017-04-01 | 2019-04-23 | 大连理工大学 | In-situ preparation of substrate, dense layer and porous layer integrated perovskite solar cell and method thereof |
CN107394044A (en) * | 2017-07-10 | 2017-11-24 | 陕西师范大学 | A kind of perovskite solar cell of high-performance conductive electrode and electron transfer layer and preparation method thereof |
CN107394044B (en) * | 2017-07-10 | 2020-03-31 | 陕西师范大学 | Perovskite solar cell with conductive electrode and electron transmission layer and preparation method |
CN107799654A (en) * | 2017-09-15 | 2018-03-13 | 华南师范大学 | A kind of high efficiency plane perovskite solar cell and preparation method thereof |
CN107742611A (en) * | 2017-10-09 | 2018-02-27 | 河海大学常州校区 | Electroluminescence test method for perovskite solar cells based on rare earth luminescent materials |
CN108281552A (en) * | 2018-03-06 | 2018-07-13 | 电子科技大学 | A kind of perovskite solar cell and preparation method thereof with energy band gradient |
CN112501561A (en) * | 2020-11-13 | 2021-03-16 | 中国科学院大连化学物理研究所 | High-flux physical vapor deposition method for large-area preparation of oxide functional layer in perovskite battery |
CN112599679A (en) * | 2020-12-14 | 2021-04-02 | 中国科学院大连化学物理研究所 | Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106229411A (en) | A kind of perovskite solar cell of backlight substrate and preparation method thereof | |
CN104134711B (en) | A kind of preparation method of perovskite solar cell | |
CN110061136B (en) | A back-contact perovskite solar cell and preparation method thereof | |
CN102779864B (en) | Cadmium telluride thin-film battery and manufacturing method thereof | |
CN106340570B (en) | A kind of coating equipment and coating method for making transparent conductive oxide thin film | |
CN106229327A (en) | A kind of flexible large area perovskite solar module and preparation method thereof | |
CN106252513A (en) | Perovskite solar cell based on matte light regime structure and preparation method thereof | |
CN101692357A (en) | Method for preparing pile face doped zinc oxide transparent conductive film | |
CN104681722B (en) | The accurate one-dimensional TiO of perovskite solar cell2Nano-structure array casing play preparation method | |
CN208548372U (en) | A kind of double-junction solar battery | |
CN105977386A (en) | Perovskite solar cell of nano metal oxide hole transport layer and preparation method thereof | |
CN109037362A (en) | Transparency conducting layer and heterojunction solar battery for heterojunction solar battery | |
CN110649111A (en) | A tandem solar cell | |
CN109037361A (en) | A kind of high efficiency cadmium telluride diaphragm solar battery | |
CN102270668B (en) | Heterojunction solar cell and preparation method thereof | |
WO2021238175A1 (en) | Double-sided light-transmitting cadmium telluride solar cell and preparation method therefor | |
CN209963073U (en) | Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell | |
Anscombe | Solar cells that mimic plants | |
CN102394258B (en) | Preparing method of high-conductivity front electrode of thin film solar cell | |
CN201153125Y (en) | Dye sensitive solar cell | |
CN103035843A (en) | Organic photovoltaic cell and preparation method thereof | |
CN107994081A (en) | A kind of high-efficiency solar cell structure and preparation method thereof | |
CN220189670U (en) | Heterojunction solar cell structure | |
CN116723713A (en) | Self-trapping perovskite solar cell and preparation method and application thereof | |
CN114388557A (en) | Flexible antimony selenide/perovskite laminated solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161214 |
|
WD01 | Invention patent application deemed withdrawn after publication |