Nothing Special   »   [go: up one dir, main page]

CN106167555B - 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法 - Google Patents

一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法 Download PDF

Info

Publication number
CN106167555B
CN106167555B CN201610519084.9A CN201610519084A CN106167555B CN 106167555 B CN106167555 B CN 106167555B CN 201610519084 A CN201610519084 A CN 201610519084A CN 106167555 B CN106167555 B CN 106167555B
Authority
CN
China
Prior art keywords
composite membrane
preparation
environmental protection
magadiite
interpenetrating type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610519084.9A
Other languages
English (en)
Other versions
CN106167555A (zh
Inventor
戈明亮
杜明艺
王雁武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Publication of CN106167555A publication Critical patent/CN106167555A/zh
Priority to PCT/CN2017/090428 priority Critical patent/WO2018006728A1/zh
Priority to US16/315,165 priority patent/US10781269B2/en
Application granted granted Critical
Publication of CN106167555B publication Critical patent/CN106167555B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种“互穿型花瓣”结构的仿贝壳环保复合膜及其制备方法。制备复合膜的材料包括麦羟硅钠石、CMC及双硅烷偶联剂。本发明的复合膜具有优异的“互穿型花瓣”稳定结构,麦羟硅钠石的非平行的花瓣状片层结构在外力拉伸作用下能够改变力的传递方向,使得聚合物基体内部的受力分布更加均衡;而且无机片层相互穿插,形成互锁,产生“榫卯”效应,导致片层相互滑移变得困难,从而有效提升无机片层韧性拔出的强度。同时,该复合膜具有柔软性好、透明性高、阻燃性能优异、制备方法简单便捷、易于工业化等特点,因此在阻燃、食品包装、水处理、气体阻隔、生物传感器、电容器及环保工程等领域具有很好的应用前景。

Description

一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法
技术领域
本发明涉及仿生材料领域,具体涉及一种“互穿型花瓣”结构的仿贝壳环保复合膜及其制备方法。
背景技术
天然贝壳独特的微观结构成为制备轻质高强超韧层状复合材料的模型结构,因而许多研究者受其“砖‐泥”结构与优异力学性能之间关系的启发,以纳米级或微米级二维结构的功能性无机片层材料作为“砖”,有机高分子作为“泥”,制备仿贝壳“砖‐泥”结构的层状微纳米复合材料。仿贝壳材料表现为韧性断裂,当载荷达到一定强度后,无机层板在聚合物剪切屈服前就会发生滑移和拔出现象,但是这种片层的平行排列结构使得滑移更易发生,导致其力学强度下降。所以仿贝壳材料的机械性能是可以通过微纳米板块与聚合物之间的滑动和相互作用来控制的。
目前在仿贝壳材料的研究中,无机片层材料主要有层状硅酸盐、层状双氢氧化物(LDH)、氧化石墨烯、羟基磷灰石、磷酸锆、氧化铝等。其中以蒙脱土为代表的层状硅酸盐因其来源广,价格低,环境友好等优点被广泛用作仿贝壳膜中的无机片层材料。然而,蒙脱土与聚合物相容性差,虽然亦有研究对其进行插层改性,提高亲油性,扩大层间距,但有机化蒙脱土与聚合物之间仍然只是弱的范德华力结合,而且由于蒙脱土片层表面基本没有可用于改性的功能性基团,使得蒙脱土的功能化改性受到制约。相对于蒙脱土,本发明选用人工合成的麦羟硅钠石,其具有以下优点:一是通过控制合成工艺,能够得到高纯度的麦羟硅钠石;二是麦羟硅钠石内外表面有很多硅羟基(Si OH),层板带有丰富的负电荷,与聚合物结合时具有较强的静电作用;三是层板具有优异的膨化性能,层间阳离子交换量远大于蒙脱土,聚合物分子可以很好地插层进入到麦羟硅钠石片层间,形成“硬-软”相间的层状结构;四是麦羟硅钠石单个片层较厚,结构稳定性好,与聚合物反应可得到结构性能良好且稳定的仿贝壳环保复合材料;五是麦羟硅钠石层板仅由硅氧四面体[SiO4]组成,除钠离子外,不含容易水解的铝和其他一些金属阳离子,因而具有良好的耐酸性、热稳定性和生物相容性;六是价格低廉,具有市场竞争优势,在制备仿贝壳环保复合材料方面具有广泛的应用价值。
国内外目前关于仿贝壳材料的相关研究文献中,选用的无机片层材料和聚合物复合杂化形成的均为平行排列的“砖-泥”结构,这种平行结构对仿贝壳复合膜的气体阻隔、阻渗等性能有积极作用;然而,在外力拉伸作用下,无机片层很容易在聚合物剪切屈服前发生滑移 和拔出现象,从而对仿贝壳复合材料的机械性能产生负面的影响。相比之下,本发明选用玫瑰花瓣片层结构的麦羟硅钠石与CMC在双硅烷偶联剂下进行偶联,制备出相互交错穿插的“互穿型花瓣”结构仿贝壳膜。这种独特的结构更有效地改善材料的性能,目前国内外尚未有相关研究文献及专利报道,因此本发明具有显著的创新性。
发明内容
本发明的目的在于针对目前制备仿贝壳环保复合材料存在的不足,提供一种仿贝壳环保复合膜及其制备方法,该复合膜结构为“互穿型花瓣”结构。仿贝壳环保复合膜中麦羟硅钠石作为硬相,起到增强、阻隔作用;CMC作为软相,起到柔顺、增韧、增容、亲油等作用;双硅烷偶联剂起到桥梁和纽带的作用,增强硬软两相界面的相互作用。仿贝壳环保复合膜的“互穿型花瓣”结构能够产生“榫卯”效应,片层相互滑移变得更为困难,同时能够改变载荷的传递方向,使得聚合物基体的内应力分布更加均衡,从而有效提升仿贝壳膜的机械性能。另外该复合膜还具有柔韧、透明、阻燃,制备简捷、易于工业化等优点,在阻燃、食品包装、水处理、气体阻隔、生物传感器、电容器以及环保工程等领域将均有很好的应用前景。
本发明的目的至少通过如下技术方案之一实现。
一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,该制备方法所用材料包括麦羟硅钠石(magadiite)、羧甲基纤维素(CMC)及双硅烷偶联剂。
进一步地,所述制备方法包括以下步骤:
(1).将麦羟硅钠石(由发明“一种二维层状结构材料magadiite的制备方法”制得,公布号CN103073004A)分散于水中,机械搅拌后超声分散,得麦羟硅钠石均匀分散液;
(2).将CMC溶于水中,机械搅拌至充分溶解,得CMC溶液;
(3).将CMC溶液缓慢加入到麦羟硅钠石均匀分散液中,机械搅拌,待充分插层反应后,再缓慢逐滴加入双硅烷偶联剂中,继续机械搅拌,超声分散,得前驱物溶液;
(4).将前驱物溶液缓慢均匀倒入培养皿中,利用蒸发自沉降方法在真空烘箱中恒温干燥,在培养皿底部形成一层透明薄膜,即为所述的“互穿型花瓣”结构的仿贝壳环保复合膜。
进一步地,该复合膜的片层间一种结构如下:
更进一步地,所述麦羟硅钠石由廉价的白炭黑、氢氧化钠、碳酸钠和水等原料制取。
更进一步地,所述双硅烷偶联剂为双-[三氧基硅]丙基-四硫化物或双-[三氧基硅]丙基-二硫化物。
更进一步地,所述麦羟硅钠石与CMC的重量比例为2:8~8:2。
更进一步地,所述双硅烷偶联剂的用量为麦羟硅钠石重量的10~50%。
更进一步地,所述机械搅拌和超声分散时间分别为30~120min和10~30min。
更进一步地,所述机械搅拌的温度和干燥的温度分别为10~60℃和40~80℃。
由以上所述的制备方法制得的一种“互穿型花瓣”结构的仿贝壳环保复合膜。
与现有技术相比,本发明具有以下优势:
1.与传统的仿贝壳膜中聚合物与无机片层之间弱的离子吸附力相比,本发明“互穿型花瓣”结构的仿贝壳膜中,双硅烷偶联剂对聚合物和麦羟硅钠石上的羟基进行偶联反应,形成强的共价键,制备出结构稳定的仿贝壳材料。其中,麦羟硅钠石作为硬相,起到增强、阻隔作用;CMC作为软相,起到柔顺、增韧、增容、亲油等作用;双硅烷偶联剂起到桥梁和纽带的作用,增强界面的相互作用,形成一种“互穿型花瓣”稳定结构的仿贝壳环保膜,而且制备过程工艺简单,操作方便,便于工业化。
2.相对于传统“砖‐泥”结构的仿贝壳膜,本发明“互穿型花瓣”结构的仿贝壳膜中,麦羟硅钠石的非平行的花瓣状片层结构在外力拉伸作用下能够改变力的传递方向,使得聚合物基体内部的受力分布更加均衡;而且无机片层间产生“榫卯”效应,片层间作用力形成互锁,片层相互滑移变得更为困难,从而有效提升无机片层韧性拔出的强度。
3.本发明所得到的“互穿型花瓣”仿贝壳复合膜具有优异柔软性、透明性和阻燃性,在阻燃、食品包装、水处理、气体阻隔、生物传感器、电容器以及环保工程等领域将均有很好 的应用前景。
4.本发明所自制的无机材料麦羟硅钠石价格低廉,内外表面有很多硅羟基(SiOH),层板带有丰富的负电荷,具有很强的静电作用;层板具有优异的膨化性能,相对于蒙脱土,聚合物分子可以很好地插层进入到麦羟硅钠石片层间,形成“硬-软”相间的稳定层状结构;且麦羟硅钠石层板仅由硅氧四面体[SiO4]组成,除钠离子外,不含容易水解的铝和其他一些金属阳离子,用作生物环保材料具有很好的创新性。
附图说明
图1为“互穿型花瓣”结构的仿贝壳环保复合膜片层间一种结构示意图;
图2为纯麦羟硅纳石和“互穿型花瓣”结构的仿贝壳环保复合膜XRD图谱,其中纵坐标intensity为强度;
图3为纯麦羟硅钠石的SEM图;
图4a和4b为“互穿型花瓣”结构的仿贝壳环保复合膜SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例一
本实施例按如下步骤制备“互穿型花瓣”结构的仿贝壳环保复合膜:
取4g麦羟硅钠石分散于水中,在10℃下机械搅拌30min后超声分散10min,得麦羟硅钠石均匀分散液;同时将1g的CMC溶于水中,在30℃下机械搅拌30min至充分溶解,得CMC溶液;然后将CMC溶液加入到麦羟硅钠石均匀分散液中,在60℃下机械搅拌120min,待充分插层反应后,再逐滴加入到1.5g的Si-69双-[三氧基硅]丙基-四硫化物中,继续在60℃下机械搅拌120min后,超声分散30min,得前驱物溶液;将前驱物溶液均匀倒入培养皿中,利用蒸发自沉降方法在真空烘箱中60℃下恒温干燥,在培养皿底部形成的透明薄膜即为所述的“互穿型花瓣”结构仿贝壳环保复合膜。该“互穿型花瓣”结构的仿贝壳环保复合膜片层间一种结构示意图如图1所示;机械搅拌和超声分散的原因是更好地使CMC分子插层入麦羟硅钠石片层,并使二者与双硅烷偶联剂发生偶联反应,增大麦羟硅钠石的层间距,从图2中看出,纯的麦羟硅钠石XRD图在5.809°处出现衍射峰,表明其层间距约为1.52nm,而复合膜在测量范围内没有出现衍射峰,说明复合膜中麦羟硅钠石的片层间距明显增大,在4.4nm以上。
实施例二
取1g麦羟硅钠石分散于水中,在30℃下机械搅拌80min后超声分散20min,得麦羟硅 钠石均匀分散液;同时将4g的CMC溶于水中,在50℃下机械搅拌80min至充分溶解,得CMC溶液;然后将CMC溶液加入到麦羟硅钠石均匀分散液中,在50℃下机械搅拌120min,待充分插层反应后,再逐滴加入到2.5g的A-1589双-[三氧基硅]丙基-二硫化物中,继续在40℃下机械搅拌60min后,超声分散30min,得前驱物溶液;将前驱物溶液均匀倒入培养皿中,利用蒸发自沉降方法在真空烘箱中40℃下恒温干燥,在培养皿底部形成的透明薄膜即为所述的“互穿型花瓣”结构仿贝壳环保复合膜。纯的麦羟硅钠石的SEM图如图3所示,“互穿型花瓣”结构仿贝壳环保复合膜SEM图如图4a和图4b所示,可以看出该复合膜具有非常均匀、统一的仿生“互穿型花瓣”层状结构。
实施例三
取2g麦羟硅钠石分散于水中,在60℃下机械搅拌120min后超声分散30min,得麦羟硅钠石均匀分散液;同时将2g的CMC溶于水中,在10℃下机械搅拌120min至充分溶解,得CMC溶液;然后将CMC溶液加入到麦羟硅钠石均匀分散液中,在30℃下机械搅拌60min,待充分插层反应后,再逐滴加入到0.5g的Si-69双-[三氧基硅]丙基-四硫化物中,继续在30℃下机械搅拌80min后,超声分散20min,得前驱物溶液;将前驱物溶液均匀倒入培养皿中,利用蒸发自沉降方法在真空烘箱中80℃下恒温干燥,在培养皿底部形成的透明薄膜即为所述的“互穿型花瓣”结构仿贝壳环保复合膜。所制备的复合膜具有平滑的表面和良好的透明性。取一片“互穿型花瓣”结构仿贝壳环保复合膜于酒精灯下燃烧,该复合膜在酒精灯火焰下保持其完整的结构,不会零散掉落,也不会产生浓烟和油滴,具有良好的阻燃性能。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,该制备方法所用材料包括麦羟硅钠石、羧甲基纤维素CMC及双硅烷偶联剂,具体包括以下步骤:
(1).将麦羟硅钠石分散于水中,机械搅拌后超声分散,得麦羟硅钠石均匀分散液;
(2).将CMC溶于水中,机械搅拌至充分溶解,得CMC溶液;
(3).将CMC溶液加入到麦羟硅钠石均匀分散液中,机械搅拌,待充分插层反应后,再逐滴加入双硅烷偶联剂中,继续机械搅拌,超声分散,得前驱物溶液;
(4).将前驱物溶液均匀倒入培养皿中,利用蒸发自沉降方法在真空烘箱中恒温干燥,在培养皿底部形成一层透明薄膜,即为所述的“互穿型花瓣”结构的仿贝壳环保复合膜。
2.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,该制备方法所得复合膜结构为“互穿型花瓣”结构,该复合膜的片层间一种结构如下:
3.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,所述双硅烷偶联剂为双-[三乙氧基硅]丙基-四硫化物或双-[三乙氧基硅]丙基-二硫化物。
4.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,所述麦羟硅钠石与CMC的重量比例为2:8~8:2。
5.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,所述双硅烷偶联剂的用量为麦羟硅钠石重量的10~50%。
6.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,所述机械搅拌和超声分散时间分别为30~120min和10~30min。
7.根据权利要求1所述的一种“互穿型花瓣”结构的仿贝壳环保复合膜的制备方法,其特征在于,所述机械搅拌的温度和干燥的温度分别为10~60℃和40~80℃。
8.由权利要求1-7任一项所述的制备方法制得的一种“互穿型花瓣”结构的仿贝壳环保复合膜。
CN201610519084.9A 2016-04-28 2016-07-04 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法 Expired - Fee Related CN106167555B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/090428 WO2018006728A1 (zh) 2016-04-28 2017-06-28 一种"互穿型花瓣"结构的仿贝壳环保复合膜及其制备方法
US16/315,165 US10781269B2 (en) 2016-04-28 2017-06-28 Nacre-mimetic environmentally friendly composite membrane with “interpenetrating petal” structure and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610281930 2016-04-28
CN2016102819308 2016-04-28

Publications (2)

Publication Number Publication Date
CN106167555A CN106167555A (zh) 2016-11-30
CN106167555B true CN106167555B (zh) 2019-03-05

Family

ID=58064762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610519084.9A Expired - Fee Related CN106167555B (zh) 2016-04-28 2016-07-04 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法

Country Status (3)

Country Link
US (1) US10781269B2 (zh)
CN (1) CN106167555B (zh)
WO (1) WO2018006728A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167555B (zh) * 2016-04-28 2019-03-05 华南理工大学 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法
CN108948664A (zh) * 2018-07-02 2018-12-07 深圳职业技术学院 一种高岭土-环氧树脂仿生复合材料及其制备方法
CN110284358A (zh) * 2019-06-26 2019-09-27 陕西科技大学 一种芳纶纳米纤维/蒙脱土绝缘材料的制备方法
CN113277591B (zh) * 2021-06-08 2022-06-17 哈尔滨工程大学 一种二维magadiite/氧化石墨烯纳米片复合物的制备方法
CN115928497B (zh) * 2022-12-26 2023-12-29 福州大学 一种高低温热响应双面纸的制备方法及应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236681A (en) * 1989-11-30 1993-08-17 Mobil Oil Corp. Layered silicate
CN1202145C (zh) 2002-06-27 2005-05-18 上海交通大学 聚氯乙烯/层状硅酸盐纳米复合材料的制备方法
JP2005533846A (ja) * 2002-07-22 2005-11-10 ナノハイブリッド カンパニー リミテッド イトラコナゾール、シクロスポリン、またはカルベジロールと層状型珪酸塩との混成体及びその製造方法
AU2002952373A0 (en) * 2002-10-31 2002-11-14 Commonwealth Scientific And Industrial Research Organisation Fire resistant material
US20050244439A1 (en) * 2004-04-30 2005-11-03 Eastman Kodak Company Composition comprising anionic clay layered host material with intercalated functional-active organic compound
EP1860138A1 (en) * 2006-05-25 2007-11-28 Sabanci Universitesi Biodegradable thermoplastic nanocomposite polymers
CN101205361B (zh) * 2007-11-29 2010-06-09 东华大学 蒙脱土层状尼龙6/蒙脱土纳米复合材料及其制备方法
CN101787101B (zh) * 2010-01-25 2012-05-09 陕西科技大学 一种高吸水性纳米树脂的制备方法
CN101979444B (zh) * 2010-09-26 2013-07-03 华南理工大学 季鏻盐离子液体柱撑改性蒙脱石的制备方法及聚合物/蒙脱石纳米复合材料的制备方法
CN103073004A (zh) 2012-12-20 2013-05-01 华南理工大学 一种二维层状结构材料magadiite的制备方法
WO2015069382A2 (en) * 2013-09-18 2015-05-14 Narendra Jeffri J Flexible composites containing graphite and fillers
CN103554806B (zh) * 2013-10-25 2016-01-06 合肥工业大学 一种荧光超支化聚合物-纳米粘土薄膜复合材料及其制备方法
CN103923329B (zh) * 2014-04-25 2016-11-23 北京航空航天大学 一种超强度透明仿贝壳复合薄膜及其制备方法
CN103923351B (zh) * 2014-04-25 2016-04-27 安徽理工大学 一种木质纤维素/蒙脱土橡胶补强剂的制备方法及橡胶的补强方法
CN104004556B (zh) * 2014-06-13 2015-09-30 南京师范大学 一种有机/无机复合水煤浆添加剂
CN104275098B (zh) * 2014-10-27 2016-02-10 上海交通大学 一种仿贝壳结构层状氧化石墨烯纳米复合膜的制备方法
CN104448260A (zh) * 2014-12-01 2015-03-25 沈阳工业大学 一种糯米粉/蒙脱土生物纳米复合材料的制备方法
CN104874365B (zh) * 2015-05-27 2017-03-29 枣庄学院 羧甲基纤维素离子插层类水滑石复合材料及其制备方法与应用
CN105295012B (zh) * 2015-10-23 2017-05-03 华北理工大学 原位插层法制备层片状羟基磷灰石/聚乳酸纳米复合材料
CN106167555B (zh) * 2016-04-28 2019-03-05 华南理工大学 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法

Also Published As

Publication number Publication date
WO2018006728A1 (zh) 2018-01-11
US10781269B2 (en) 2020-09-22
CN106167555A (zh) 2016-11-30
US20190345264A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN106167555B (zh) 一种互穿型花瓣结构的仿贝壳环保复合膜及其制备方法
CN101787101B (zh) 一种高吸水性纳米树脂的制备方法
Dong et al. Fire-resistant inorganic analogous Xuan paper with thousands of years’ super-durability
CN104415399B (zh) 一种羟基磷灰石/石墨烯纳米复合粉末制备方法及其产品
Chen et al. Heat insulating, fire retardant and flexible inorganic nanocomposite paper
CN101538028B (zh) 层状磷酸钙盐及其制备方法和应用
CN105060830B (zh) 一种耐水型秸秆纤维增强的相变储热石膏墙板
CN101153288B (zh) 介孔纳米粉体羟基磷灰石的微生物催化合成方法
CN102070154A (zh) 一种无机蛭石膜的制备方法
CN104275098B (zh) 一种仿贝壳结构层状氧化石墨烯纳米复合膜的制备方法
CN104058689A (zh) 砌筑用保温砂浆
CN100448081C (zh) 经矿物纤维保湿的燃料电池质子交换膜及其制备方法
Kang et al. Multifunctional syndiotacticity-rich poly (vinyl alcohol)/MXene sediment for multilayered composite films with effective electromagnetic interference shielding and thermal conductivity
CN102000543B (zh) 一种无机蒙脱土材料的制备方法
CN109503095A (zh) 一种秸秆隔墙板
CN112430057A (zh) 一种多功能生物质复合建筑材料及制备方法
CN103289098B (zh) 一种有机硅纳米复合材料及其制备方法
CN101012342A (zh) 一种改性重晶石及其制备方法
CN105885846A (zh) CdTe量子点/层状材料复合荧光粉的制备方法
CN105236906A (zh) 一种基于硅藻土材料制成的硅酸盐-石膏复合砖及其制备方法
CN201062247Y (zh) 一种自蓄热功能复合材料
CN104891947A (zh) 一种基于外加改性剂的可提高强度的玻镁板及其制备方法
CN101648036B (zh) 层状羟基磷灰石与壳聚糖纳米复合材料及其制备和应用
CN105295234A (zh) 一种复合纤维增韧防腐地板及其制备方法
Krivovichev Crystal chemistry of selenates with mineral-like structures. IV. Crystal structure of Zn (SeO 4)(H 2 O) 2, a new compound with a mixed framework of the variscite type

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190305