Nothing Special   »   [go: up one dir, main page]

CN106206996A - A kind of organic electroluminescence device - Google Patents

A kind of organic electroluminescence device Download PDF

Info

Publication number
CN106206996A
CN106206996A CN201510210700.8A CN201510210700A CN106206996A CN 106206996 A CN106206996 A CN 106206996A CN 201510210700 A CN201510210700 A CN 201510210700A CN 106206996 A CN106206996 A CN 106206996A
Authority
CN
China
Prior art keywords
group
phenyl
alkyl
substituted
ethoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510210700.8A
Other languages
Chinese (zh)
Inventor
段炼
邱勇
张国辉
李曼
张东东
胡永岚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Beijing Visionox Technology Co Ltd
Original Assignee
Tsinghua University
Beijing Visionox Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Beijing Visionox Technology Co Ltd filed Critical Tsinghua University
Priority to CN201510210700.8A priority Critical patent/CN106206996A/en
Publication of CN106206996A publication Critical patent/CN106206996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种有机电致发光器件,包括发光层,所述发光层的主体材料为热活化延迟荧光材料,客体材料为热活化延迟荧光材料,其中,主体材料的禁带宽度大于客体材料的禁带宽度,主体材料的电致发光光谱与客体材料的光致吸收光谱在归一化后,峰值对应的波长之差在50nm以内。

The invention discloses an organic electroluminescent device, which comprises a light-emitting layer, the host material of the light-emitting layer is a heat-activated delayed fluorescent material, and the guest material is a heat-activated delayed fluorescent material, wherein the forbidden band width of the host material is larger than that of the guest material The bandgap width of the host material and the photoabsorption spectrum of the guest material are normalized, and the difference between the wavelengths corresponding to the peaks is within 50nm.

Description

一种有机电致发光器件An organic electroluminescent device

技术领域 technical field

本发明属于有机电致发光器件领域,具体涉及一种发光层采用热活化延迟荧光材料的有机电致发光器件。 The invention belongs to the field of organic electroluminescent devices, in particular to an organic electroluminescent device whose luminescent layer adopts heat-activated delayed fluorescent material.

背景技术 Background technique

在有机电致发光器件的电致发光过程中,主要依靠有机发光材料从激发态到基态的电子跃迁产生发光。在室温下,从三线激发态回到基态的电子跃迁产生的发光极微弱,其能量绝大部分以热的形式损失掉了,发光主要是由单线激发态到基态的电子跃迁产生,称为电致荧光。由于三线激发态产生的几率为单线激发态的三倍,因此相当于75%的能量没有被用于发光。充分利用这一能量,将有效地提高有机电致发光器件的发光效率。 In the electroluminescent process of organic electroluminescent devices, mainly rely on the electronic transition of organic light-emitting materials from the excited state to the ground state to generate light. At room temperature, the luminescence produced by the electronic transition from the triplet excited state back to the ground state is extremely weak, and most of its energy is lost in the form of heat. The luminescence is mainly produced by the electronic transition from the singlet excited state to the ground state, called electric current Fluoresces. Since triplet excited states are generated three times more frequently than singlet excited states, the equivalent of 75% of the energy is not used for light emission. Making full use of this energy will effectively improve the luminous efficiency of organic electroluminescent devices.

为了充分利用发光层主体材料三线激发态的能量,人们曾提出过多种办法。例如研究和开发高效的磷光掺杂染料并掺杂于主体材料中,使得主体材料的三线态能量有效地传递给磷光掺杂染料,然后磷光掺杂染料产生磷光发光,从而使得发光层主体材料三线激发态的能量得到有效利用。该方法所获得的有机电致发光器件效率高,但材料合成需要铱、铂等贵重金属,价格昂贵。还有一种方法是利用镧系化合物的系间窜越性质,即利用分子内的能量转移将发光层主体材料的三线态能量转移至镧系金属离子的4f能级,然后发光等,但目前所得器件效率低。 In order to make full use of the energy of the triplet excited state of the host material of the light-emitting layer, various methods have been proposed. For example, research and develop highly efficient phosphorescent doping dyes and dope them in the host material, so that the triplet energy of the host material can be effectively transferred to the phosphorescent doping dyes, and then the phosphorescent doping dyes can generate phosphorescent light, thus making the host material of the light-emitting layer triplet The energy of the excited state is effectively utilized. The organic electroluminescent device obtained by this method has high efficiency, but the synthesis of materials requires precious metals such as iridium and platinum, which are expensive. Another method is to use the intersystem crossing properties of lanthanide compounds, that is, to use intramolecular energy transfer to transfer the triplet energy of the host material of the light-emitting layer to the 4f energy level of the lanthanide metal ion, and then emit light, etc., but the current obtained Device efficiency is low.

热活化延迟荧光(TADF,Thermal active delay fluorescent)是目前非常热门的一种利用三线态激子能量的方案。例如,Adachi在其文章中报道了热活化延迟荧光材料,如图1所示,该类材料的三线态能级(T1)与单线态能级(S1)之差(ΔEST)较小,则三线态能量可以传输给单线态能级,并已荧光辐射发光。专利CN 102709485 A中提到,通过在热延迟荧光主体中掺杂荧光染料来提高器件效率。为了进一步提高能量传输复合效率。Adachi等在文章Nature communications 2014“High-efficiency organic light-emitting diodes with fluorescent emitters”中,提出采用一种宽禁带主体掺杂TADF材料作为辅助染料方案。但在电荷复合过程中,一部分能量直接复合在主体上,主体将单线态能量传递给染料。另一部分在辅助染料上复合。文章报道结构,并不能完全有效利用直接在主体复合的能量。同时采用普通主体材料,禁带宽度大,所需驱动电压高。 Thermally activated delayed fluorescence (TADF, Thermal active delay fluorescence) is currently a very popular scheme to utilize the energy of triplet excitons. For example, Adachi reported thermally activated delayed fluorescent materials in his article, as shown in Figure 1, the difference (ΔE ST ) between the triplet state energy level (T 1 ) and the singlet state energy level (S 1 ) of this type of material is small , the triplet energy can be transferred to the singlet energy level, and the fluorescent radiation emits light. Patent CN 102709485 A mentions that device efficiency can be improved by doping fluorescent dyes in thermally delayed fluorescent hosts. In order to further improve the energy transfer recombination efficiency. In the article Nature communications 2014 "High-efficiency organic light-emitting diodes with fluorescent emitters", Adachi et al. proposed to use a wide-bandgap host-doped TADF material as an auxiliary dye solution. But in the process of charge recombination, a part of the energy is recombined directly on the host, and the host transfers the singlet energy to the dye. The other part is complexed on the auxiliary dye. The article reports that the structure does not fully utilize the energy of direct recombination in the bulk. At the same time, common host materials are used, the band gap is large, and the required driving voltage is high.

发明内容 Contents of the invention

针对上述器件驱动电压高及传输不充分问题,本发明进一步提出OLED的发光层采用热活化延迟荧光材料(TADF材料)作为主体材料并掺杂TADF材料作为客体材料(荧光发光染料)方案。可进一步充分利用电荷在主体及染料上复合产生的能量。 Aiming at the above-mentioned problems of high device driving voltage and insufficient transmission, the present invention further proposes that the light-emitting layer of OLED adopts thermally activated delayed fluorescent material (TADF material) as the host material and doped TADF material as the guest material (fluorescent luminescent dye). The energy generated by the recombination of charges on the host and the dye can be further fully utilized.

本发明的有机电致发光器件,包括发光层,所述发光层的主体材料为热活化延迟荧光材料,客体材料为热活化延迟荧光材料,其中,主体材料的禁带宽度大于客体材料的禁带宽度,主体材料的电致发光光谱与客体材料的光致吸收光谱在归一化后,峰值对应的波长之差在50 nm以内。 The organic electroluminescence device of the present invention comprises a light-emitting layer, the host material of the light-emitting layer is a thermally activated delayed fluorescent material, and the guest material is a thermally activated delayed fluorescent material, wherein the forbidden band width of the host material is greater than that of the guest material Width, after the normalization of the electroluminescence spectrum of the host material and the photoabsorption spectrum of the guest material, the difference between the wavelengths corresponding to the peaks is within 50 nm.

优选地,所述的有机电致发光器件,包括依次层叠的阳极、空穴注入层、空穴传输层、所述发光层、电子传输层及阴极。 Preferably, the organic electroluminescent device includes an anode, a hole injection layer, a hole transport layer, the light emitting layer, an electron transport layer and a cathode stacked in sequence.

优选地,所述客体材料在发光层中所占的质量百分比小于10%。 Preferably, the mass percentage of the guest material in the light-emitting layer is less than 10%.

优选地,所述热活化延迟荧光材料的三线态能级与单线态的能隙<0.3 eV。 Preferably, the energy gap between the triplet state and the singlet state of the thermally activated delayed fluorescent material is <0.3 eV.

更优选地,所述热活化延迟荧光材料的三线态能级与单线态的能隙<0.15 eV。 More preferably, the energy gap between the triplet state and the singlet state of the thermally activated delayed fluorescent material is less than 0.15 eV.

优选地,所述热活化延迟荧光材料的LUMO能级与HOMO能级分布在其分子结构中的不同基团上。 Preferably, the LUMO energy level and the HOMO energy level of the thermally activated delayed fluorescence material are distributed on different groups in its molecular structure.

优选地,所述热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元, Preferably, the thermally activated delayed fluorescent material is a material with charge transfer transitions, and there are both donor group units and acceptor group units in the thermally activated delayed fluorescent material,

所述给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团; The donor group unit is a donor group or a group formed by connecting two or more donor groups;

所述受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团; The acceptor group unit is an acceptor group or a group formed by connecting two or more acceptor groups;

所述给体基团选自吲哚并咔唑基,咔唑基,联咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的联咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基; The donor group is selected from indolocarbazolyl, carbazolyl, bicarbazolyl, triphenylamine, phenoxazinyl, C 1-6 alkyl, methoxy, ethoxy or benzene Indolocarbazolyl substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or carbazolyl substituted by more than one group in phenyl, C 1 -6 alkyl, methoxy, ethoxy or phenyl group substituted bicarbazolyl, one of C 1-6 alkyl, methoxy, ethoxy or phenyl Triphenylamino group substituted by more than one group, or phenoxazinyl group substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or phenyl;

所述受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基, C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基;C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基; The acceptor group is selected from naphthyl, anthracenyl, phenanthrenyl, pyrenyl, triazinyl, benzimidazolyl, cyano, pyridyl, sulfone, phenanthryl imidazolyl, naphthiazolyl, benzo Thiazolyl, oxadiazolyl, naphthyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, methyl Anthracenyl substituted by one or more of oxy, ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Group substituted phenanthrenyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl substituted by one or more groups of pyrenyl, C 1-6 alkyl, methoxy Triazinyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl benzimidazolyl substituted by group, pyridyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, Sulfone group substituted by one or more of methoxy, ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl phenanthroimidazolyl substituted by C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, and naphthothiazolyl substituted by one or more of C 1-6 benzothiazolyl substituted by one or more of alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridine An oxadiazolyl group substituted by more than one group in the group;

其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。 Wherein, one or more of the donor group units are directly connected with one or more of the acceptor group units to form a thermally activated delayed fluorescent material; or, one or more of the donor group units One or more of the acceptor group units are respectively connected with a linking group to form a thermally activated delayed fluorescent material, and the linking group is a group with steric hindrance.

优选地,一种或两种给体基团单元和一种或两种受体基团单元分别与连接基团连接形成热活化延迟荧光材料,或者一种或两种受体基团单元与一种或两种给体基团单元直接连接形成热活化延迟荧光材料。 Preferably, one or two types of donor group units and one or two types of acceptor group units are respectively connected with a linking group to form a thermally activated delayed fluorescent material, or one or two types of acceptor group units are combined with one One or two kinds of donor group units are directly connected to form a thermally activated delayed fluorescent material.

优选地,所述连接基团选自螺芴基、苯基、联苯基、C1-6的烷基或苯基的其中至少一种取代的螺芴基、C1-6的烷基或苯基的其中至少一种取代的苯基或者C1-6的烷基或苯基的其中至少一种取代的联苯基。 Preferably, the linking group is selected from spirofluorenyl, phenyl, biphenyl, C 1-6 alkyl or at least one of phenyl substituted spirofluorenyl, C 1-6 alkyl or At least one substituted phenyl group of phenyl or at least one substituted biphenyl group of C 1-6 alkyl group or phenyl group.

优选地,所述给体基团选自以下基团: Preferably, the donor group is selected from the following groups:

,或 , , , , , , , , , , , , , , ,or .

优选地,所述受体基团选自以下基团: Preferably, the acceptor group is selected from the following groups:

, , , , , , , , or .

优选地,所述热活化延迟荧光材料为具有如下结构的化合物: Preferably, the thermally activated delayed fluorescent material is a compound with the following structure:

,

1-1 1-1

,

1-2 1-2

,

1-3 1-3

,

1-4 1-4

,

1-5 1-5

,

1-6 1-6

,

1-7 1-7

,

1-8 1-8

,

1-9 1-9

,

1-10 1-10

,

1-11 1-11

,

1-12 1-12

,

1-13 1-13

,

1-14 1-14

,

1-15 1-15

,

1-16 1-16

,

2-1 2-1

,

2-2 2-2

,

2-3 2-3

,

2-4 2-4

,

2-5 2-5

,

2-6 2-6

,

2-7 2-7

,

2-8 2-8

,

2-9 2-9

,

2-10 2-10

,

2-11 2-11

,

2-12 2-12

,

2-13 2-13

,

2-14 2-14

,

2-15 2-15

,

2-16 2-16

,

3-1 3-1

,

3-2 3-2

,

3-3 3-3

,

3-4 3-4

,

3-5 3-5

,

3-6 3-6

, ,

3-7 3-7

, ,

3-8 3-8

,

3-9 3-9

,

3-10 3-10

,

3-11 3-11

3-12 。 3-12.

本发明能够达到以下技术效果: The present invention can achieve following technical effect:

在本发明中,热活化延迟荧光材料(TADF)作为主体材料(发光主体)及客体材料(发光染料)。该类材料的三线态能级与单线态能级差较小。而延迟荧光作为染料,又可同时将三线态及单线态能量加以利用。基于此可获得低工作电压,高效率的发光器件。 In the present invention, thermally activated delayed fluorescent material (TADF) is used as the host material (luminescent host) and the guest material (luminescent dye). The difference between the energy level of the triplet state and the energy level of the singlet state of this type of material is small. As a dye, delayed fluorescence can simultaneously utilize triplet and singlet energies. Based on this, a light-emitting device with low operating voltage and high efficiency can be obtained.

附图说明 Description of drawings

图1是热活化延迟荧光材料能量传递及辐射发光示意图 Figure 1 is a schematic diagram of energy transfer and radiative luminescence of thermally activated delayed fluorescent materials

图2是本发明的OLED结构示意图; Fig. 2 is a schematic view of OLED structure of the present invention;

图3是现有技术中OLED发光层的能量传递示意图; Fig. 3 is a schematic diagram of energy transfer of OLED light-emitting layer in the prior art;

图4是热活化延迟荧光材料(TADF)作为发光主体材料及客体材料的能量传递示意图。 Fig. 4 is a schematic diagram of energy transfer of thermally activated delayed fluorescent material (TADF) as a luminescent host material and a guest material.

具体实施方式 detailed description

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.

如图2所示,本发明的有机电致发光器件包括:在基板1上依次层叠沉积的阳极2、空穴注入层(HIL)3、空穴传输层(HTL)4、发光层(EML)5、电子传输层(ETL)6、电子注入层(EIL)7及阴极(Al)8。实验中以刻蚀好特定图形的ITO导电玻璃基片作为衬底,将基片放在含清洗液的去离子水中超声波清洗,洗液温度约为60℃,然后用红外烤灯将清洗完的基片烤干,放入蒸镀腔室中依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及阴极。蒸镀过程中腔室压强低于5.0×10-3Pa.其中有机层首先蒸镀100nm厚MTDATA:4%F4TCNQ作为空穴注入层,然后蒸镀20 nm厚度的NPB作为空穴传输层,之后蒸镀有机发光层,后面蒸镀30nm厚度Alq3作为电子传输层。蒸镀1 nm的LiF作为电子注入层,最后蒸镀150 nm的金属Al作为阴极。 As shown in Figure 2, the organic electroluminescent device of the present invention includes: an anode 2, a hole injection layer (HIL) 3, a hole transport layer (HTL) 4, and an emission layer (EML) deposited sequentially on a substrate 1 5. Electron transport layer (ETL) 6, electron injection layer (EIL) 7 and cathode (Al) 8. In the experiment, the ITO conductive glass substrate with specific patterns etched was used as the substrate, and the substrate was ultrasonically cleaned in deionized water containing cleaning solution. The substrate is dried and placed in an evaporation chamber to sequentially evaporate a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a cathode. During the evaporation process, the chamber pressure was lower than 5.0×10 -3 Pa. The organic layer was first evaporated with a thickness of 100 nm MTDATA:4%F4TCNQ as a hole injection layer, and then NPB with a thickness of 20 nm was evaporated as a hole transport layer, and then An organic light-emitting layer was evaporated, followed by Alq 3 with a thickness of 30nm as an electron transport layer. Evaporate 1 nm of LiF as the electron injection layer, and finally evaporate 150 nm of metal Al as the cathode.

本发明中,发光层5采用热活化延迟荧光材料(TADF材料)作为主体材料并掺杂TADF材料作为客体材料(即荧光发光染料)。 In the present invention, the light-emitting layer 5 uses a thermally activated delayed fluorescence material (TADF material) as a host material and is doped with a TADF material as a guest material (ie, a fluorescent dye).

现有技术中OLED的发光层为常规主体材料掺杂染料,常规主体材料的三线态能级与单线态能级差较大,因此75%的三线态激子能量均被浪费掉。如图3所示,常规主体材料掺杂染料能量传递过程如下:主体材料的单线态能级(S1H)的能量传递给磷光染料的单线态能级(S1D),主体材料的三线态能级(T1H)的能量传递给磷光染料的三线态能级(T1D),因为三线态激子的寿命要大于单线态激子寿命,所以三线态激子的传输距离要大于单线态激子传输距离。三线态进入OLED的传输层,会造成能量损失。 The light-emitting layer of the OLED in the prior art is a conventional host material doped with a dye, and the difference between the triplet state energy level and the singlet state energy level of the conventional host material is large, so 75% of the triplet exciton energy is wasted. As shown in Figure 3, the energy transfer process of the conventional host material doped dye is as follows: the energy of the singlet energy level (S1 H ) of the host material is transferred to the singlet energy level (S1 D ) of the phosphorescent dye, and the triplet energy level of the host material Level (T1 H ) energy is transferred to the triplet energy level (T1 D ) of the phosphorescent dye, because the lifetime of triplet excitons is longer than that of singlet excitons, so the transmission distance of triplet excitons is longer than that of singlet excitons Transmission distance. The triplet state enters the transport layer of the OLED, causing energy loss.

而本发明OLED的发光层采用TADF材料作为主体及客体(又称染料)。热活化延迟荧光材料的三线态能级与单线态能级差(ΔEST)较小(ΔEST<0.3 eV,优选小于0.15 eV),因此无论主体材料产生的三线态激子T1H,还是染料分子的三线态激子T1D,均可以将分别能量传递给单线态S1H和S1D。从而最终转为染料的辐射跃迁发光,对激子能量进行了充分应用。 However, the light-emitting layer of the OLED of the present invention uses TADF material as the host and the object (also known as dye). The difference between the triplet energy level and the singlet energy level (ΔE ST ) of thermally activated delayed fluorescent materials is small (ΔE ST <0.3 eV, preferably less than 0.15 eV), so whether the triplet excitons T1 H generated by the host material or the dye molecules The triplet excitons T1 D can transfer energy to the singlet states S1 H and S1 D respectively. Thus, the radiative transition of the dye eventually turns into luminescence, and the excitonic energy is fully utilized.

其中主体材料的禁带宽度大于客体材料的禁带宽度,且主体材料的发光峰值与客体材料的吸收峰基本重叠(主体材料的电致发光光谱与客体材料的光致吸收光谱在归一化后,峰值对应的波长之差在50 nm以内)。主体材料上单线态激子向客体单线态的能量转移,主要通过Forster能量转移方式。即基于电子给体与电子受体分子之间的偶极-偶极机理。如果要能量传递充分,需要主体材料的发光光谱与客体材料的吸收光谱尽可能重合。而基质材料上三线态激子主要通过Dexter能量转移。Dexter能量转移是通过电子给体与电子受体分子间电子交换进行的,是一种短程的能量传递过程。Dexter机理只需要给体和受体分子对的电子云有效的交叠,所以不论单线态到单线态,还是三线态到三线态的能量转移均是允许的。 The forbidden band width of the host material is greater than that of the guest material, and the luminescence peak of the host material overlaps with the absorption peak of the guest material (the electroluminescence spectrum of the host material and the photoabsorption spectrum of the guest material are normalized , the difference between the wavelengths corresponding to the peaks is within 50 nm). The energy transfer from the singlet excitons on the host material to the guest singlet states is mainly through the Forster energy transfer method. That is, based on the dipole-dipole mechanism between electron donor and electron acceptor molecules. If the energy transfer is to be sufficient, the emission spectrum of the host material needs to overlap with the absorption spectrum of the guest material as much as possible. The triplet excitons on the host material mainly transfer energy through Dexter. Dexter energy transfer is carried out through electron exchange between electron donor and electron acceptor molecules, which is a short-range energy transfer process. The Dexter mechanism only requires the electron clouds of the donor and acceptor molecules to overlap effectively, so no matter the energy transfer from singlet to singlet or triplet to triplet is allowed.

本发明中热活化延迟荧光材料的单线态与三线态能隙(ΔEST)<0.3 eV,优选小于0.15 eV。 The singlet and triplet energy gap (ΔE ST ) of the thermally activated delayed fluorescent material in the present invention is <0.3 eV, preferably less than 0.15 eV.

具体地,本发明中的作为主体材料的热活化延迟荧光材料为以下材料: Specifically, the thermally activated delayed fluorescent material as the host material in the present invention is the following materials:

三线态与单线态能隙较小的材料,需要对应分子的HOMO轨道与LUMO轨道分离。该类材料一般含给体基团单元及受体基团单元。 For materials with smaller triplet and singlet energy gaps, the HOMO orbitals and LUMO orbitals of the corresponding molecules need to be separated. Such materials generally contain donor group units and acceptor group units.

本发明中所述的热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元。其中,给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团;受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团; The thermally activated delayed fluorescent material in the present invention is a material with charge transfer transitions, and there are both donor group units and acceptor group units in the thermally activated delayed fluorescent material. Among them, the donor group unit is a group composed of a donor group or two or more donor groups connected; the acceptor group unit is an acceptor group or two or more acceptor groups connected group;

具体的,主体材料的结构可为donor-connection-acceptor或者为donor-acceptor-donor的结构等。 Specifically, the structure of the main body material may be a donor-connection-acceptor or a donor-acceptor-donor structure.

给体基团选自吲哚并咔唑基,咔唑基,二连咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的二苯并呋喃基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基; The donor group is selected from indolocarbazolyl, carbazolyl, dicarbazolyl, triphenylamine, phenoxazinyl, C 1-6 alkyl, methoxy, ethoxy or phenyl Indolocarbazolyl substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or carbazolyl substituted by more than one group in phenyl, C 1- Dibenzofuranyl substituted by one or more of 6 alkyl, methoxy, ethoxy or phenyl, one of C 1-6 alkyl, methoxy, ethoxy or phenyl Triphenylamino group substituted by more than one group, or phenoxazinyl group substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or phenyl;

受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基, C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基;C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基或C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基; The acceptor group is selected from naphthyl, anthracenyl, phenanthrenyl, pyrenyl, triazinyl, benzimidazolyl, cyano, pyridyl, sulfone, phenanthrylimidazolyl, naphthothiazolyl, benzothiazolyl , oxadiazolyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, substituted naphthyl, C 1-6 alkyl, methoxy Anthracenyl substituted by one or more of ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Substituted phenanthrenyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, substituted pyrenyl, C 1-6 alkyl, methoxy, Triazinyl substituted by one or more of ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Substituted benzimidazolyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl substituted by one or more of the groups in pyridyl, C 1-6 alkyl, methoxy Sulfone group substituted by one or more of ethoxy, phenyl or pyridyl, one or more of C1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Substituted phenanthroimidazolyl; C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, substituted naphthothiazolyl, C 1-6 alkyl, A benzothiazolyl group substituted by one or more of methoxy, ethoxy, phenyl or pyridyl, or one of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Oxadiazolyl substituted by more than one group;

其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。 Wherein, one or more of the donor group units are directly connected with one or more of the acceptor group units to form a thermally activated delayed fluorescent material; or, one or more of the donor group units One or more of the acceptor group units are respectively connected with a linking group to form a thermally activated delayed fluorescent material, and the linking group is a group with steric hindrance.

上述连接基团优选选自螺芴基、苯基、联苯基、C1-6的烷基或苯基的其中至少一种取代的螺芴基、C1-6的烷基或苯基的其中至少一种取代的苯基或者C1-6的烷基或苯基的其中至少一种取代的联苯基。 The above linking group is preferably selected from spirofluorenyl, phenyl, biphenyl, C 1-6 alkyl or phenyl, at least one substituted spirofluorenyl, C 1-6 alkyl or phenyl At least one substituted phenyl group or at least one substituted biphenyl group of C 1-6 alkyl or phenyl groups.

给体基团优选选自以下结构: The donor group is preferably selected from the following structures:

,或 , , , , , , , , , , , , , , ,or .

受体基团优选选自以下结构: The acceptor group is preferably selected from the following structures:

, , , , , , , , or .

具体地,热活化延迟荧光材料选自具有以下结构的化合物: Specifically, the thermally activated delayed fluorescent material is selected from compounds with the following structures:

1-1(Chem. Commun., 2012, 48, 9580-9582) 1-1 (Chem. Commun., 2012, 48, 9580-9582)

1-2 (Angew. Chem. Int. Ed.,2012,51,11311-11315) 1-2 (Angew. Chem. Int. Ed., 2012, 51, 11311-11315)

1-3(Chem. Commun. 2012,48,11392-11394) 1-3 (Chem. Commun. 2012, 48, 11392-11394)

1-4(J. Mater. Chem. C, 2013,1, 4599-4604) 1-4 (J. Mater. Chem. C, 2013, 1, 4599-4604)

1-5(J. Mater. Chem. C, 2013,1, 4599-4604) 1-5 (J. Mater. Chem. C, 2013, 1, 4599-4604)

1-6 (Phys. Chem. Chem. Phys., 2013, 15, 15850) 1-6 (Phys. Chem. Chem. Phys., 2013, 15, 15850)

1-7(ΔEST=0.11,利用Gaussian 03/TD-DFT计算) 1-7 (ΔE ST =0.11, calculated using Gaussian 03/TD-DFT)

1-8(ΔEST=0.14,利用Gaussian 03/TD-DFT计算) 1-8 (ΔE ST =0.14, calculated using Gaussian 03/TD-DFT)

1-9 (Nature,2012,492,234) 1-9 (Nature, 2012, 492, 234)

1-10 (Nature,2012,492,234) 1-10 (Nature, 2012, 492, 234)

1-11(Nature,2012,492,234) 1-11 (Nature, 2012, 492, 234)

1-12 (Nature,2012,492,234) 1-12 (Nature, 2012, 492, 234)

1-13 (Nature,2012,492,234) 1-13 (Nature, 2012, 492, 234)

1- 14(Nature,2012,492,234) 1-14 (Nature, 2012, 492, 234)

1-15(ΔEST=0.21,利用Gaussian 03/TD-DFT计算) 1-15 (ΔE ST =0.21, calculated using Gaussian 03/TD-DFT)

1-16 1-16

2-1(ΔEST=0.15,利用Gaussian 03/TD-DFT计算) 2-1 (ΔE ST =0.15, calculated using Gaussian 03/TD-DFT)

2-2(ΔEST=0.04,利用Gaussian 03/TD-DFT计算) 2-2 (ΔE ST =0.04, calculated using Gaussian 03/TD-DFT)

2-3 2-3

2-4 (J. AM. Chem. Soc. 2012, 134, 14706-14709) 2-4 (J. AM. Chem. Soc. 2012, 134, 14706-14709)

2-5 (J. AM. Chem. Soc. 2012, 134, 14706-14709) 2-5 (J. AM. Chem. Soc. 2012, 134, 14706-14709)

2-6(Chem. Mater., 2013, 25 (18), pp 3766–3771) 2-6 (Chem. Mater., 2013, 25 (18), pp 3766–3771)

2-7(ΔEST=0.07,利用Gaussian 03/TD-DFT计算) 2-7 (ΔE ST =0.07, calculated using Gaussian 03/TD-DFT)

2-8(ΔEST=0.16,利用Gaussian 03/TD-DFT计算) 2-8 (ΔEST=0.16, using Gaussian 03/TD-DFT calculation)

2-9(ΔEST=0.09,利用Gaussian 03/TD-DFT计算) 2-9 (ΔE ST =0.09, calculated using Gaussian 03/TD-DFT)

2-10(PRL,2013,110,247401) 2-10 (PRL, 2013, 110, 247401)

2-11(ΔEST=0.06,利用Gaussian 03/TD-DFT计算) 2-11 (ΔEST=0.06, using Gaussian 03/TD-DFT calculation)

2-12(Appl. Phys. Lett., 2012, 101, 093306) 2-12 (Appl. Phys. Lett., 2012, 101, 093306)

2-13(Phys. Chem. Chem. Phys. 2013,15,15850) 2-13 (Phys. Chem. Chem. Phys. 2013, 15, 15850)

2-14((J. Mater. Chem. C, 2013,1, 4599-4604) 2-14 ((J. Mater. Chem. C, 2013, 1, 4599-4604)

2-15 (J. Mater. Chem. C, 2013,1, 4599-4604) 2-15 (J. Mater. Chem. C, 2013, 1, 4599-4604)

,

2-16 2-16

,

3-1 (CC, DOI: 10.1039/c3cc47130f) 3-1 (CC, DOI: 10.1039/c3cc47130f)

3-2 (CC, DOI: 10.1039/c3cc47130f) 3-2 (CC, DOI: 10.1039/c3cc47130f)

3-3(CT态的ΔEST=0.03,同时局域态单线态与三线态能极差在1.1 eV,利用Gaussian 03/TD-DFT计算) 3-3 (ΔE ST of CT state = 0.03, and the energy range between local singlet state and triplet state is 1.1 eV, calculated by Gaussian 03/TD-DFT)

3-4(CT态的ΔEST=0.05,同时局域态单线态与三线态能极差在1.2 eV,利用Gaussian 03/TD-DFT计算) 3-4 (ΔE ST of CT state = 0.05, and the energy gap between localized singlet state and triplet state is 1.2 eV, calculated by Gaussian 03/TD-DFT)

3-5( CT态的ΔEST=0.01,同时局域态单线态与三线态能极差在1.4 eV利用Gaussian 03/TD-DFT计算) 3-5 (ΔE ST of CT state = 0.01, and the energy range between local singlet state and triplet state is at 1.4 eV, calculated by Gaussian 03/TD-DFT)

3-6 (AFM, DOI: 10.1002/adfm.201301750) 3-6 (AFM, DOI: 10.1002/adfm.201301750)

, ,

3-7 3-7

, ,

3-8 3-8

,

3-9 3-9

,

3-10 3-10

,

3-11 3-11

3-12 。 3-12.

本申请中相关化合物的合成: Synthesis of related compounds in this application:

1、化合物1-7的合成 1. Synthesis of compound 1-7

合成1-7a, Synthesis of 1-7a,

3.34 g 咔唑,3.22 g 3,6-二溴咔唑,0.5 g CuI, 0.5g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 mlDMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7a,产率为30%。 3.34 g carbazole, 3.22 g 3,6-dibromocarbazole, 0.5 g CuI, 0.5 g of phenanthroline and 5.2 g of potassium carbonate were added to a 100 ml round-bottomed flask, 60 ml of DMF was added, and the reaction was heated to reflux under nitrogen atmosphere for 48 hours, then the reaction solution was poured into water, and the solid was obtained by suction filtration under reduced pressure. The solid was separated by chromatographic column to obtain 1-7a with a yield of 30%.

质谱数据:ESI-MS m/z: 498 [M+H]+,元素分析: C36H23N3: C:86.90, H:4.66, N:8.44。 Mass spectrometry data: ESI-MS m/z: 498 [M+H] + , elemental analysis: C 36 H 23 N 3 : C: 86.90, H: 4.66, N: 8.44.

合成1-7b, Synthesis of 1-7b,

3.11 g 三溴苯,2.48 g对甲基苯硫酚,6 g碳酸钾,1 g碘化亚铜加入到100 ml圆底烧瓶中,加入50 ml的DMF,在氮气氛围下,100℃加热24小时。随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7b,产率为60%。 Add 3.11 g of tribromobenzene, 2.48 g of p-methylthiophenol, 6 g of potassium carbonate, and 1 g of cuprous iodide into a 100 ml round bottom flask, add 50 ml of DMF, and heat at 100°C for 24 Hour. Then the reaction solution was poured into water, and filtered under reduced pressure to obtain a solid. The solid was separated by chromatographic column to obtain 1-7b with a yield of 60%.

质谱数据:ESI-MS m/z: 401 [M+H]+,元素分析: C20H17BrS,C:59.85, H:4.27。 Mass spectrometry data: ESI-MS m/z: 401 [M+H] + , elemental analysis: C 20 H 17 BrS, C: 59.85, H: 4.27.

合成1-7c, Synthesis of 1-7c,

在冰水浴下,将溶于30 ml的1-7b缓慢滴加到1 g mCPBA的二氯甲烷溶液中,保持在冰水浴中加完,随后反应12h。固体用色谱柱分离得到1-7c,产率为99%。 Under ice-water bath, 1-7b dissolved in 30 ml was slowly added dropwise to 1 g of mCPBA in dichloromethane solution, kept in the ice-water bath, and then reacted for 12 hours. The solid was separated by chromatographic column to obtain 1-7c with a yield of 99%.

质谱数据:ESI-MS m/z: 465 [M+H]+,元素分析: C20H17BrO4S2,C:86.90,H:4.66, N:8.44。 Mass spectrum data: ESI-MS m/z: 465 [M+H] + , elemental analysis: C 20 H 17 BrO 4 S 2 , C: 86.90, H: 4.66, N: 8.44.

合成1-7, Synthesis 1-7,

4.97 g 1-7a,4.63 g 1-7b,0.5 g CuI,0.5 g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到1-7,产率为60%。 4.97 g 1-7a, 4.63 g 1-7b, 0.5 g CuI, 0.5 g phenanthroline and 5.2 g potassium carbonate were added to a 100 ml round bottom flask, 60 ml DMF was added, and the reaction was heated under reflux under nitrogen atmosphere for 48 hours, and then the reaction solution was poured into water, The solid was obtained by suction filtration under reduced pressure. The solid was separated by chromatographic column to obtain 1-7 with a yield of 60%.

质谱数据:ESI-MS m/z: 882 [M+H]+,元素分析:C56H39N3O4S2, C 76.25, H 4.46, N 4.76. Mass spectral data: ESI-MS m/z: 882 [M+H] + , elemental analysis: C 56 H 39 N 3 O 4 S 2 , C 76.25, H 4.46, N 4.76.

2、化合物1-4的合成 2. Synthesis of compound 1-4

1-4的合成参照1-7,物质检测数据:质谱数据:ESI-MS m/z: 717 [M+H]+,元素分析C44H32N2O4S2,C:73.72,H:4.50, N:3.91。 The synthesis of 1-4 refers to 1-7, substance detection data: mass spectrometry data: ESI-MS m/z: 717 [M+H] + , elemental analysis C 44 H 32 N 2 O 4 S 2 , C: 73.72, H : 4.50, N: 3.91.

3、化合物1-8的合成 3. Synthesis of compound 1-8

4.52 g 1-8a,3 g 1-8b和0.05g四三苯基膦钯催化剂,以及5.4g碳酸钾,加入到圆底烧瓶中,再加入30 ml甲苯和20 ml水以及5 ml乙醇,在85℃下反应48h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到1-8,产率为65%。 4.52 g of 1-8a, 3 g of 1-8b and 0.05 g of tetrakistriphenylphosphine palladium catalyst, and 5.4 g of potassium carbonate were added to the round bottom flask, and then 30 ml of toluene, 20 ml of water and 5 ml of ethanol were added to the Reaction at 85°C for 48h. After the reaction was completed, it was extracted with dichloromethane to obtain an organic layer, which was then separated by a chromatographic column to obtain 1-8 with a yield of 65%.

质谱数据:ESI-MS m/z: 640 [M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。 Mass spectrum data: ESI-MS m/z: 640 [M+H] + , elemental analysis: C 45 H 29 N 5 , C: 84.48, H: 4.57, N: 10.95.

4、化合物2-1的合成 4. Synthesis of compound 2-1

2.43 g 2-1a加入到0.24 g NaH的超干DMF溶液中(30 ml),室温搅拌30 min,然后将2.54 g 2-1b的DMF溶液滴加到上述溶液中,加热100度搅拌1小时,冷却后倒入水中,过滤固体,用色谱柱分离。得到2-1。 Add 2.43 g of 2-1a to 0.24 g of NaH in ultra-dry DMF solution (30 ml), stir at room temperature for 30 min, then add 2.54 g of 2-1b in DMF solution dropwise, heat at 100°C and stir for 1 hour, Pour into water after cooling, filter the solid, and separate with a chromatographic column. Got 2-1.

质谱数据:ESI-MS m/z: 701 [M+H]+,元素分析:C48H32N2O2S,C:82.26,H:4.60, N:4.0。 Mass spectrometry data: ESI-MS m/z: 701 [M+H] + , elemental analysis: C 48 H 32 N 2 O 2 S, C: 82.26, H: 4.60, N: 4.0.

5、化合物2-2的合成 5. Synthesis of compound 2-2

化合物2-2的合成参见2-1,方法与化合物2-1基本相同,区别在于将2-1a换成二联咔唑。 For the synthesis of compound 2-2, see 2-1. The method is basically the same as that of compound 2-1, except that 2-1a is replaced by biscarbazole.

质谱数据:ESI-MS m/z: 879 [M+H]+,元素分析:C60H38N4O2S,C:81.98,H:4.36, N:6.37。 Mass spectrum data: ESI-MS m/z: 879 [M+H] + , elemental analysis: C 60 H 38 N 4 O 2 S, C: 81.98, H: 4.36, N: 6.37.

6、化合物2-7的合成 6. Synthesis of compound 2-7

合成2-7a, Synthesis of 2-7a,

2.25 g 2,4-二氯-6-苯三嗪,2 g间溴苯硼酸,0.05 g四三苯基膦钯催化剂,以及5.4 g碳酸钾,加入到圆底烧瓶中,再加入30 ml甲苯和20 ml水以及5 ml乙醇,在85℃下反应48 h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到2-7a,产率为58%。 Add 2.25 g of 2,4-dichloro-6-phenyltriazine, 2 g of m-bromophenylboronic acid, 0.05 g of tetrakistriphenylphosphine palladium catalyst, and 5.4 g of potassium carbonate into a round bottom flask, and then add 30 ml of toluene With 20 ml of water and 5 ml of ethanol, react at 85°C for 48 h. After the reaction was completed, it was extracted with dichloromethane to obtain an organic layer, which was then separated by a chromatographic column to obtain 2-7a with a yield of 58%.

质谱数据:ESI-MS m/z: 466 [M+H]+,元素分析:C21H13Br2N3,C:53.99,H:2.80,N:8.99。 Mass spectrum data: ESI-MS m/z: 466 [M+H] + , elemental analysis: C 21 H 13 Br 2 N 3 , C: 53.99, H: 2.80, N: 8.99.

合成2-7, Synthesis 2-7,

4.65 g 2-7a,3.66 g吩噁嗪,0.5 g CuI, 0.5 g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-7,产率为48%。 4.65 g 2-7a, 3.66 g phenoxazine, 0.5 g CuI, 0.5 g phenanthroline and 5.2 g potassium carbonate were added to a 100 ml round-bottomed flask, 60 ml DMF was added, and heated to reflux under a nitrogen atmosphere for 48 hours, then the reaction solution was poured into water, and the solid was obtained by suction filtration under reduced pressure. 2-7 was separated by chromatographic column with a yield of 48%.

质谱数据:ESI-MS m/z: 672 [M+H]+.元素分析: C45H29N5O2,C:80.46,H:4.35, N:4.76。 Mass spectrum data: ESI-MS m/z: 672 [M+H] + . Elemental analysis: C 45 H 29 N 5 O 2 , C: 80.46, H: 4.35, N: 4.76.

7、化合物2-8的合成 7. Synthesis of compound 2-8

合成2-8a, Synthesis of 2-8a,

2.25 g 2,4-二氯-6-苯三嗪,2 g对溴苯硼酸,0.05 g四三苯基膦钯催化剂,以及5.4 g碳酸钾,加入到圆底烧瓶中,再加入30 ml甲苯和20 ml水以及5 ml乙醇,在85℃下反应48 h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到2-8a,产率为55%。 Add 2.25 g of 2,4-dichloro-6-phenyltriazine, 2 g of p-bromophenylboronic acid, 0.05 g of tetrakistriphenylphosphine palladium catalyst, and 5.4 g of potassium carbonate into a round bottom flask, and then add 30 ml of toluene With 20 ml of water and 5 ml of ethanol, react at 85°C for 48 h. After the reaction was completed, it was extracted with dichloromethane to obtain an organic layer, which was then separated by a chromatographic column to obtain 2-8a with a yield of 55%.

质谱数据:ESI-MS m/z: 466 [M+H]+,元素分析:C21H13Br2N3,C:53.99,H:2.80,N:8.99。 Mass spectrum data: ESI-MS m/z: 466 [M+H] + , elemental analysis: C21H13Br2N3, C: 53.99, H: 2.80, N: 8.99.

合成2-8, Synthesize 2-8,

4.65 g 2-8a,3.66 g吩噁嗪,0.5 g CuI, 0.5 g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-8,产率为56%。 4.65 g 2-8a, 3.66 g phenoxazine, 0.5 g CuI, 0.5 g phenanthroline and 5.2 g potassium carbonate were added to a 100 ml round-bottomed flask, 60 ml DMF was added, and heated to reflux under a nitrogen atmosphere for 48 hours, then the reaction solution was poured into water, and the solid was obtained by suction filtration under reduced pressure. The chromatographic column separated 2-8 with a yield of 56%.

质谱数据: ESI-MS m/z: 640 [M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。 Mass spectrum data: ESI-MS m/z: 640 [M+H] + , elemental analysis: C 45 H 29 N 5 , C: 84.48, H: 4.57, N: 10.95.

8、化合物2-9的合成 8. Synthesis of compound 2-9

2-9的合成参见2-7,区别在于换用不同的给体基团.,选用的咔唑替换吩噁嗪。4.65 g 2-8a,3.0 g咔唑,0.5 g CuI, 0.5 g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体,固体用色谱柱分离得到2-9,产率为50%。 For the synthesis of 2-9, refer to 2-7, the difference is that different donor groups are used, and carbazole is used instead of phenoxazine. 4.65 g 2-8a, 3.0 g carbazole, 0.5 g CuI, 0.5 g phenanthroline and 5.2 g potassium carbonate were added to a 100 ml round-bottomed flask, 60 ml DMF was added, and heated to reflux under a nitrogen atmosphere for 48 hours, then the reaction solution was poured into water, and the solid was obtained by suction filtration under reduced pressure. 2-9 was separated by chromatographic column with a yield of 50%.

质谱数据:ESI-MS m/z: 640 [M+H]+,元素分析:C45H29N5,C:84.48,H:4.57,N:10.95。 Mass spectrum data: ESI-MS m/z: 640 [M+H] + , elemental analysis: C 45 H 29 N 5 , C: 84.48, H: 4.57, N: 10.95.

9、化合物2-11的合成 9. Synthesis of compound 2-11

合成2-11, Synthesis 2-11,

3.32 g苯基吲哚咔唑,2.67g 2-氯-4,6-二苯三嗪,0.5g CuI,0.5 g菲啰啉以及5.2 g碳酸钾加入到100 ml圆底烧瓶中,加入60 ml DMF,在氮气氛围下加热回流反应48小时,随后将反应液倒入水中,减压抽滤得到固体。固体用色谱柱分离得到2-7,产率为48%。 3.32 g phenylindolecarbazole, 2.67 g 2-chloro-4,6-diphenyltriazine, 0.5 g CuI, 0.5 g phenanthroline and 5.2 g potassium carbonate were added to a 100 ml round bottom flask, and 60 ml DMF, heated to reflux under a nitrogen atmosphere for 48 hours, then poured the reaction solution into water, and filtered under reduced pressure to obtain a solid. The solid was separated by chromatographic column to obtain 2-7 with a yield of 48%.

质谱数据:ESI-MS m/z: 564 [M+H]+,元素分析:C39H25N5,C:83.10,H:4.47,N:12.43。 Mass spectrum data: ESI-MS m/z: 564 [M+H] + , elemental analysis: C 39 H 25 N 5 , C: 83.10, H: 4.47, N: 12.43.

10、化合物3-3的合成 10. Synthesis of compound 3-3

合成3-3a, Synthesis of 3-3a,

3 ml吡啶加入到邻苯二胺(0.6 g)和氯化亚砜(5ml)的混合溶液中,在60度温度下搅拌10小时,用二氯甲烷萃取,然后用大量的水清洗,得到固体。 3 ml of pyridine was added to a mixed solution of o-phenylenediamine (0.6 g) and thionyl chloride (5 ml), stirred at 60 degrees for 10 hours, extracted with dichloromethane, and washed with a large amount of water to obtain a solid .

质谱数据:ESI-MS m/z: 205。 Mass spectral data: ESI-MS m/z: 205.

合成3-3b, Synthesis of 3-3b,

2.25 g 3-3a,2 g苯硼酸,0.05 g四三苯基膦钯催化剂,以及5.4 g碳酸钾,加入到圆底烧瓶中,再加入30 ml甲苯和20 ml水以及5 ml乙醇,在85℃下反应48 h。反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到3-3a,产率为58%。 2.25 g 3-3a, 2 g phenylboronic acid, 0.05 g tetrakistriphenylphosphine palladium catalyst, and 5.4 g potassium carbonate were added to a round-bottomed flask, and then 30 ml toluene, 20 ml water and 5 ml ethanol were added at 85 The reaction was carried out at ℃ for 48 h. After the reaction was completed, it was extracted with dichloromethane to obtain an organic layer, which was then separated by a chromatographic column to obtain 3-3a with a yield of 58%.

质谱数据:ESI-MS m/z: 246 [M+H]+Mass spectral data: ESI-MS m/z: 246 [M+H] + .

合成3-3, Synthesis 3-3,

2.46 g 3-3b,2.39 g 4-硼酸三苯胺,0.05 g四三苯基膦钯催化剂,以及5.4 g碳酸钾,加入到圆底烧瓶中,再加入30 ml甲苯和20 ml水以及5 ml乙醇,在85℃下反应48h,反应结束用二氯甲烷萃取,得到有机层,然后用色谱柱分离,得到3-3,产率为58%。 Add 2.46 g 3-3b, 2.39 g triphenylamine 4-borate, 0.05 g tetrakistriphenylphosphine palladium catalyst, and 5.4 g potassium carbonate into a round bottom flask, then add 30 ml toluene, 20 ml water and 5 ml ethanol , reacted at 85°C for 48h, and extracted with dichloromethane at the end of the reaction to obtain an organic layer, which was then separated by a chromatographic column to obtain 3-3 with a yield of 58%.

质谱数据:ESI-MS m/z: 456 [M+H]+,元素分析:C30H21N3S,C:79.09,H:4.65,N:9.22。 Mass spectrum data: ESI-MS m/z: 456 [M+H] + , elemental analysis: C 30 H 21 N 3 S, C: 79.09, H: 4.65, N: 9.22.

11、化合物3-4的合成 11. Synthesis of compound 3-4

化合物3-4的合成参见化合物3-3,步骤基本相同,区别在于受体基团采用的是噻吩取代的苯并噻唑。 The synthesis of compound 3-4 refers to compound 3-3, the steps are basically the same, the difference is that the acceptor group is benzothiazole substituted by thiophene.

质谱数据:ESI-MS m/z: 462 [M+H]+,元素分析:C28H19N3S2: C:72.86,H:4.15,N:9.10。 Mass spectrum data: ESI-MS m/z: 462 [M+H] + , elemental analysis: C 28 H 19 N 3 S 2 : C: 72.86, H: 4.15, N: 9.10.

12、化合物3-5的合成 12. Synthesis of compound 3-5

化合物3-5的合成参见化合物3-3,步骤基本相同,区别在于:受体基团采用的是噻吩取代的萘并噻唑。 For the synthesis of compound 3-5, refer to compound 3-3, the steps are basically the same, the difference is that the acceptor group is naphthothiazole substituted by thiophene.

质谱数据:ESI-MS m/z: 512 [M+H]+,元素分析:C32H21N3S2: C:75.12,H:4.15,N:8.21。 Mass spectrum data: ESI-MS m/z: 512 [M + H] + , elemental analysis: C 32 H 21 N 3 S 2 : C: 75.12, H: 4.15, N: 8.21.

本发明的有机电致发光器件中,阳极可以采用无机材料或有机导电聚合物。无机材料一般为氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)等金属氧化物或金、铜、银等功函数较高的金属,优选ITO;有机导电聚合物优选为聚噻吩/聚乙烯基苯磺酸钠(以下简称PEDOT/PSS)、聚苯胺(以下简称PANI)中的一种。 In the organic electroluminescent device of the present invention, the anode can be made of inorganic materials or organic conductive polymers. Inorganic materials are generally metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), and indium zinc oxide (IZO), or metals with high work functions such as gold, copper, and silver, preferably ITO; organic conductive polymers are preferably One of polythiophene/sodium polyvinylbenzenesulfonate (hereinafter referred to as PEDOT/PSS) and polyaniline (hereinafter referred to as PANI).

阴极一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,或金属与金属氟化物交替形成的电极层。本发明中阴极优选为层叠的LiF层和Al层(LiF层在外侧)。 The cathode generally uses metals with low work functions such as lithium, magnesium, calcium, strontium, aluminum, indium, or their alloys with copper, gold, and silver, or electrode layers formed alternately between metals and metal fluorides. In the present invention, the cathode is preferably a laminated LiF layer and Al layer (the LiF layer is on the outside).

空穴传输层的材料可以选自芳胺类和枝聚物类低分子材料,优选NPB。 The material of the hole transport layer can be selected from aromatic amines and dendrimer low molecular materials, preferably NPB.

荧光染料优选为香豆素类(如DMQA、C545T)或双吡喃类(如DCJTB、DCM)化合物等材料。 Fluorescent dyes are preferably materials such as coumarin (such as DMQA, C545T) or bispyran (such as DCJTB, DCM) compounds.

电子传输层的材料可采用有机金属配合物(如Alq3、Gaq3、BAlq或Ga(Saph-q))或其他常用于电子传输层的材料,如芳香稠环类(如pentacene、苝)或邻菲咯啉类(如Bphen、BCP)化合物。 The material of the electron transport layer can be an organometallic complex (such as Alq 3 , Gaq 3 , BAlq or Ga (Saph-q)) or other materials commonly used in the electron transport layer, such as aromatic fused rings (such as pentacene, perylene) or O-phenanthroline (such as Bphen, BCP) compounds.

本发明的有机电致发光器件还可在阳极和空穴传输层之间具有空穴注入层,所述空穴注入层的材料例如可采用4,4’,4’’-三(3-甲基苯基苯胺)三苯胺掺杂F4TCNQ,或者采用铜酞菁(CuPc),或可为金属氧化物类,如氧化钼。 The organic electroluminescent device of the present invention can also have a hole injection layer between the anode and the hole transport layer, and the material of the hole injection layer can be, for example, 4,4',4''-tris(3-methyl Base phenylaniline) triphenylamine doped F4TCNQ, or copper phthalocyanine (CuPc), or metal oxides, such as molybdenum oxide.

为方便起见,把本说明书中涉及的一些有机材料的缩写及全称列示如下: For convenience, the abbreviations and full names of some organic materials involved in this specification are listed as follows:

下述对比例及实施例中,空穴注入层、空穴传输层、电子传输层、电子注入层、阴极结构保持不变,只有发光层部分采用不同发光体系。 In the following comparative examples and examples, the structure of the hole injection layer, hole transport layer, electron transport layer, electron injection layer, and cathode remains unchanged, and only the light emitting layer part adopts a different light emitting system.

对比例1, Comparative example 1,

采用常规主体掺杂常规荧光染料做发光层, Using conventional hosts doped with conventional fluorescent dyes as the light-emitting layer,

本对比例的有机电致发光器件结构如下: The organic electroluminescence device structure of this comparative example is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Alq3:1%rubrene(30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Alq 3 :1%rubrene(30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

即本对比例的发光层采用普通荧光材料Alq3做主体材料,rubrene作为客体材料(发光染料)掺杂在主体材料中(占发光层质量的1%)。 That is, the light-emitting layer of this comparative example uses the common fluorescent material Alq 3 as the host material, and rubrene is doped in the host material (accounting for 1% of the mass of the light-emitting layer) as the guest material (luminescent dye).

对比例2 Comparative example 2

采用单独TADF材料作为发光层, Using a separate TADF material as the light-emitting layer,

本对比例的有机电致发光器件结构如下: The organic electroluminescence device structure of this comparative example is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/host(化合物2-16)(30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/host(Compound 2-16)(30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm)

对比例3 Comparative example 3

采用TADF材料作为发光主体,采用一种普通荧光材料rubrene作为染料。 TADF material is used as the luminous body, and rubrene, a common fluorescent material, is used as the dye.

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ HOST(化合物1-16):1%rubrene (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/HOST(compound 1-16):1%rubrene (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

即本实施例的发光层采用TADF材料做主体材料HOST(化合物1-16),采用普通荧光材料rubrene作为发光染料掺杂在主体材料中(占发光层质量的1%)。 That is, the luminescent layer of this example uses TADF material as the host material HOST (compound 1-16), and the common fluorescent material rubrene is used as the luminescent dye doped in the host material (accounting for 1% of the mass of the luminescent layer).

实施例1 Example 1

采用TADF材料HOST(化合物1-16)作为发光主体,掺杂另一种TADF材料Dopant(化合物2-16)作为染料(占发光层质量的3%),二者。其中发光主体HOST(化合物1-16)的禁带宽度大于染料Dopant(化合物2-16)的禁带宽度,且主体材料的发光峰值与客体材料的吸收峰基本重叠(主体材料的电致发光光谱与客体材料的光致吸收光谱在归一化后,峰值对应的波长之差在50 nm以内)。 The TADF material HOST (compound 1-16) is used as the luminescent host, and another TADF material Dopant (compound 2-16) is doped as the dye (accounting for 3% of the mass of the luminescent layer), both. Wherein the forbidden band width of the luminescent host HOST (compound 1-16) is greater than that of the dye Dopant (compound 2-16), and the luminescence peak of the host material overlaps substantially with the absorption peak of the guest material (the electroluminescence spectrum of the host material After normalization with the photoabsorption spectrum of the guest material, the wavelength difference corresponding to the peak is within 50 nm).

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ HOST(1-16):1% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ HOST(1-16):1% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

上述对比例及实施例的实验数据如下表所示: The experimental data of above-mentioned comparative example and embodiment are shown in the table below:

因为涉及对比及实施例颜色不完全一致,所以无法简单从电流效率加以对比,我们重点对比外量子效率及不同亮度下,外量子效率的变化趋势。以及1000nits下对应的驱动电压,以选择最佳性能的器件。 Because it involves comparison and the color of the examples is not completely consistent, it is impossible to simply compare the current efficiency. We focus on comparing the external quantum efficiency and the change trend of the external quantum efficiency under different brightness. And the corresponding driving voltage under 1000nits to select the device with the best performance.

通过上面对比例可以看出:1)传统荧光体系掺杂荧光染料,对应较低的外量子效率,主要是受限于单线态25%比例限制。2)采用TADF材料单独作为发光层,虽然低亮度下,对应较高外量子效率,但随着亮度的增加,效率下降非常迅速。3)采用TADF材料掺杂荧光染料方案,相比获得较高的量子效率,同时效率随着亮度增加,降低不严重。4)采用TADF材料掺杂TADF染料方案,相比量子效率最高,且效率下降现象最不明显。 It can be seen from the above comparison: 1) The traditional fluorescent system doped with fluorescent dyes corresponds to a lower external quantum efficiency, which is mainly limited by the 25% ratio of the singlet state. 2) The TADF material is used alone as the light-emitting layer. Although the external quantum efficiency is relatively high at low brightness, the efficiency drops very rapidly as the brightness increases. 3) Compared with the scheme of doping fluorescent dyes with TADF materials, higher quantum efficiency is obtained, and at the same time, the efficiency decreases with the increase of brightness, and the decrease is not serious. 4) Compared with the scheme of TADF material doped with TADF dye, the quantum efficiency is the highest, and the phenomenon of efficiency drop is the least obvious.

通过上述对比可以看出,采用普通发光主体禁带宽,所需驱动电压高,效率地。而采用TADF材料做为主体及染料,效率高且追随着亮度上升,效率下降不明显。 From the above comparison, it can be seen that the band gap of the common light-emitting body is used, and the required driving voltage is high and efficient. However, the TADF material is used as the main body and the dye, and the efficiency is high and follows the brightness increase, and the efficiency decline is not obvious.

实施例2到实施例6进一步对两种TADF材料的比例进行对比研究。该系列实施例主体结构与实施例1类似,只是通过对两种主体材料的浓度进行有效调节。 Examples 2 to 6 further conduct a comparative study on the proportions of the two TADF materials. The main structure of this series of embodiments is similar to that of Example 1, except that the concentrations of the two main materials are effectively adjusted.

实施例2 Example 2

采用TADF材料Host(1-16)作为发光主体,采用50%浓度(占发光层质量的50%)Dopant(2-16)作为发光染料 TADF material Host (1-16) is used as the luminescent host, and Dopant (2-16) with a concentration of 50% (accounting for 50% of the mass of the luminescent layer) is used as the luminescent dye

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ Host(1-16):50% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Host(1-16):50% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

实施例3 Example 3

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

采用TADF材料Host(1-16)作为发光主体,采用30%浓度 Dopant(2-16)作为发光染料 TADF material Host (1-16) is used as the luminescent host, and 30% concentration Dopant (2-16) is used as the luminescent dye

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ Host(1-16):30% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Host(1-16):30% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

实施例4 Example 4

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

采用TADF材料Host(1-16)作为发光主体,采用10%浓度 Dopant(2-16)作为发光染料 TADF material Host (1-16) is used as the luminescent host, and 10% concentration of Dopant (2-16) is used as the luminescent dye

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ Host(1-16):10% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Host(1-16):10% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

实施例5 Example 5

采用TADF材料Host(1-16)作为发光主体,采用5%浓度 Dopant(2-16)作为发光染料 TADF material Host (1-16) is used as the luminescent host, and 5% concentration Dopant (2-16) is used as the luminescent dye

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ Host(1-16):5% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Host(1-16):5% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

实施例6 Example 6

采用TADF材料Host(1-16)作为发光主体,采用1%浓度 Dopant(2-16)作为发光染料 TADF material Host (1-16) is used as the luminescent host, and 1% concentration of Dopant (2-16) is used as the luminescent dye

本实施例的有机电致发光器件结构如下: The organic electroluminescence device structure of the present embodiment is as follows:

ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/ Host(1-16):1% Dopant(2-16) (30nm)/Alq3(30nm)/LiF(1nm)/Al(150nm) ITO/MTDATA:4%F4TCNQ(100nm)/NPB(20nm)/Host(1-16):1% Dopant(2-16) (30nm)/Alq 3 (30nm)/LiF(1nm)/Al(150nm)

上述对比例1及实施例2-6的实验数据如下表所示: The experimental data of above-mentioned comparative example 1 and embodiment 2-6 are shown in the table below:

重点通过对比不同亮度下外量子效率大小及外量子效率的变化趋势。以及1000nits下对应的驱动电压,以选择最佳性能的器件。 The focus is to compare the external quantum efficiency and the change trend of the external quantum efficiency under different brightness. And the corresponding driving voltage under 1000nits to select the device with the best performance.

通过上述实施例可以看出,该体系中当TADF材料作为染料,浓度在低于10%时相对具有较高的效率,较低的驱动电压,而且屏体效率下降不明显。 It can be seen from the above examples that when the TADF material is used as a dye in this system, when the concentration is lower than 10%, it has relatively high efficiency, low driving voltage, and the decrease in screen efficiency is not obvious.

实施例7 Example 7

本实施例的结构与实施例1类似,区别仅在于发光层采用不同的主体材料不同,其中,主体材料(化合物1-12、2-10、2-12)的电致发光光谱与客体材料(化合物2-16)的光致吸收光谱在归一化后,峰值对应的波长之差在50 nm以内。 The structure of this example is similar to that of Example 1, the only difference is that different host materials are used for the light-emitting layer, wherein the electroluminescence spectra of the host materials (compounds 1-12, 2-10, 2-12) are different from those of the guest materials ( After normalization of the photoinduced absorption spectrum of compound 2-16), the difference between the wavelengths corresponding to the peaks is within 50 nm.

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。 The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.

Claims (12)

1.一种有机电致发光器件,包括发光层,其特征在于,所述发光层的主体材料为热活化延迟荧光材料,客体材料为热活化延迟荧光材料,其中,主体材料的禁带宽度大于客体材料的禁带宽度,主体材料的电致发光光谱与客体材料的光致吸收光谱在归一化后,峰值对应的波长之差在50 nm以内。 1. An organic electroluminescent device, comprising a luminescent layer, is characterized in that the host material of the luminescent layer is a thermally activated delayed fluorescent material, and the guest material is a thermally activated delayed fluorescent material, wherein the band gap of the host material is greater than The forbidden band width of the guest material, the electroluminescence spectrum of the host material and the photoabsorption spectrum of the guest material are normalized, and the difference between the wavelengths corresponding to the peaks is within 50 nm. 2.根据权利要求1所述的有机电致发光器件,其特征在于,包括依次层叠的阳极、空穴注入层、空穴传输层、所述发光层、电子传输层及阴极。 2 . The organic electroluminescence device according to claim 1 , characterized in that it comprises an anode, a hole injection layer, a hole transport layer, the light emitting layer, an electron transport layer and a cathode stacked in sequence. 3.根据权利要求1所述的有机电致发光器件,其特征在于,所述客体材料在发光层中所占的质量百分比小于10%。 3 . The organic electroluminescent device according to claim 1 , wherein the mass percentage of the guest material in the light-emitting layer is less than 10%. 4.根据权利要求1~3任一项所述的有机电致发光器件,其特征在于,所述热活化延迟荧光材料的三线态能级与单线态的能隙<0.3 eV。 4. The organic electroluminescent device according to any one of claims 1-3, characterized in that, the energy gap between the triplet state energy level and the singlet state of the thermally activated delayed fluorescent material is less than 0.3 eV. 5.根据权利要求4任一项所述的有机电致发光器件,其特征在于,所述热活化延迟荧光材料的三线态能级与单线态的能隙<0.15 eV。 5 . The organic electroluminescence device according to claim 4 , characterized in that, the energy gap between the triplet energy level and the singlet state of the thermally activated delayed fluorescent material is less than 0.15 eV. 6 . 6.根据权利要求4所述的有机电致发光器件,其特征在于,所述热活化延迟荧光材料的LUMO能级与HOMO能级分布在其分子结构中的不同基团上。 6. The organic electroluminescent device according to claim 4, characterized in that, the LUMO energy level and the HOMO energy level of the thermally activated delayed fluorescent material are distributed on different groups in its molecular structure. 7.根据权利要求6所述的有机电致发光器件,其特征在于,所述热活化延迟荧光材料为存在电荷转移跃迁的材料,热活化延迟荧光材料中同时存在给体基团单元和受体基团单元, 7. The organic electroluminescent device according to claim 6, wherein the thermally activated delayed fluorescent material is a material having a charge transfer transition, and there are both donor group units and acceptors in the thermally activated delayed fluorescent material group unit, 所述给体基团单元为一个给体基团或两个以上的给体基团连接构成的基团; The donor group unit is a donor group or a group formed by connecting two or more donor groups; 所述受体基团单元为一个受体基团或两个以上的受体基团连接构成的基团; The acceptor group unit is an acceptor group or a group formed by connecting two or more acceptor groups; 所述给体基团选自吲哚并咔唑基,咔唑基,联咔唑基,三苯胺基,吩噁嗪基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吲哚并咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的联咔唑基,C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的三苯胺基,或者C1-6的烷基、甲氧基、乙氧基或苯基中一种以上的基团取代的吩噁嗪基; The donor group is selected from indolocarbazolyl, carbazolyl, bicarbazolyl, triphenylamine, phenoxazinyl, C 1-6 alkyl, methoxy, ethoxy or benzene Indolocarbazolyl substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or carbazolyl substituted by more than one group in phenyl, C 1 -6 alkyl, methoxy, ethoxy or phenyl group substituted bicarbazolyl, one of C 1-6 alkyl, methoxy, ethoxy or phenyl Triphenylamino group substituted by more than one group, or phenoxazinyl group substituted by more than one group in C 1-6 alkyl, methoxy, ethoxy or phenyl; 所述受体基团选自萘基,蒽基,菲基,芘基,三嗪基,苯并咪唑基,氰基、吡啶基,砜基,菲并咪唑基,萘并噻唑基,苯并噻唑基,噁二唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的蒽基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的芘基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的三嗪基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并咪唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的吡啶基, C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的砜基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的菲并咪唑基;C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的萘并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的苯并噻唑基,C1-6的烷基、甲氧基、乙氧基、苯基或吡啶基中一种以上的基团取代的噁二唑基; The acceptor group is selected from naphthyl, anthracenyl, phenanthrenyl, pyrenyl, triazinyl, benzimidazolyl, cyano, pyridyl, sulfone, phenanthryl imidazolyl, naphthiazolyl, benzo Thiazolyl, oxadiazolyl, naphthyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, methyl Anthracenyl substituted by one or more of oxy, ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl Group substituted phenanthrenyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl substituted by one or more groups of pyrenyl, C 1-6 alkyl, methoxy Triazinyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl benzimidazolyl substituted by group, pyridyl substituted by one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, Sulfone group substituted by one or more of methoxy, ethoxy, phenyl or pyridyl, one or more of C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl phenanthroimidazolyl substituted by C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridyl, and naphthothiazolyl substituted by one or more of C 1-6 Benzothiazolyl substituted by one or more of alkyl, methoxy, ethoxy, phenyl or pyridyl, C 1-6 alkyl, methoxy, ethoxy, phenyl or pyridine An oxadiazolyl group substituted by more than one group in the group; 其中,一种或多种所述给体基团单元与一种或多种所述受体基团单元直接连接形成热活化延迟荧光材料;或者,一种或多种所述给体基团单元和一种或多种所述受体基团单元分别与连接基团连接形成热活化延迟荧光材料,所述连接基团为具有空间位阻的基团。 Wherein, one or more of the donor group units are directly connected with one or more of the acceptor group units to form a thermally activated delayed fluorescent material; or, one or more of the donor group units One or more of the acceptor group units are respectively connected with a linking group to form a thermally activated delayed fluorescent material, and the linking group is a group with steric hindrance. 8.根据权利要求7所述的有机电致发光器件,其特征在于,一种或两种给体基团单元和一种或两种受体基团单元分别与连接基团连接形成热活化延迟荧光材料,或者一种或两种受体基团单元与一种或两种给体基团单元直接连接形成热活化延迟荧光材料。 8. The organic electroluminescence device according to claim 7, characterized in that one or two donor group units and one or two acceptor group units are respectively connected with a linking group to form a thermal activation delay A fluorescent material, or one or two acceptor group units are directly connected with one or two donor group units to form a thermally activated delayed fluorescent material. 9.根据权利要求7所述的有机电致发光器件,其特征在于,所述连接基团选自螺芴基、苯基、联苯基、C1-6的烷基或苯基的其中至少一种取代的螺芴基、C1-6的烷基或苯基的其中至少一种取代的苯基或者C1-6的烷基或苯基的其中至少一种取代的联苯基。 9. The organic electroluminescent device according to claim 7, wherein the connecting group is selected from spirofluorenyl, phenyl, biphenyl, C 1-6 alkyl or phenyl wherein at least A substituted spirofluorenyl group, at least one of C 1-6 alkyl or phenyl substituted phenyl, or at least one of C 1-6 alkyl or phenyl substituted biphenyl. 10.根据权利要求7所述的有机电致发光器件,其特征在于,所述给体基团选自以下基团: 10. The organic electroluminescent device according to claim 7, wherein the donor group is selected from the following groups: ,或 , , , , , , , , , , , , , , ,or . 11.根据权利要求7所述的有机电致发光器件,其特征在于,所述受体基团选自以下基团: 11. The organic electroluminescent device according to claim 7, wherein the acceptor group is selected from the following groups: , , , , , , , , or . 12.根据权利要求7所述的有机电致发光器件,其特征在于,所述热活化延迟荧光材料为具有如下结构的化合物: 12. The organic electroluminescent device according to claim 7, wherein the thermally activated delayed fluorescent material is a compound having the following structure: , 1-1 1-1 , 1-2 1-2 , 1-3 1-3 , 1-4 1-4 , 1-5 1-5 , 1-6 1-6 , 1-7 1-7 , 1-8 1-8 , 1-9 1-9 , 1-10 1-10 , 1-11 1-11 , 1-12 1-12 , 1-13 1-13 , 1-14 1-14 , 1-15 1-15 , 1-16 1-16 , 2-1 2-1 , 2-2 2-2 , 2-3 2-3 , 2-4 2-4 , 2-5 2-5 , 2-6 2-6 , 2-7 2-7 , 2-8 2-8 , 2-9 2-9 , 2-10 2-10 , 2-11 2-11 , 2-12 2-12 , 2-13 2-13 , 2-14 2-14 , 2-15 2-15 , 2-16 2-16 , 3-1 3-1 , 3-2 3-2 , 3-3 3-3 , 3-4 3-4 , 3-5 3-5 , 3-6 3-6 , , 3-7 3-7 , , 3-8 3-8 , 3-9 3-9 , 3-10 3-10 , 3-11 3-11 3-12 。 3-12.
CN201510210700.8A 2015-04-29 2015-04-29 A kind of organic electroluminescence device Pending CN106206996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510210700.8A CN106206996A (en) 2015-04-29 2015-04-29 A kind of organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510210700.8A CN106206996A (en) 2015-04-29 2015-04-29 A kind of organic electroluminescence device

Publications (1)

Publication Number Publication Date
CN106206996A true CN106206996A (en) 2016-12-07

Family

ID=57458190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510210700.8A Pending CN106206996A (en) 2015-04-29 2015-04-29 A kind of organic electroluminescence device

Country Status (1)

Country Link
CN (1) CN106206996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972111A (en) * 2017-06-01 2017-07-21 上海天马有机发光显示技术有限公司 Organic luminescent device and display device
CN108250130A (en) * 2016-12-28 2018-07-06 昆山国显光电有限公司 Organic luminous layer material of main part and organic luminous layer and organic luminescent device
CN108695440A (en) * 2018-05-30 2018-10-23 昆山国显光电有限公司 A kind of organic electroluminescence device
CN109088008A (en) * 2018-08-23 2018-12-25 京东方科技集团股份有限公司 A kind of organic luminescent device and display panel
WO2020211124A1 (en) * 2019-04-16 2020-10-22 武汉华星光电半导体显示技术有限公司 Thermally activated delayed fluorescence material, preparation method therefor, and organic light-emitting diode device
US11063224B2 (en) 2018-05-30 2021-07-13 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709485A (en) * 2011-09-30 2012-10-03 昆山维信诺显示技术有限公司 OELD (Organic Electroluminescent Device) and preparation method thereof
CN103380509A (en) * 2011-02-16 2013-10-30 株式会社半导体能源研究所 Light-emitting element
CN103443949A (en) * 2011-03-25 2013-12-11 出光兴产株式会社 Organic electroluminescent device
CN103518270A (en) * 2011-04-07 2014-01-15 株式会社半导体能源研究所 Light-emitting element
CN103579530A (en) * 2012-08-03 2014-02-12 株式会社半导体能源研究所 Light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380509A (en) * 2011-02-16 2013-10-30 株式会社半导体能源研究所 Light-emitting element
CN103443949A (en) * 2011-03-25 2013-12-11 出光兴产株式会社 Organic electroluminescent device
CN103518270A (en) * 2011-04-07 2014-01-15 株式会社半导体能源研究所 Light-emitting element
CN102709485A (en) * 2011-09-30 2012-10-03 昆山维信诺显示技术有限公司 OELD (Organic Electroluminescent Device) and preparation method thereof
CN103579530A (en) * 2012-08-03 2014-02-12 株式会社半导体能源研究所 Light-emitting element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROKI UOYAMA等: ""Highly efficient organic light-emitting diodes from delayed fluorescence"", 《NATURE》 *
YONG JOO CHO等: ""A Universal Host Material for High External Quantum Effciency Close to 25% and Long Lifetime in Green Fluorescent and Phosphorescent OLEDs"", 《ADVANCED MATERIALS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250130A (en) * 2016-12-28 2018-07-06 昆山国显光电有限公司 Organic luminous layer material of main part and organic luminous layer and organic luminescent device
CN106972111A (en) * 2017-06-01 2017-07-21 上海天马有机发光显示技术有限公司 Organic luminescent device and display device
CN108695440A (en) * 2018-05-30 2018-10-23 昆山国显光电有限公司 A kind of organic electroluminescence device
US11063224B2 (en) 2018-05-30 2021-07-13 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent device
CN109088008A (en) * 2018-08-23 2018-12-25 京东方科技集团股份有限公司 A kind of organic luminescent device and display panel
US11245083B2 (en) 2018-08-23 2022-02-08 Chengdu Boe Optoelectronics Technology Co., Ltd. Organic light-emitting device and display panel
WO2020211124A1 (en) * 2019-04-16 2020-10-22 武汉华星光电半导体显示技术有限公司 Thermally activated delayed fluorescence material, preparation method therefor, and organic light-emitting diode device

Similar Documents

Publication Publication Date Title
CN105895810B (en) A kind of thermal activation sensitized phosphorescence organic electroluminescence device
CN106206997B (en) A kind of organic electroluminescence device
CN104716268B (en) A kind of organic electroluminescence device and preparation method thereof
CN107408634B (en) Organic light emitting apparatus including matrix, phosphorescent dopants and fluorescent dopants
JP6663435B2 (en) Organic electroluminescence device
CN105895811B (en) A kind of thermal activation sensitized fluorescence organic electroluminescence device
TWI617648B (en) Thermally activated delayed fluorescent material and its use in organic light emitting device
Zhu et al. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes
Kagatikar et al. A systematic review on 1, 8-naphthalimide derivatives as emissive materials in organic light-emitting diodes
CN106206958A (en) A kind of white light organic electroluminescent device
TW200920812A (en) Organic electroluminescence device and material for organic electroluminescence device
CN106206996A (en) A kind of organic electroluminescence device
CN102709485A (en) OELD (Organic Electroluminescent Device) and preparation method thereof
Jayabharathi et al. Asymmetrically twisted phenanthrimidazole derivatives as host materials for blue fluorescent, green and red phosphorescent OLEDs
CN109671850A (en) A kind of organic electroluminescence device
CN106898709A (en) A kind of red phosphorescent organic electroluminescence device
TWI387575B (en) Synthesis of triphenylene and pyrene based aromatics and their application in oleds
WO2012005724A1 (en) Host material for organic light emitting devices
CN113224248B (en) An organic electroluminescent device and display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication