Nothing Special   »   [go: up one dir, main page]

CN105984899B - 一种提纯五氧化二钒的系统及方法 - Google Patents

一种提纯五氧化二钒的系统及方法 Download PDF

Info

Publication number
CN105984899B
CN105984899B CN201510052178.5A CN201510052178A CN105984899B CN 105984899 B CN105984899 B CN 105984899B CN 201510052178 A CN201510052178 A CN 201510052178A CN 105984899 B CN105984899 B CN 105984899B
Authority
CN
China
Prior art keywords
chlorination
gas
pipeline
vanadic anhydride
vanadium oxytrichloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510052178.5A
Other languages
English (en)
Other versions
CN105984899A (zh
Inventor
朱庆山
范川林
牟文恒
刘吉斌
王存虎
班琦勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Beijing Zhongkaihongde Technology Co Ltd
Original Assignee
Institute of Process Engineering of CAS
Beijing Zhongkaihongde Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201510052178.5A priority Critical patent/CN105984899B/zh
Application filed by Institute of Process Engineering of CAS, Beijing Zhongkaihongde Technology Co Ltd filed Critical Institute of Process Engineering of CAS
Priority to RU2017130368A priority patent/RU2662515C1/ru
Priority to PCT/CN2016/072520 priority patent/WO2016119718A1/zh
Priority to NZ733914A priority patent/NZ733914A/en
Priority to JP2017558609A priority patent/JP6371015B2/ja
Priority to AU2016212452A priority patent/AU2016212452B2/en
Priority to US15/547,079 priority patent/US10294118B2/en
Priority to EP16742780.6A priority patent/EP3243799B1/en
Priority to BR112017015805-1A priority patent/BR112017015805A2/zh
Priority to CA2973511A priority patent/CA2973511C/en
Publication of CN105984899A publication Critical patent/CN105984899A/zh
Application granted granted Critical
Publication of CN105984899B publication Critical patent/CN105984899B/zh
Priority to ZA2017/04631A priority patent/ZA201704631B/en
Priority to PH12017550062A priority patent/PH12017550062A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明属于化工、材料领域。具体地,本发明公开了一种提纯五氧化二钒的系统及方法,采用流态化低温氯化将工业级五氧化二钒转化为三氯氧钒,通过流化气体与氯化烟气换热实现氯化气体预热、适量配加空气使部分炭粉燃烧实现氯化过程的热量平衡供给,提高氯化效率和保证低温氯化的良好选择性;三氯氧钒经精馏提纯后采用等离子体氧化得到高纯五氧化二钒产品和氯气,并将氯气返回用于低温氯化。本发明具有原料适应性强、无污染废水排放、生产能耗和氯气消耗低、产品质量稳定等优点,适用于提纯制备4N以上高纯五氧化二钒,具有良好的经济性。

Description

一种提纯五氧化二钒的系统及方法
技术领域
本发明属于化工、材料领域,特别涉及一种提纯五氧化二钒的系统及方法。
背景技术
五氧化二钒是重要的工业钒制品之一,广泛应用于生产钒铁和氮化钒等合金添加剂以及催化剂、着色剂、硬质合金添加剂等领域。随着新能源技术的不断发展,电池行业对高纯五氧化二钒(纯度3N5以上)的需求日益强劲,包括具有良好大规模储能性能的全钒液流电池(VRB)和电动汽车用钒酸盐系锂离子电池等。然而,现有工业技术通常仅可制备纯度2N5的五氧化二钒(即HGT 3485-2003规定指标的产品),难以满足电池行业用五氧化二钒的要求。因此,如何低成本、高效制备高纯五氧化二钒是新能源技术领域亟待解决的热点问题之一。
目前,通常以浸出钒溶液或富钒物料(如多钒酸铵、偏钒酸铵、工业级五氧化二钒等)溶解得到钒溶液为原料,采用化学沉淀净化或(和)溶剂萃取/离子树脂交换等方法进行净化,得到纯净的钒溶液然后进行铵盐沉淀得到纯净的多钒酸铵或偏钒酸铵沉淀,再经过煅烧分解得到高纯五氧化二钒粉体,如中国专利申请CN1843938A、CN102730757A、CN103145187A、CN103515642A、CN103194603A、CN103787414A、CN102181635A、CN103663557A和欧洲专利EP0713257B1等。在这些方法中,除杂工艺参数与原料的杂质含量密切相关,因而对原料的适应性差;净化过程中使用的钙盐、镁盐净化剂或萃取剂、酸碱试剂以及钒沉淀用铵盐也容易引入杂质。为了提高产品质量,通常要求使用纯度较高的昂贵试剂,因而成本过高,无法规模化生产且产品纯度难以稳定在3N5以上。
针对净化剂或萃取剂易引入杂质和试剂使用成本过高的问题,相关机构还提出采用反复沉淀法实现钒溶液的净化除杂,即利用含钒溶液的铵盐沉淀特性,选择性地将钒沉淀出来而将杂质离子部分抑制于沉淀后的溶液中,然后再次将得到的铵盐沉淀溶解后,进行多次重复操作,从而得到较为纯净的多钒酸铵或偏钒酸铵沉淀,再经过煅烧分解得到高纯五氧化二钒粉体,如中国专利申请CN103606694A和CN102923775A等。这有效降低了试剂使用量及其引入杂质的可能性,但溶解-沉淀过程仍需使用大量纯度较高的酸碱试剂和铵盐,提纯成本仍然较高;且繁冗的多次沉淀操作既降低了生产效率又造成钒直收率的明显下降。另外,上述溶液净化方法中,萃取/反萃、沉淀、洗涤等操作步骤会产生大量的废水,主要含有少量的钒离子、铵根离子和大量的钠盐,处理难度大、污染问题突出,这也严重制约了其规模化工业应用。
因金属氯化物的沸点及饱和蒸气压相差较大,不同金属氯化物很容易通过蒸馏/精馏实现分离,原料氯化-精馏提纯-后续处理是高纯物质的常用制备工艺,如高纯硅(多晶硅)、高纯二氧化硅等。由于钒的氯化物三氯氧钒与常见杂质铁、钙、镁、铝、钠、钾等的氯化物沸点相差很大,很容易通过精馏得到高纯三氯氧钒,而从高纯三氯氧钒通过水解和铵盐沉淀,再辅以煅烧即可制备高纯五氧化二钒。因此,采用氯化法制备高纯五氧化二钒从原理上具有较大的优势。实际上,采用氯化法制备高纯五氧化二钒不仅原理上可行,而且早在上世纪60年代,就由美国爱荷华州立大学的研究人员在实验室得以实现(Journal of theLess-Common Metals,1960,2:29-35)。他们以多钒酸铵为原料,通过配碳氯化制得粗三氯氧钒,蒸馏提纯获得高纯三氯氧钒,铵盐沉淀得到高纯偏钒酸铵,最后在500~600℃下煅烧获得高纯五氧化二钒粉体,但沉淀、洗涤过程将产生大量的氨氮废水(每t五氧化二钒产品至少产生1.8t的氯化铵废盐),处理难度大;铵盐沉淀、干燥、煅烧过程不仅能耗高,而且极易造成环境污染。另外,该项研究仅在实验室设备上、分段间歇地实现了氯化法制备高纯五氧化二钒,无法提供工业规模如何采用氯化法连续制备高纯五氧化二钒相关信息,可能也正是由于这些原因,之后的几十年里,也难觅氯化法连续制备高纯五氧化二钒的报道。
最近,中国专利申请CN103130279A提出了采用氯化法,以钒铁磁铁矿、钒渣、含钒催化剂等含钒物质为原料制备高纯五氧化二钒的方法。经配碳氯化-除尘-冷凝得到钒氯化物的混合物,经过精馏分离四氯化钒得到纯净的三氯氧钒后,将三氯氧钒通入超纯水溶液中或超纯氨水溶液中进行沉淀,经过滤、干燥、煅烧得到五氧化二钒。该项专利存在如下不足:(1)与前述美国爱荷华州立大学研究类似,该专利实际只给出了氯化的原则流程,缺乏具体可操作的方案,比如氯化方式既包括了沸腾氯化,又包括了熔盐氯化,而熔盐氯化与沸腾氯化是完全不同的氯化方法;再比如,对于氯化反应器提出采用“回转窑、流化炉、沸腾炉、竖炉、多膛炉”等反应器,实际上涵盖了冶金工业领域几乎所有的常用主流反应器,但不同的反应器对原料的要求差别非常大,竖炉只能处理大于8mm的“粗”颗粒,使用“细颗粒”时需要进行球团与烧结前处理,而沸腾氯化一般适合处理细颗粒,所以对于一种特定的钒原料,无法直接适用于回转窑、流化炉、沸腾炉、竖炉、多膛炉等反应器;况且“流化炉”与“沸腾炉”本质上是一样的,只是叫法不同;由此可见,由于这些反应器的操作方式及条件相差很大,只给出原则流程实际上无法实施;(2)将三氯氧钒通入超纯水溶液中进行水解,由于五氧化二钒极易溶解于盐酸溶液中,钒的沉淀回收率过低;在HCl浓度大于6.0mol/L的盐酸溶液中,五氧化二钒溶解时将发生还原生成VOCl2,同时放出氯气,这将会进一步降低钒的沉淀回收率;沉淀和洗涤过程必将会产生大量的含钒盐酸溶液,难以有效实现综合处理。
另外,对于工业大规模应用而言,现有钒原料氯化技术仍存在如下两个问题:(1)钒原料氯化焙烧属于强放热过程,氯化反应产生的热量除了可满足固体和气体反应物料的预热外,仍需要通过炉壁散热等方式移出才能稳定氯化温度,故固体和气体通常均以近室温状态进入反应器内,被氯化反应产生热量预热后才能参与反应,这使得氯化反应器局部反应效率过低;(2)由于需要通过大量散热移出氯化反应产生的热量以维持操作温度,故操作条件和环境气候变化均易引起氯化温度波动,造成氯化选择性和效率降低,需要采用合理的热量平衡供给和温度调控方式。因此,必须提供合理热量供给和温度控制,才有可能有效地提高氯化效率和获得稳定氯化温度从而确保氯化的选择性以有效抑制杂质的氯化。
因此,通过工艺及技术创新,实现氯化过程的温度调控、提高钒的直收率、减少废弃物排放量、降低生产能耗和氯气消耗,是提高氯化法制备高纯五氧化二钒技术经济性的关键。
发明内容
针对上述问题,本发明提出了一种提纯五氧化二钒的系统及方法,以保证低温氯化的良好选择性、避免产生大量污染废水、降低高纯五氧化二钒的生产能耗、氯气消耗和操作成本。为了达到这些目的,本发明采用了如下技术方案:
本发明的提纯五氧化二钒的系统,所述系统包括加料装置1、低温氯化流化床2、精馏提纯装置3、等离子体氧化装置4、尾气淋洗吸收器5、引风机6和烟囱7;
所述加料装置1包括工业级五氧化二钒料仓1-1、工业级五氧化二钒螺旋加料器1-2、炭粉料仓1-3和炭粉螺旋加料器1-4;
所述低温氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
所述精馏提纯装置3包括蒸馏釜3-1、精馏塔3-2、馏出物冷凝器3-3、回流液收集罐3-4、含硅三氯氧钒储罐3-5、精馏段酸封罐3-6、高纯三氯氧钒冷凝器3-7和高纯三氯氧钒储罐3-8;
所述等离子体氧化装置4包括空气过滤净化器4-1、反应物喷嘴4-2、等离子体反应器4-3、一级旋风分离器4-4、二级旋风分离器4-5、旋叶泵4-6和气体压缩机4-7;
所述工业级五氧化二钒料仓1-1底部的出料口与所述工业级五氧化二钒螺旋加料器1-2的进料口相连接;所述炭粉料仓1-3底部的出料口与所述炭粉螺旋加料器1-4的进料口相连接;所述工业级五氧化二钒螺旋加料器1-2的出料口、所述炭粉螺旋加料器1-4的出料口均与所述氯化床进料器2-1的进料口通过管道相连接;
所述氯化床进料器2-1的排料口与所述氯化流化床主体2-2上部的进料口通过管道相连接;所述氯化床进料器2-1底部的进气口通过管道与氮气气源总管相连接;所述氯化床旋风分离器2-3设置于所述氯化流化床主体2-2的扩大段顶部中心;所述氯化床旋风分离器2-3顶部的出气口通过管道与所述烟气换热器2-4的热烟气入口相连接;所述烟气换热器2-4的冷烟气出口通过管道与所述烟气冷凝器2-5的气体入口相连接;所述烟气冷凝器2-5的气体出口通过管道与所述氯化床酸封罐2-6的气体入口相连接;所述氯化床酸封罐2-6的气体出口通过管道与所述尾气淋洗吸收器7的气体入口相连接;所述氯化流化床主体2-2下部的排渣口与所述氯化床螺旋排渣器2-7的进料口通过管道相连接;所述氯化流化床主体2-2底部的进气口通过管道与所述烟气换热器2-4的热气体出口相连接;所述烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
所述烟气冷凝器2-5底部的液体出口通过管道与所述精馏塔3-2的进料口相连接;所述蒸馏釜3-1的蒸气出口通过管道与所述精馏塔3-2的蒸气入口相连接;所述蒸馏釜3-1的回流口通过管道与所述精馏塔3-2底部的液体回流出口相连接;所述精馏塔3-2顶部的气体出口通过管道与所述馏出物冷凝器3-3的气体入口相连接;所述馏出物冷凝器3-3的液体出口通过管道与所述回流液收集罐3-4的液体入口相连接;所述回流液收集罐3-4的回流液体出口通过管道与所述精馏塔3-2顶部的回流液体入口相连接;所述回流液收集罐3-4的排料口与所述含硅三氯氧钒储罐3-5的入口通过管道相连接;所述含硅三氯氧钒储罐3-5的乏气出口通过管道与所述精馏段酸封罐3-6的气体入口相连接;所述精馏酸封罐3-6的气体出口通过管道与所述尾气淋洗吸收器5的气体入口相连接;所述精馏塔3-2的精馏物出口通过管道与所述高纯三氯氧钒冷凝器3-7的气体入口相连接;所述高纯三氯氧钒冷凝器3-7的液体出口与所述高纯三氯氧钒储罐3-8的液体入口通过管道相连接;所述蒸馏釜3-1底部设置了底流出口;
所述空气过滤净化器4-1的进气口与压缩空气总管通过管道相连接;所述空气过滤净化器4-1的出气口通过管道分别与反应物喷嘴4-2的空气入口和二级旋风分离器4-5的气体入口相连接;所述高纯三氯氧钒储罐3-8的液体出口通过管道与所述反应物喷嘴4-2的氯化物入口相连接;所述反应物喷嘴4-2设置于所述等离子体反应器4-3的上部中心;所述等离子体反应器4-3底部的物料出口通过管道与所述一级旋风分离器4-4的气体入口相连接;所述一级旋风分离器4-4的气体出口通过管道与所述旋叶泵4-6的气体入口相连接;所述旋叶泵4-6的气体出口通过管道与所述气体压缩机4-7的气体入口相连接;所述气体压缩机4-7的气体出口通过管道与所述烟气换热器2-4的冷气体入口相连接;所述一级旋风分离器4-4下部的排料口通过管道与所述二级旋风分离器4-5的气体入口相连接;所述二级旋风分离器4-5顶部的气体出口通过管道与所述尾气淋洗吸收器5的气体入口相连接;所述二级旋风分离器4-5底部的出料口通过管道与高纯五氧化二钒产品料仓相连接;
所述尾气淋洗吸收器5的气体出口通过管道与所述引风机6的气体入口相连接;所述引风机6的气体出口通过管道与所述烟囱7底部的气体入口相连接。
本发明的基于上述系统的提纯五氧化二钒的方法,包括以下步骤:
所述工业级五氧化二钒料仓1-1中的工业级五氧化二钒粉料和所述炭粉料仓1-3的炭粉分别经所述工业级五氧化二钒螺旋加料器1-2和所述炭粉螺旋加料器1-4同时进入所述氯化床进料器2-1混合后进入所述氯化流化床主体2-2;来自氯气气源总管的氯气、氮气气源总管的氮气及压缩空气总管的空气经所述烟气换热器2-4与氯化烟气换热预热后进入所述氯化流化床主体2-2中使五氧化二钒、炭粉等粉体物料维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经所述氯化流化床主体2-2下部的排渣口和氯化床螺旋排渣器2-7排出;氯化烟气经所述氯化床旋风分离器2-3将粉尘脱除并落回氯化流化床主体2-2后,再经所述烟气换热器2-4预冷却并进入烟气冷凝器2-5中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经所述氯化床酸封罐2-6后进入所述尾气淋洗吸收器5中;
所述烟气冷凝器2-5形成的粗三氯氧钒液体进入所述精馏塔3-2和所述蒸馏釜3-1后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;富钒废料用于后续回收钒,含硅三氯氧钒蒸气经所述馏出物冷凝器3-3冷凝至液体后,部分经所述回流液收集罐3-4回流至所述精馏塔3-2,其余部分进入所述含硅三氯氧钒储罐3-5中;含硅三氯氧钒储罐3-5中产生的乏气经所述精馏段酸封罐3-6后送往所述尾气淋洗吸收器5中,含硅三氯氧钒可用于催化等化工领域;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器3-7冷凝至液体后进入所述高纯三氯氧钒储罐3-8中;
所述高纯三氯氧钒储罐3-8中的高纯三氯氧钒经反应物喷嘴4-2进入等离子体反应器4-3中;压缩空气经所述空气过滤净化器4-1净化后经所述反应物喷嘴4-2进入所述等离子体反应器4-3,使三氯氧钒发生氧化生成五氧化二钒粉体和富含氯气的氧化烟气;氧化产物由所述等离子体反应器4-3底部的出料口排出进入所述一级旋风分离器4-4后进行气固分离,分离产生的氧化烟气经所述旋叶泵4-6和所述气体压缩机4-7加压后返回用于工业级五氧化二钒氯化;所述一级旋风分离器4-4底部排出的五氧化二钒粉体与来自所述空气过滤净化器4-1的净化空气一同进入所述二级旋风分离器4-5,通过充分混合和气固分离脱除粉体中夹带的少量氯气,从而得到高纯五氧化二钒产品送往高纯产品料仓;所述二级旋风分离器4-5排出的含氯尾气进入所述尾气淋洗吸收器5进行处理;所述尾气淋洗吸收器5经碱溶液吸收处理后排出的气体经所述引风机6送入所述烟囱7后排空。
本发明的特征之一在于:所述一种生产高纯五氧化二钒粉体的方法中,在所述氯化流化床主体2-2内,低温氯化过程炭粉添加量为工业级五氧化二钒粉料质量的10%~20%,氯化操作温度为300~500℃,粉料的平均停留时间为30~80min。
本发明的特征之二在于:在所述精馏塔3-2内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板数为10~20块;在精馏操作过程中,保持回流比(即塔顶回流量与排料量之比)为15~40。
本发明的特征之三在于:在所述等离子体反应器4-3内,通过高纯三氯氧钒等离子体氧化直接制备高纯五氧化二钒,所述等离子体氧化过程中净化空气的通入量为理论用量的2~50倍。
本发明制得的高纯五氧化二钒粉体纯度均在4N以上。
相对于现有技术,本发明具有如下突出的优点:
(1)通过氯化气体与氯化烟气换热,在冷却烟气的同时,实现氯化气体预热,使氯化反应器温度分布更为均匀,有效提高钒原料低温氯化效率;
(2)通过适量配加空气使部分炭粉燃烧实现氯化过程的热量平衡供给和温度调控,稳定氯化操作温度,提高氯化反应效率和保证氯化的良好选择性,避免生成四氯化钒等副反应的发生;
(3)蒸馏纯化后的三氯氧钒经等离子体直接氧化生成五氧化二钒和氯气,相对于传统的水解沉淀工艺,既避免了大量含钒废水的产生,又实现了氯气的循环使用,有效降低了氯气的消耗;
(4)采用净化空气通过旋风分离器进一步脱除五氧化二钒产品夹带的少量氯气,有效提高了产品质量。
本发明具有原料适应性强、低温氯化的良好选择性、无污染废水排放、氯气消耗量低、生产能耗和操作成本低、产品质量稳定等优点,适用于4N以上高纯五氧化二钒粉体的大规模工业化生产,具有良好的经济效益和社会效益。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施列一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的提纯五氧化二钒系统的配置示意图。
附图标记
1 加料装置
1-1 工业级五氧化二钒料仓 1-2 工业级五氧化二钒螺旋加料器
1-3 炭粉料仓 1-4 炭粉螺旋加料器
2 低温氯化流化床
2-1 氯化床进料器 2-2 氯化流化床主体 2-3 氯化床旋风分离器
2-4 烟气换热器 2-5 烟气冷凝器 2-6 氯化床酸封罐
2-7 氯化床螺旋排渣器
3 精馏提纯装置
3-1 蒸馏釜 3-2 精馏塔 3-3 馏出物冷凝器
3-4 回流液收集罐 3-5 含硅三氯氧钒储罐 3-6 精馏段酸封罐
3-7 高纯三氯氧钒冷凝器 3-8 高纯三氯氧钒储罐
4 等离子体氧化装置
4-1 空气过滤净化器 4-2 反应物喷嘴 4-3 等离子体反应器
4-4 一级旋风分离器 4-5 二级旋风分离器 4-6 旋叶泵
4-7 气体压缩机
5 尾气淋洗吸收器 6 引风机 7 烟囱
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。值得说明的是,实施例仅用以说明本发明的技术方案,而非对其限制。图1为本发明的一种提纯五氧化二钒的系统示意图。
结合图1,本实施例所使用的提纯五氧化二钒的系统,包括加料装置1、低温氯化流化床2、精馏提纯装置3、等离子体氧化装置4、尾气淋洗吸收器5、引风机6和烟囱7;
加料装置1包括工业级五氧化二钒料仓1-1、工业级五氧化二钒螺旋加料器1-2、炭粉料仓1-3和炭粉螺旋加料器1-4;
低温氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
精馏提纯装置3包括蒸馏釜3-1、精馏塔3-2、馏出物冷凝器3-3、回流液收集罐3-4、含硅三氯氧钒储罐3-5、精馏段酸封罐3-6、高纯三氯氧钒冷凝器3-7和高纯三氯氧钒储罐3-8;
等离子体氧化装置4包括空气过滤净化器4-1、反应物喷嘴4-2、等离子体反应器4-3、一级旋风分离器4-4、二级旋风分离器4-5、旋叶泵4-6和气体压缩机4-7;
工业级五氧化二钒料仓1-1底部的出料口与工业级五氧化二钒螺旋加料器1-2的进料口相连接;炭粉料仓1-3底部的出料口与炭粉螺旋加料器1-4的进料口相连接;工业级五氧化二钒螺旋加料器1-2的出料口、炭粉螺旋加料器1-4的出料口均与氯化床进料器2-1的进料口通过管道相连接;
氯化床进料器2-1的排料口与氯化流化床主体2-2上部的进料口通过管道相连接;氯化床进料器2-1底部的进气口通过管道与氮气气源总管相连接;氯化床旋风分离器2-3设置于氯化流化床主体2-2的扩大段顶部中心;氯化床旋风分离器2-3顶部的出气口通过管道与烟气换热器2-4的热烟气入口相连接;烟气换热器2-4的冷烟气出口通过管道与烟气冷凝器2-5的气体入口相连接;烟气冷凝器2-5的气体出口通过管道与氯化床酸封罐2-6的气体入口相连接;氯化床酸封罐2-6的气体出口通过管道与尾气淋洗吸收器7的气体入口相连接;氯化流化床主体2-2下部的排渣口与氯化床螺旋排渣器2-7的进料口通过管道相连接;氯化流化床主体2-2底部的进气口通过管道与烟气换热器2-4的热气体出口相连接;烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
烟气冷凝器2-5底部的液体出口通过管道与精馏塔3-2的进料口相连接;蒸馏釜3-1的蒸气出口通过管道与精馏塔3-2的蒸气入口相连接;蒸馏釜3-1的回流口通过管道与精馏塔3-2底部的液体回流出口相连接;精馏塔3-2顶部的气体出口通过管道与馏出物冷凝器3-3的气体入口相连接;馏出物冷凝器3-3的液体出口通过管道与回流液收集罐3-4的液体入口相连接;回流液收集罐3-4的回流液体出口通过管道与精馏塔3-2顶部的回流液体入口相连接;回流液收集罐3-4的排料口与含硅三氯氧钒储罐3-5的入口通过管道相连接;含硅三氯氧钒储罐3-5的乏气出口通过管道与精馏段酸封罐3-6的气体入口相连接;精馏酸封罐3-6的气体出口通过管道与尾气淋洗吸收器7的气体入口相连接;精馏塔3-2的精馏物出口通过管道与高纯三氯氧钒冷凝器3-7的气体入口相连接;高纯三氯氧钒冷凝器3-7的液体出口与高纯三氯氧钒储罐3-8的液体入口通过管道相连接;蒸馏釜3-1底部设置了底流出口;
空气过滤净化器4-1的进气口与压缩空气总管通过管道相连接;空气过滤净化器4-1的出气口通过管道分别与反应物喷嘴4-2的空气入口、二级旋风分离器4-5的气体入口相连接;高纯三氯氧钒储罐3-8的液体出口通过管道与反应物喷嘴4-2的氯化物入口相连接;反应物喷嘴4-2设置于等离子体反应器4-3的上部中心;等离子体反应器4-3底部的物料出口通过管道与一级旋风分离器4-4的气体入口相连接;一级旋风分离器4-4的气体出口通过管道与旋叶泵4-6的气体入口相连接;旋叶泵4-6的气体出口通过管道与气体压缩机4-7的气体入口相连接;气体压缩机4-7的气体出口通过管道与烟气换热器2-4的冷气体入口相连接;一级旋风分离器4-4下部的排料口通过管道与二级旋风分离器4-5的气体入口相连接;二级旋风分离器4-5顶部的气体出口通过管道与尾气淋洗吸收器5的气体入口相连接;二级旋风分离器4-5底部的出料口通过管道与高纯五氧化二钒产品料仓相连接;
尾气淋洗吸收器5的气体出口通过管道与引风机6的气体入口相连接;引风机6的气体出口通过管道与烟囱7底部的气体入口相连接。
本实施例利用上述系统进行提纯五氧化二钒,具体方法包括:工业级五氧化二钒料仓1-1中的工业级五氧化二钒粉料和炭粉料仓1-3的炭粉分别经工业级五氧化二钒螺旋加料器1-2和炭粉螺旋加料器1-4同时进入氯化床进料器2-1混合后进入氯化流化床主体2-2;来自氯气气源总管的氯气、氮气气源总管的氮气及压缩空气总管的空气经烟气换热器2-4与氯化烟气换热预热后进入氯化流化床主体2-2中使五氧化二钒、炭粉等粉体物料维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经氯化流化床主体2-2下部的排渣口和氯化床螺旋排渣器2-7排出;氯化烟气经氯化床旋风分离器2-3将粉尘脱除并落回氯化流化床后,再经烟气换热器2-4预冷却并进入烟气冷凝器2-5中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经氯化床酸封罐2-6后进入尾气淋洗吸收器5中;
烟气冷凝器2-5形成的粗三氯氧钒液体进入精馏塔3-2和蒸馏釜3-1后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;富钒废料用于后续回收钒,含硅三氯氧钒蒸气经馏出物冷凝器3-3冷凝至液体后,部分经回流液收集罐3-4回流至精馏塔3-2,其余部分进入含硅三氯氧钒储罐3-5中;含硅三氯氧钒储罐3-5中产生的乏气经精馏段酸封罐3-6后送往尾气淋洗吸收器5中,含硅三氯氧钒可用于催化等化工领域;高纯三氯氧钒蒸气经高纯三氯氧钒冷凝器3-7冷凝至液体后进入高纯三氯氧钒储罐3-8中;
高纯三氯氧钒储罐3-8中的高纯三氯氧钒经反应物喷嘴4-2进入等离子体反应器4-3中;压缩空气经空气过滤净化器4-1净化后经反应物喷嘴4-2进入等离子体反应器4-3,使三氯氧钒发生氧化生成五氧化二钒粉体和富含氯气的氧化烟气;氧化产物由等离子体反应器4-3底部的出料口排出进入一级旋风分离器4-4后进行气固分离,分离产生的氧化烟气经旋叶泵4-6和气体压缩机4-7加压后返回用于工业级五氧化二钒氯化;一级旋风分离器4-4底部排出的五氧化二钒粉体与来自空气过滤净化器4-1的净化空气一同进入二级旋风分离器4-5,通过充分混合和气固分离脱除粉体中夹带的少量氯气,从而得到高纯五氧化二钒产品送往高纯产品料仓;二级旋风分离器4-5排出的含氯尾气进入尾气淋洗吸收器5进行处理;尾气淋洗吸收器5经碱溶液吸收处理后排出的气体经引风机6送入烟囱7后排空。
本实施例以粉状的工业级五氧化二钒为原料,其化学组成见表1所列,处理量为70kg/h,经低温氯化、三氯氧钒精馏、等离子体氧化提纯制备高纯五氧化二钒产品。
表1实施例使用工业级五氧化二钒原料的化学组成(wt%)
V2O5 Si Ca Al Ti Fe Mn Na K S
98.8 0.0150 0.0275 0.0099 0.0260 0.0971 0.0293 0.1385 0.0714 0.1274
在氯化流化床主体2-2内,低温氯化过程炭粉添加量为工业级五氧化二钒粉料质量的20%,氯化操作温度300℃,粉料的平均停留时间80min;在精馏塔3-2内,精馏操作精馏段的塔板数5块,提馏段的塔板数10块,精馏操作的回流比40;在等离子体反应器4-3内,等离子体氧化过程空气的通入量为理论用量的2倍的操作条件下,钒的直收率达82%,高纯五氧化二钒产品的纯度达99.998wt%(4N8)。
在氯化流化床主体2-2内,低温氯化过程炭粉添加量为工业级五氧化二钒粉料质量的10%,氯化操作温度500℃,粉料的平均停留时间30min;在精馏塔3-2内,精馏操作精馏段的塔板数10块,提馏段的塔板数20块,精馏操作的回流比15;在等离子体反应器4-3内,等离子体氧化过程空气的通入量为理论用量的50倍的操作条件下,钒的直收率达85%,高纯五氧化二钒产品的纯度达99.9995wt%(5N5)。
本发明未详细阐述部分属于本领域公知技术。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (7)

1.一种提纯五氧化二钒的系统,其特征在于,所述系统包括加料装置(1)、低温氯化流化床(2)、精馏提纯装置(3)、等离子体氧化装置(4)、尾气淋洗吸收器(5)、引风机(6)和烟囱(7);
所述加料装置(1)包括工业级五氧化二钒料仓(1-1)、工业级五氧化二钒螺旋加料器(1-2)、炭粉料仓(1-3)和炭粉螺旋加料器(1-4);
所述低温氯化流化床(2)包括氯化床进料器(2-1)、氯化流化床主体(2-2)、氯化床旋风分离器(2-3)、烟气换热器(2-4)、烟气冷凝器(2-5)、氯化床酸封罐(2-6)和氯化床螺旋排渣器(2-7);
所述精馏提纯装置(3)包括蒸馏釜(3-1)、精馏塔(3-2)、馏出物冷凝器(3-3)、回流液收集罐(3-4)、含硅三氯氧钒储罐(3-5)、精馏段酸封罐(3-6)、高纯三氯氧钒冷凝器(3-7)和高纯三氯氧钒储罐(3-8);
所述等离子体氧化装置(4)包括空气过滤净化器(4-1)、反应物喷嘴(4-2)、等离子体反应器(4-3)、一级旋风分离器(4-4)、二级旋风分离器(4-5)、旋叶泵(4-6)和气体压缩机(4-7);
所述工业级五氧化二钒料仓(1-1)底部的出料口与所述工业级五氧化二钒螺旋加料器(1-2)的进料口相连接;所述炭粉料仓(1-3)底部的出料口与所述炭粉螺旋加料器(1-4)的进料口相连接;所述工业级五氧化二钒螺旋加料器(1-2)的出料口、所述炭粉螺旋加料器(1-4)的出料口均与所述氯化床进料器(2-1)的进料口通过管道相连接;
所述氯化床进料器(2-1)的排料口与所述氯化流化床主体(2-2)上部的进料口通过管道相连接;所述氯化床进料器(2-1)底部的进气口通过管道与氮气气源总管相连接;所述氯化床旋风分离器(2-3)设置于所述氯化流化床主体(2-2)的扩大段顶部中心;所述氯化床旋风分离器(2-3)顶部的出气口通过管道与所述烟气换热器(2-4)的热烟气入口相连接;所述烟气换热器(2-4)的冷烟气出口通过管道与所述烟气冷凝器(2-5)的气体入口相连接;所述烟气冷凝器(2-5)的气体出口通过管道与所述氯化床酸封罐(2-6)的气体入口相连接;所述氯化床酸封罐(2-6)的气体出口通过管道与所述尾气淋洗吸收器(5)的气体入口相连接;所述氯化流化床主体(2-2)下部的排渣口与所述氯化床螺旋排渣器(2-7)的进料口通过管道相连接;所述氯化流化床主体(2-2)底部的进气口通过管道与所述烟气换热器(2-4)的热气体出口相连接;所述烟气换热器(2-4)的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
所述烟气冷凝器(2-5)底部的液体出口通过管道与所述精馏塔(3-2)的进料口相连接;所述蒸馏釜(3-1)的蒸气出口通过管道与所述精馏塔(3-2)的蒸气入口相连接;所述蒸馏釜(3-1)的回流口通过管道与所述精馏塔(3-2)底部的液体回流出口相连接;所述精馏塔(3-2)顶部的气体出口通过管道与所述馏出物冷凝器(3-3)的气体入口相连接;所述馏出物冷凝器(3-3)的液体出口通过管道与所述回流液收集罐(3-4)的液体入口相连接;所述回流液收集罐(3-4)的回流液体出口通过管道与所述精馏塔(3-2)顶部的回流液体入口相连接;所述回流液收集罐(3-4)的排料口与所述含硅三氯氧钒储罐(3-5)的入口通过管道相连接;所述含硅三氯氧钒储罐(3-5)的乏气出口通过管道与所述精馏段酸封罐(3-6)的气体入口相连接;所述精馏酸封罐(3-6)的气体出口通过管道与所述尾气淋洗吸收器(5)的气体入口相连接;所述精馏塔(3-2)的精馏物出口通过管道与所述高纯三氯氧钒冷凝器(3-7)的气体入口相连接;所述高纯三氯氧钒冷凝器(3-7)的液体出口与所述高纯三氯氧钒储罐(3-8)的液体入口通过管道相连接;所述蒸馏釜(3-1)底部设置了底流出口;
所述空气过滤净化器(4-1)的进气口与压缩空气总管通过管道相连接;所述空气过滤净化器(4-1)的出气口通过管道分别与反应物喷嘴(4-2)的空气入口和二级旋风分离器(4-5)的气体入口相连接;所述高纯三氯氧钒储罐(3-8)的液体出口通过管道与所述反应物喷嘴(4-2)的氯化物入口相连接;所述反应物喷嘴(4-2)设置于所述等离子体反应器(4-3)的上部中心;所述等离子体反应器(4-3)底部的物料出口通过管道与所述一级旋风分离器(4-4)的气体入口相连接;所述一级旋风分离器(4-4)的气体出口通过管道与所述旋叶泵(4-6)的气体入口相连接;所述旋叶泵(4-6)的气体出口通过管道与所述气体压缩机(4-7)的气体入口相连接;所述气体压缩机(4-7)的气体出口通过管道与所述烟气换热器(2-4)的冷气体入口相连接;所述一级旋风分离器(4-4)下部的排料口通过管道与所述二级旋风分离器(4-5)的气体入口相连接;所述二级旋风分离器(4-5)顶部的气体出口通过管道与所述尾气淋洗吸收器(5)的气体入口相连接;所述二级旋风分离器(4-5)底部的出料口通过管道与高纯五氧化二钒产品料仓相连接;
所述尾气淋洗吸收器(5)的气体出口通过管道与所述引风机(6)的气体入口相连接;所述引风机(6)的气体出口通过管道与所述烟囱(7)底部的气体入口相连接。
2.一种基于权利要求1所述系统的提纯五氧化二钒的方法,包括以下步骤:
所述工业级五氧化二钒料仓(1-1)中的工业级五氧化二钒粉料和所述炭粉料仓(1-3)的炭粉分别经所述工业级五氧化二钒螺旋加料器(1-2)和所述炭粉螺旋加料器(1-4)同时进入所述氯化床进料器(2-1)混合后进入所述氯化流化床主体(2-2);来自氯气气源总管的氯气、氮气气源总管的氮气、压缩空气总管的空气以及来自所述气体压缩机(4-7)循环返回的含氯气体经所述烟气换热器(2-4)与氯化烟气换热预热后进入所述氯化流化床主体(2-2)中使五氧化二钒和炭粉维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气,其中,所述氯化操作温度为300~500℃;氯化残渣依次经所述氯化流化床主体(2-2)下部的排渣口和氯化床螺旋排渣器(2-7)排出;氯化烟气经所述氯化床旋风分离器(2-3)将粉尘脱除并落回氯化流化床主体(2-2)后,再经所述烟气换热器(2-4)预冷却并进入烟气冷凝器(2-5)中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经所述氯化床酸封罐(2-6)后进入所述尾气淋洗吸收器(5)中;
所述烟气冷凝器(2-5)形成的粗三氯氧钒液体依次进入所述精馏塔(3-2)和所述蒸馏釜(3-1)后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;含硅三氯氧钒蒸气经所述馏出物冷凝器(3-3)冷凝至液体后,部分经所述回流液收集罐(3-4)回流至所述精馏塔(3-2),其余部分进入所述含硅三氯氧钒储罐(3-5)中;含硅三氯氧钒储罐(3-5)中产生的乏气经所述精馏段酸封罐(3-6)后送往所述尾气淋洗吸收器(5)中;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器(3-7)冷凝至液体后进入所述高纯三氯氧钒储罐(3-8)中;
所述高纯三氯氧钒储罐(3-8)中的高纯三氯氧钒经反应物喷嘴(4-2)进入等离子体反应器(4-3)中;压缩空气经所述空气过滤净化器(4-1)净化后经所述反应物喷嘴(4-2)进入所述等离子体反应器(4-3),使三氯氧钒发生氧化生成五氧化二钒粉体和富含氯气的氧化烟气;氧化产物由所述等离子体反应器(4-3)底部的出料口排出进入所述一级旋风分离器(4-4)后进行气固分离,分离产生的氧化烟气经所述旋叶泵(4-6)和所述气体压缩机(4-7)加压后返回用于工业级五氧化二钒氯化;所述一级旋风分离器(4-4)底部排出的五氧化二钒粉体与来自所述空气过滤净化器(4-1)的净化空气一同进入所述二级旋风分离器(4-5),通过充分混合和气固分离脱除粉体中夹带的少量氯气,从而得到高纯五氧化二钒产品送往高纯产品料仓;所述二级旋风分离器(4-5)排出的含氯尾气进入所述尾气淋洗吸收器(5)进行处理;所述尾气淋洗吸收器(5)经碱溶液吸收处理后排出的气体经所述引风机(6)送入所述烟囱(7)后排空。
3.根据权利要求2所述的提纯五氧化二钒的方法,其特征在于,在所述氯化流化床主体(2-2)内,所述氯化过程炭粉添加量为工业级五氧化二钒粉料质量的10%~20%。
4.根据权利要求2所述的提纯五氧化二钒的方法,其特征在于,在所述氯化流化床主体(2-2)内,粉料的平均停留时间为30~80min。
5.根据权利要求2所述的提纯五氧化二钒的方法,其特征在于,在所述精馏塔(3-2)内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板数为10~20块。
6.根据权利要求2所述的提纯五氧化二钒的方法,其特征在于,所述精馏操作的回流比为15~40。
7.根据权利要求2所述的提纯五氧化二钒的方法,其特征在于,在等离子体反应器(4-3)内,通过高纯三氯氧钒等离子体氧化直接制备高纯五氧化二钒,所述等离子体氧化过程中净化空气的通入量为理论用量的2~50倍。
CN201510052178.5A 2015-01-30 2015-01-30 一种提纯五氧化二钒的系统及方法 Active CN105984899B (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN201510052178.5A CN105984899B (zh) 2015-01-30 2015-01-30 一种提纯五氧化二钒的系统及方法
BR112017015805-1A BR112017015805A2 (zh) 2015-01-30 2016-01-28 For purifying system and method of vanadium pentoxide
NZ733914A NZ733914A (en) 2015-01-30 2016-01-28 System and method for purifying vanadium pentoxide
JP2017558609A JP6371015B2 (ja) 2015-01-30 2016-01-28 五酸化二バナジウムの精製システム及び精製方法
AU2016212452A AU2016212452B2 (en) 2015-01-30 2016-01-28 Vanadium pentoxide purifying system and method
US15/547,079 US10294118B2 (en) 2015-01-30 2016-01-28 System and method for purifying vanadium pentoxide
RU2017130368A RU2662515C1 (ru) 2015-01-30 2016-01-28 Система и способ очистки пентоксида ванадия
PCT/CN2016/072520 WO2016119718A1 (zh) 2015-01-30 2016-01-28 一种提纯五氧化二钒的系统及方法
CA2973511A CA2973511C (en) 2015-01-30 2016-01-28 System and method for purifying vanadium pentoxide
EP16742780.6A EP3243799B1 (en) 2015-01-30 2016-01-28 Vanadium pentoxide purifying system and method
ZA2017/04631A ZA201704631B (en) 2015-01-30 2017-07-10 System and method for purifying vanadium pentoxide
PH12017550062A PH12017550062A1 (en) 2015-01-30 2017-07-28 System and method for purifying vanadium pentoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510052178.5A CN105984899B (zh) 2015-01-30 2015-01-30 一种提纯五氧化二钒的系统及方法

Publications (2)

Publication Number Publication Date
CN105984899A CN105984899A (zh) 2016-10-05
CN105984899B true CN105984899B (zh) 2017-05-17

Family

ID=56542445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510052178.5A Active CN105984899B (zh) 2015-01-30 2015-01-30 一种提纯五氧化二钒的系统及方法

Country Status (12)

Country Link
US (1) US10294118B2 (zh)
EP (1) EP3243799B1 (zh)
JP (1) JP6371015B2 (zh)
CN (1) CN105984899B (zh)
AU (1) AU2016212452B2 (zh)
BR (1) BR112017015805A2 (zh)
CA (1) CA2973511C (zh)
NZ (1) NZ733914A (zh)
PH (1) PH12017550062A1 (zh)
RU (1) RU2662515C1 (zh)
WO (1) WO2016119718A1 (zh)
ZA (1) ZA201704631B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984898B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种生产高纯四氧化二钒粉体的系统及方法
CN105984897B (zh) * 2015-01-30 2017-05-17 中国科学院过程工程研究所 一种生产高纯五氧化二钒粉体的系统及方法
CN105984900B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种制备高纯五氧化二钒粉体的系统及方法
CN105984896B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种提纯制备高纯五氧化二钒粉体的系统及方法
CN106257726B (zh) * 2016-01-28 2018-03-23 中国科学院过程工程研究所 一种生产高纯度高活性钒电解液的系统及方法
CN109837395B (zh) * 2017-11-24 2020-09-18 中国科学院过程工程研究所 一种高值化综合利用高铬型钒渣的系统及方法
CN111888845B (zh) * 2020-07-21 2022-07-01 湖北成飞科技股份有限公司 一种精钒超低排放生产方法
KR102248361B1 (ko) * 2020-11-17 2021-05-06 한국지질자원연구원 오산화바나듐의 건식정제방법 및 이로부터 제조된 오산화바나듐 분말
CN114380332B (zh) * 2021-12-28 2024-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种提纯粗三氯氧钒的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161977B1 (fr) * 1984-04-24 1988-07-06 Societe Nationale Elf Aquitaine Nouveau procédé de synthèse de l'oxyde de vanadium
CN101113495A (zh) * 2006-07-27 2008-01-30 张荣禄 从高钛型钒铁精矿中提取铁钛钒的方法
CN101844809A (zh) * 2010-04-28 2010-09-29 中国科学院过程工程研究所 一种生产三氧化二钒的系统及其方法
CN102557134A (zh) * 2011-12-23 2012-07-11 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1936988C3 (de) * 1969-07-21 1974-01-03 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Vanadinoxitrichlorid
JPS5520210A (en) * 1978-07-25 1980-02-13 Sumitomo Chem Eng Kk Manufacture of vanadium oxychloride
EP0103940A1 (en) * 1982-08-16 1984-03-28 Stauffer Chemical Company Process for preparing vanadium halides
SU1208818A1 (ru) * 1983-09-27 1995-10-10 Научно-исследовательский институт металлургии Способ получения пятиокиси ванадия высокой степени чистоты
SU1230997A1 (ru) 1984-02-15 1986-05-15 Всесоюзный научно-исследовательский и проектный институт титана Способ получени п тиокиси ванади
SU1381187A1 (ru) * 1986-07-09 1988-03-15 Научно-производственное объединение "Тулачермет" Способ обогащени ванадиевого шлака
JP3085634B2 (ja) 1994-11-17 2000-09-11 鹿島北共同発電株式会社 高純度バナジウム電解液の製造法
JPH10114525A (ja) * 1997-08-29 1998-05-06 Kashima Kita Kyodo Hatsuden Kk 高純度五酸化バナジウムの製造法
JP4768116B2 (ja) * 2000-12-15 2011-09-07 千代田化工建設株式会社 バナジウムを含有する炭素質残渣から高純度のバナジウム化合物を製造する方法
CN1843938A (zh) 2006-04-30 2006-10-11 宿素满 一种五氧化二钒的生产方法
US8277768B2 (en) * 2008-11-14 2012-10-02 Texas Instruments Incorporated System and method for production of high purity silicon solids and solids therefrom
CN101845552B (zh) * 2010-04-23 2012-03-21 河北钢铁股份有限公司承德分公司 一种钒渣梯度氯化回收有价元素的方法
CN102234117B (zh) * 2010-05-05 2015-11-25 刘基扬 一种含可水解卤原子的物质的水解方法
CN102730757A (zh) 2011-04-03 2012-10-17 崇阳县恒通工贸有限公司 一种用偏钒酸铵制备高纯五氧化二钒的方法
CN102181635A (zh) 2011-04-08 2011-09-14 北京矿冶研究总院 一种石煤钒矿硫酸浸出液制备五氧化二钒的方法
CN103515642A (zh) 2012-06-25 2014-01-15 中国人民解放军63971部队 一种高纯度高浓度钒电池电解液的制备方法
CN102923775A (zh) 2012-11-27 2013-02-13 攀钢集团攀枝花钢铁研究院有限公司 一种高纯度五氧化二钒的制备方法
CN103145187B (zh) 2013-03-22 2014-11-05 中南大学 一种无害化高纯五氧化二钒的生产工艺
CN103194603B (zh) 2013-04-01 2015-06-10 攀枝花学院 高纯五氧化二钒的制备方法
CN103606694B (zh) 2013-11-15 2015-07-08 河北钢铁股份有限公司承德分公司 一种商用钒电池电解液的制备方法
CN103663557B (zh) 2014-01-07 2015-06-17 湖南有色金属研究院 一种粗钒制备高纯五氧化二钒的方法
CN103787414B (zh) 2014-01-26 2016-04-13 贵州义信矿业有限公司 焙烧法钒溶液制取高纯五氧化二钒的方法
CN103922403B (zh) 2014-03-24 2015-09-16 攀钢集团攀枝花钢铁研究院有限公司 一种多钒酸铵流态化生产粉状五氧化二钒的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161977B1 (fr) * 1984-04-24 1988-07-06 Societe Nationale Elf Aquitaine Nouveau procédé de synthèse de l'oxyde de vanadium
CN101113495A (zh) * 2006-07-27 2008-01-30 张荣禄 从高钛型钒铁精矿中提取铁钛钒的方法
CN101844809A (zh) * 2010-04-28 2010-09-29 中国科学院过程工程研究所 一种生产三氧化二钒的系统及其方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法
CN102557134A (zh) * 2011-12-23 2012-07-11 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法

Also Published As

Publication number Publication date
NZ733914A (en) 2018-08-31
BR112017015805A2 (zh) 2018-06-19
CA2973511C (en) 2019-11-26
CA2973511A1 (en) 2016-08-04
ZA201704631B (en) 2019-06-26
EP3243799A1 (en) 2017-11-15
EP3243799A4 (en) 2018-01-03
CN105984899A (zh) 2016-10-05
JP2018506502A (ja) 2018-03-08
PH12017550062A1 (en) 2018-02-05
EP3243799B1 (en) 2018-09-12
AU2016212452A1 (en) 2017-08-31
US10294118B2 (en) 2019-05-21
JP6371015B2 (ja) 2018-08-08
AU2016212452B2 (en) 2018-01-18
US20180002190A1 (en) 2018-01-04
RU2662515C1 (ru) 2018-07-26
WO2016119718A1 (zh) 2016-08-04

Similar Documents

Publication Publication Date Title
CN105984899B (zh) 一种提纯五氧化二钒的系统及方法
CN105984896B (zh) 一种提纯制备高纯五氧化二钒粉体的系统及方法
CN105986126B (zh) 一种钒渣高效氯化提钒的系统及方法
CN105984900B (zh) 一种制备高纯五氧化二钒粉体的系统及方法
CN105984898B (zh) 一种生产高纯四氧化二钒粉体的系统及方法
CN105984897B (zh) 一种生产高纯五氧化二钒粉体的系统及方法
CN107555478B (zh) 一种氯化法制备高纯五氧化二钒粉体的系统及方法
CN107555479B (zh) 一种氯化法制备高纯低价钒氧化物的系统及方法
CN108622936B (zh) 一种高效清洁氯化法制备高纯五氧化二钒粉体的系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant