CN105823526A - 一种淤积及水位监测仪及其应用方法 - Google Patents
一种淤积及水位监测仪及其应用方法 Download PDFInfo
- Publication number
- CN105823526A CN105823526A CN201610420704.3A CN201610420704A CN105823526A CN 105823526 A CN105823526 A CN 105823526A CN 201610420704 A CN201610420704 A CN 201610420704A CN 105823526 A CN105823526 A CN 105823526A
- Authority
- CN
- China
- Prior art keywords
- alluvial
- water
- level
- monitoring
- instrumentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
- G01F23/18—Indicating, recording or alarm devices actuated electrically
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
- G01F23/265—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
本发明涉及一种淤积及水位监测仪及其应用方法,属于水利行业水下淤积自动监测技术领域。技术方案:淤积及水位监测仪包含监测主机(6)和淤积及水位传感器(8),淤积及水位传感器为长条状,沿长度方向分布多个电极(7)。长条状的淤积及水位传感器的长度方向垂直向下布置,测量每个电极的电容值;根据各个电极电容值不同,以及各个电极之间的间距,实时得出淤积厚度。本发明可同时监测水位与淤积,即监测水面又同时监测水底,可以长时间的无需人工干预的监测淤泥的厚度、水位的高度,在分析淤泥的沉积规律、水位的变化情况,以及测算库容或水流量。本发明准确性高、实时性强、安放简单、后期维护量小。
Description
技术领域
本发明涉及一种淤积及水位监测仪及其应用方法,属于水利行业水下淤积自动监测技术领域。
背景技术
对于淤积厚度的监测,目前尚没有可以简单易行、低成本、长时间连续的监测方法。在众多领域或场合,监测淤泥沉积的速度及厚度,具有十分重要的意义,例如:水库水深及淤积厚度监测、河道水位及淤积厚度监测、农业灌溉计量渠道水位及淤积厚度监测、管道淤积厚度监测等等,依靠普通设备或者人力监测,非常困难,而且淤积会造成监测设备无法工作,如何实现简单、低成本的淤积自动监测,是该领域一大难题。
发明内容
本发明目的是提供一种淤积及水位监测仪及其应用方法,对多种场合下实现水下淤积自动监测,准确性高、实时性强、安放简单、后期维护量小,解决背景技术中存在的问题。
本发明的技术方案是:
一种淤积及水位监测仪,包含:淤积及水位传感器和监测主机,淤积及水位传感器为长条状,沿长度方向分布多个电极,电极之间的间隔越小,检测精度越高(例如:电极之间的间隔为2.5毫米);所述的电极由电路板制成。
淤积及水位传感器正面为多个电极,电极作为电容测量点;淤积及水位传感器反面为电容测量电路及可扩展串行通讯总线,电容测量电路及可扩展串行通讯总线做成集成电路芯片,集成电路芯片与监测主机连接;所有的电极,均分别连接淤积及水位传感器背面的集成电路芯片,集成电路芯片将电极检测到的周围介质的介电常数上传至监测主机。
所述的电极,利用空气、水、淤泥的介电常数差异进行电容值测量。电极在一定距离内感知周围介质的介电常数εr,所述周围介质的介电常数εr为:空气:1,水:81,淤泥:30~80,淤积沉积物:5~30。所述的电极由电路板制成,是在长条状的电路板的正面,沿长度方向制出平行排列的多个电极,可以排列1排以上。
所述的淤积及水位传感器,设置在开口的外壳内,外壳为与淤积及水位传感器匹配的长条状,淤积及水位传感器的正面朝向外壳的开口,淤积及水位传感器正面的表面设有防水防护层,防水防护层外面还设有防污层,防污层为不易沾染污物的聚四氟乙烯或特氟龙。
所述监测主机包含单片机、锂电池、无线通讯模块,单片机分别连接锂电池、无线通讯模块,单片机还连接淤积及水位传感器;无线通讯模块通过远程通讯网络与上位监测计算机匹配连接。
所述无线通讯模块可以是现地无线通讯模块或远程无线通讯模块,或者现地无线通讯模块与远程无线通讯模块二者兼有。
所述锂电池可以外接电源。
所述淤积及水位监测仪还可以监测水深。
本发明的监测主机、电容测量电路及可扩展串行通讯总线、介电常数εr、防污层材料,为公知技术或市面上可以买得到的公知材料,或者按要求自行组装。
一种淤积及水位监测仪的应用方法,使用上述淤积及水位监测仪进行检测,将淤积及水位监测仪布置在需要监测的位置,长条状的淤积及水位传感器的长度方向垂直向下布置,淤积及水位传感器上的电极接通电源,在需要监测的位置深度方向上,测量每个电极的电容值;根据各个电极电容值不同,以及各个电极之间的间距,实时得出淤积厚度。
本发明方法可以在下列领域或场所使用:
1、应用于水库水深及淤积厚度监测
一种淤积及水位监测仪用于水库水深及淤积厚度的监测方法,采用上述淤积及水位监测仪实现,水库应用的特点是:水深变化可由几米达上百米,淤积变化可由几米达十几米,在水库应用中,淤积及水位监测仪中还包含与单片机连接的静压式水位传感器、与单片机通过防水电缆连接的水面浮子,水面浮子内匹配有监测主机的单片机、无线通讯模块和锂电池;淤积及水位传感器的外壳为长条状,下重上轻,在投入到水库中时确保垂直下沉,监测主机设置在水面浮子中,静压式水位传感器用于测水深;另设水位计检测水库水位及当地大气压力,经数据融合可以监测库淤标高,从而实现自动校准水位/库容曲线,由于水库底部各点淤积厚度不同,淤积及水位监测仪在同一水库中设置多个测点。
具体步骤如下:
①淤积及水位传感器通过防水电缆与水面浮子连接,水面浮子内匹配有监测主机,防水电缆长度应保证最大水深时,淤积及水位传感器还能逐渐穿过淤泥和淤积直达水库底部;
②淤积及水位传感器的外壳应有足够重量,底部尖状,下重上轻,在投入到水库中时确保垂直下沉,进入淤泥和淤积时较轻的上部依靠浮力保证垂直不歪斜;
③淤积及水位传感器投入水库后下沉,逐渐穿过水库底部的淤泥和淤积到达库底,并在这一过程中定时监测当时的水深、淤泥和淤积的厚度,并将每次监测的数据送入监测主机的单片机存储;
④管理部门上位监测计算机通过远程通讯网络与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期等;
⑤管理部门将上传的数据,经与水库水位计以及当地大气压力等相关数据进行数据融合,可得到该测点的水深、淤泥和淤积的标高,计算并绘出确切的水位/库容曲线,得到准确的水库容量,并为何时清淤提供依据;
⑥管理部门可打开水面浮子,更换电池或通讯卡,进行维护。
积极效果:
所述的淤积及水位监测仪应用于水库水深及淤积厚度监测,可以在水库表面任意点直接投放,淤积及水位监测仪传感器在逐渐沉入淤积直到库底的过程中,通过水库水位计的数据融合,始终监测水库水位和库底淤积的标高,当最终达到库底进入稳定时,可以计算出:库底标高、库底淤积的标高、库底淤泥的厚度及变化、水库水位和实际库容,这种分层的监测数据,通过多点投放,可对整个库区构成一个整体的、完整的分布图型。
、应用于河道水位及淤积厚度监测
一种淤积及水位监测仪用于河道水位及淤积厚度的监测方法,采用上述淤积及水位监测仪实现,在河道应用中,通常会有漂浮物的刮挂,所以在河道中应设置板状物,板状物顺水流设置,固定在河底,淤积及水位监测仪垂直设置在板状物的后沿,绝大多数的漂浮物会刮挂在板状物迎水面的前沿,从而减少漂浮物对淤积及水位监测仪测量精度的影响。
包括以下步骤:
①在河道中顺水流方向将板状物牢固的固定在河底,河道底部固定物可以是水泥基础,板状物的高度应高于河道最高水位,必要时,板状物顶部加装行船避让标识,板状物的宽度应大于河道中最常见漂浮物的长度;
②在板状物顺水流的下游方向的后沿,垂直设置淤积及水位监测仪,这样和水中的漂浮物被板状物顺水流的上游方向的前沿阻挡,或顺水漂走,就不会影响到淤积及水位监测仪的监测数据的精度;
③由于同一监测断面的河底淤积厚度不同,可以在河道同一监测断面设置多个淤积及水位传感器,从而生成该监测断面的淤积曲线;
④淤积及水位监测仪定时监测河道的水位、淤泥和淤积的标高,并将每次监测的数据存储;
⑤管理部门上位监测计算机通过远程通讯网络与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期等;
⑥管理部门上位监测计算机将接收到的数据信息进一步处理,从而实现对河道的水位、淤泥和淤积的自动监测;
⑦管理部门可直接更换电池、通讯卡等进行日常维护,或在设备故障时直接进行维修或更换,为减小维护量,还可采用太阳能供电。
积极效果:
所述的淤积及水位监测仪应用于河道水位及淤积厚度监测,可以在河道同一监测断面设置多个淤积及水位监测仪,从而生成该监测断面的淤积曲线,管理部门可判断淤积变化趋势,为河流调控提供依据,板状物固定方式避开河道漂浮物带来的干扰,使得系统可靠性大大提高。
3、应用于农业灌溉计量渠道水位及淤积厚度监测
一种淤积及水位监测仪用于农业灌溉计量渠道水位及淤积厚度的监测,其布设方法和用法与在河道应用中相同。
不同之处在于:在计量渠道应用中,根据测定的计量渠道的淤积厚度率定出不同淤积下的水位/流量关系曲线,从而提高计量精度。
包括以下步骤:
①农业灌溉渠道中,一段有坡度的、平直的、有唯一确定水位/流量关系曲线的渠道叫做“计量渠道”,但是,这“唯一确定的水位/流量关系曲线”会随着渠道底部淤积的出现而改变,通过重新校准,找到该淤积条件下的水位/流量关系曲线,是提高计量渠道计量精度的重要手段;
②因为计量渠道也会有漂浮物,所以在渠道中顺水流方向将板状物牢固的固定在河底,渠道底部固定物可以是水泥基础,板状物的高度应高于渠道最高水位,板状物的宽度应大于渠道中最常见漂浮物的长度;淤积及水位监测仪定时监测计量渠道的水位和淤积的标高,并将每次监测的数据存储;
③按照“渠道量水规范”的要求,利用流速/面积法,重新校准该淤积条件下的水位/流量关系曲线,校准该计量渠道各种淤积条件下的水位/流量关系曲线,并输入到管理部门的上位监测计算机;
④管理部门的上位监测计算机通过远程公网监测淤积及水位监测仪定时采集的计量渠道的水位和淤积的标高,通过计量渠道该淤积条件下的水位/流量关系曲线,准确的计算出该计量渠道的流量;
⑤管理部门的上位监测计算机通过监测淤积及水位监测仪数据和该计量渠道各种淤积条件下的水位/流量关系曲线实现水量的精确计量。
积极效果:
所述的淤积及水位监测仪应用于农业灌溉计量渠道水位及淤积厚度监测,充分考虑了渠道漂浮物的干扰,淤积对流量计量精度的影响等因素,提出不同淤积条件下不同水位/流量关系曲线这一新概念,通过同时监测计量渠道水位及淤积厚度,可以实现淤积条件下的精确计量,这对节水型社会意义重大。
本发明的积极效果:所述的淤积及水位监测仪可同时监测水位与淤积,即监测水面又同时监测水底,所实现的自动监测方法在水利行业具有广泛的用途和不可限量的应用前景,可以长时间的无需人工干预的监测淤泥的厚度、水位的高度,在分析淤泥的沉积规律、水位的变化情况,以及测算库容或水流量。本发明准确性高、实时性强、安放简单、后期维护量小。
附图说明
图1是本发明实施例淤积及水位监测仪结构示意图;
图2是本发明实施例淤积及水位传感器示意图;
图3是本发明实施例淤积及水位传感器及外壳截面示意图;
图4是本发明实施例监测介质内分层结构示意图;
图5是本发明实施例河道、渠道淤积示意图;
图6是本发明实施例一水库淤积监测应用示意图;
图7是本发明实施例二、三河道、渠道淤积监测应用示意图;
图8是本发明实施例二、三河道、渠道淤积监测应用侧视示意图;
图中:空气1、水2、淤泥3、淤积4、外壳5、监测主机6、电极7、淤积及水位传感器8、防水防护层9、防污层10、单片机11、锂电池12、无线通讯模块13、静压式水位传感器14、水面浮子15、防水电缆16、上位监测计算机17、基础18、板状物19、远程通讯网络20。
具体实施方式
以下结合附图,通过实施例对本发明做进一步说明。
参照附图,一种淤积及水位监测仪,包含监测主机6和淤积及水位传感器8,淤积及水位传感器为长条状,沿长度方向分布多个电极7,电极之间的间隔越小,检测精度越高(例如:电极之间的间隔为2.5毫米);所述的电极由电路板制成。
淤积及水位传感器正面为多个电极7,电极作为电容测量点;淤积及水位传感器反面为电容测量电路及可扩展串行通讯总线,电容测量电路及可扩展串行通讯总线做成集成电路芯片,集成电路芯片与监测主机连接;所有的电极,均分别连接淤积及水位传感器背面的集成电路芯片,集成电路芯片将电极检测到的周围介质的介电常数上传至监测主机6。
所述的电极,利用空气1、水2、淤泥3、淤积4的介电常数差异进行电容值测量。电极在一定距离内感知周围介质的介电常数εr,所述周围介质的介电常数εr为:空气:1,水:81,淤泥:30~80,淤积沉积物:5~30。所述的电极由电路板制成,是在长条状的电路板的正面,沿长度方向制出平行排列的多个电极,可以排列1排以上。
所述的淤积及水位传感器8,设置在开口的外壳5内,外壳为与淤积及水位传感器匹配的长条状,淤积及水位传感器的正面朝向外壳的开口,淤积及水位传感器正面的表面设有防水防护层9,防水防护层外面还设有防污层10,防污层为不易沾染污物的聚四氟乙烯或特氟龙。
所述监测主机6包含单片机11、无线通讯模块13、锂电池12,单片机分别连接锂电池、无线通讯模块,单片机还连接淤积及水位传感器;无线通讯模块13通过远程通讯网络20与上位监测计算机17匹配连接。
所述无线通讯模块可以是现地无线通讯模块或远程无线通讯模块或兼有。
所述淤积及水位监测仪还可以监测水深。
一种淤积及水位监测仪的应用方法,使用上述淤积及水位监测仪进行检测,将淤积及水位监测仪布置在需要监测的位置,长条状的淤积及水位传感器的长度方向垂直向下布置,淤积及水位传感器上的电极接通电源,在需要监测的位置深度方向上,测量每个电极的电容值;根据各个电极电容值不同,以及各个电极之间的间距,实时得出淤积厚度。
本发明方法可以在下列领域或场所使用:
实施例一,参照附图6,应用于水库水深及淤积厚度监测。
一种淤积及水位监测仪用于水库水深及淤积厚度的监测方法,采用上述淤积及水位监测仪实现,水库应用的特点是:水深变化可由几米达上百米,淤积变化可由几米达十几米,在水库应用中,淤积及水位监测仪中还包含与单片机连接的静压式水位传感器14、与单片机通过防水电缆16连接的水面浮子15,水面浮子内匹配有监测主机的单片机、无线通讯模块和锂电池;淤积及水位传感器的外壳为长条状,下重上轻,在投入到水库中时确保垂直下沉,监测主机设置在水面浮子中,静压式水位传感器用于测水深;另设水位计检测水库水位及当地大气压力,经数据融合可以监测库淤标高,从而校准水位/库容曲线,由于水库底部淤积厚度不同,淤积及水位监测仪在同一水库中设置多个测点。
具体步骤如下:
①淤积及水位传感器通过防水电缆与水面浮子连接,水面浮子内匹配有监测主机,防水电缆长度应保证最大水深时,淤积及水位传感器还能逐渐穿过淤泥和淤积直达水库底部;
②淤积及水位传感器的外壳应有足够重量,底部尖状,下重上轻,在投入到水库中时确保垂直下沉,进入淤泥和淤积时较轻的上部依靠浮力保证垂直不歪斜;
③淤积及水位传感器与外壳一起投入水库后下沉,逐渐穿过水库底部的淤泥和淤积到达库底,并在这一过程中定时监测当时的水深、淤泥和淤积的厚度,并将每次监测的数据送入监测主机的单片机存储;
④管理部门上位监测计算机17通过远程通讯网络20与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期等;
⑤管理部门将上传的数据,经与水库水位计以及当地大气压力等相关数据进行数据融合,可得到该测点的水深、淤泥和淤积的标高,计算并绘出确切的水位/库容曲线,得到准确的水库容量,并为何时清淤提供依据;
⑥管理部门可打开水面浮子,更换电池或通讯卡,进行维护。
积极效果:
所述的淤积及水位监测仪应用于水库水深及淤积厚度监测,可以在水库表面任意点直接投放,淤积及水位传感器在逐渐沉入淤积直到库底的过程中,通过水库水位计的数据融合,始终监测水库水位和库底淤积的标高,当最终达到库底进入稳定时,可以计算出:库底标高、库底淤积的标高、库底淤泥的厚度及变化、水库水位和实际库容,这种分层的监测数据,通过多点投放,可对整个库区构成一个整体的、完整的分布图型。
实施例二,参照附图7。应用于河道水位及淤积厚度监测。
一种淤积及水位监测仪用于河道水位及淤积厚度的监测方法,采用上述淤积及水位监测仪实现,在河道应用中,通常会有漂浮物的刮挂,所以在河道中应设置板状物19,板状物顺水流设置,固定在河底,淤积及水位监测仪垂直设置在板状物的后沿,绝大多数的漂浮物会刮挂在板状物迎水面的前沿,从而减少漂浮物对淤积及水位监测仪测量精度的影响。
包括以下步骤:
①在河道中顺水流方向将板状物19牢固的固定在河底,河道底部固定物可以是水泥基础18,板状物的高度应高于河道最高水位,必要时,板状物顶部加装行船避让标识,板状物的宽度应大于河道中最常见漂浮物的长度;
②在板状物顺水流的下游方向的后沿,垂直设置淤积及水位监测仪,这样和水中的漂浮物被板状物顺水流的上游方向的前沿阻挡,或顺水漂走,就不会影响到淤积及水位监测仪的监测数据的精度;
③由于同一监测断面的河底淤积厚度不同,可以在河道同一监测断面设置多个淤积及水位传感器,从而生成该监测断面的淤积曲线;
④淤积及水位监测仪定时监测河道的水位、淤泥和淤积的标高,并将每次监测的数据存储;
⑤管理部门上位监测计算机通过远程通讯网络与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期等;
⑥管理部门上位监测计算机将接收到的数据信息进一步处理,从而实现对河道的水位、淤泥和淤积的自动监测;
⑦管理部门可直接更换电池、通讯卡等进行日常维护,或在设备故障时直接进行维修或更换,为减小维护量,还可采用太阳能供电。
积极效果:
所述的淤积及水位监测仪应用于河道水位及淤积厚度监测,可以在河道同一监测断面设置多个淤积及水位传感器,从而生成该监测断面的淤积曲线,管理部门可判断淤积变化趋势,为河流调控提供依据,板状物固定方式避开河道漂浮物带来的干扰,使得系统可靠性大大提高。
实施例三,参照附图7,应用于农业灌溉计量渠道水位及淤积厚度监测。
一种淤积及水位监测仪用于农业灌溉计量渠道水位及淤积厚度的监测,其布设方法和用法与在河道应用中相同。
不同之处在于:在计量渠道应用中,根据测定的计量渠道的淤积厚度率定出不同淤积下的水位/流量关系曲线,从而提高计量精度。
包括以下步骤:
①农业灌溉渠道中,一段有坡度的、平直的、有唯一确定水位/流量关系曲线的渠道叫做“计量渠道”,但是,这“唯一确定的水位/流量关系曲线”会随着渠道底部淤积的出现而改变,通过重新校准,找到该淤积条件下的水位/流量关系曲线,是提高计量渠道计量精度的重要手段;
②因为计量渠道也会有漂浮物,所以在渠道中顺水流方向将板状物牢固的固定在河底,渠道底部固定物可以是水泥基础,板状物的高度应高于渠道最高水位,板状物的宽度应大于渠道中最常见漂浮物的长度;淤积及水位监测仪定时监测计量渠道的水位和淤积的标高,并将每次监测的数据存储;
③按照“渠道量水规范”的要求,利用流速/面积法,重新校准该淤积条件下的水位/流量关系曲线,校准该计量渠道各种淤积条件下的水位/流量关系曲线,并输入到管理部门的上位监测计算机;
④管理部门的上位监测计算机通过远程公网监测淤积及水位监测仪定时采集的计量渠道的水位和淤积的标高,通过计量渠道该淤积条件下的水位/流量关系曲线,准确的计算出该计量渠道的流量;
⑤管理部门的上位监测计算机通过监测淤积及水位监测仪数据和该计量渠道各种淤积条件下的水位/流量关系曲线实现水量的精确计量。
积极效果:
所述的淤积及水位监测仪应用于农业灌溉计量渠道水位及淤积厚度监测,充分考虑了渠道漂浮物的干扰,淤积对流量计量精度的影响等因素,提出不同淤积条件下不同水位/流量关系曲线这一新概念,通过同时监测计量渠道水位及淤积厚度,可以实现淤积条件下的精确计量,这对节水型社会意义重大。
Claims (10)
1.一种淤积及水位监测仪,其特征在于包含监测主机(6)和淤积及水位传感器(8),淤积及水位传感器为长条状,沿长度方向分布多个电极(7),所述的电极由电路板制成。
2.根据权利要求1所述的淤积及水位监测仪,其特征在于:淤积及水位传感器正面为多个电极(7),电极作为电容测量点;淤积及水位传感器反面为电容测量电路及可扩展串行通讯总线,电容测量电路及可扩展串行通讯总线做成集成电路芯片,集成电路芯片与监测主机连接;所有的电极,均分别连接淤积及水位传感器背面的集成电路芯片,集成电路芯片将电极检测到的周围介质的介电常数上传至监测主机(6)。
3.根据权利要求1或2所述的淤积及水位监测仪,其特征在于:所述的淤积及水位传感器(8),设置在开口的外壳(5)内,外壳为与淤积及水位传感器匹配的长条状,淤积及水位传感器的正面朝向外壳的开口,淤积及水位传感器正面的表面设有防水防护层(9),防水防护层外面还设有防污层(10),防污层为不易沾染污物的聚四氟乙烯或特氟龙。
4.根据权利要求1或2所述的淤积及水位监测仪,其特征在于:所述的电极,利用空气、水、淤泥、淤积的介电常数差异进行电容值测量。
5.根据权利要求1所述的淤积及水位监测仪,其特征在于:所述监测主机(6)包含单片机(11)、无线通讯模块(13)、锂电池(12),单片机分别连接锂电池、无线通讯模块,单片机还连接淤积及水位传感器;无线通讯模块(13)通过远程通讯网络(20)与上位监测计算机(17)匹配连接。
6.根据权利要求1所述的淤积及水位监测仪,其特征在于:所述的电极由电路板制成,是在长条状的电路板的正面,沿长度方向制出平行排列的多个电极,可以排列1排以上。
7.一种淤积及水位监测仪的应用方法,其特征在于:将权利要求1至5所限定的淤积及水位监测仪布置在需要监测的位置,长条状的淤积及水位传感器的长度方向垂直向下布置,淤积及水位传感器上的电极接通电源,在需要监测的位置深度方向上,测量每个电极的电容值;根据各个电极电容值不同,以及各个电极之间的间距,实时得出淤积厚度。
8.一种淤积及水位监测仪用于水库水深及淤积厚度的监测方法,采用权利要求1-6所述方法中限定的淤积及水位监测仪实现,其特征在于:淤积及水位监测仪中还包含与单片机连接的静压式水位传感器(14)、与单片机通过防水电缆(16)连接的水面浮子(15),水面浮子内匹配有监测主机的单片机、无线通讯模块和锂电池;淤积及水位传感器的外壳为长条状,下重上轻,在投入到水库中时确保垂直下沉,监测主机设置在水面浮子中,静压式水位传感器用于测水深;另设水位计检测水库水位及当地大气压力,经数据融合监测库淤标高,淤积及水位监测仪在同一水库中设置多个测点;
具体步骤如下:
①淤积及水位传感器通过防水电缆与水面浮子连接,水面浮子内匹配有监测主机,防水电缆长度应保证最大水深时,淤积及水位监测仪还能逐渐穿过淤泥和淤积直达水库底部;
②淤积及水位传感器的外壳应有足够重量,底部尖状,下重上轻,在投入到水库中时确保垂直下沉,进入淤泥和淤积时较轻的上部依靠浮力保证垂直不歪斜;
③淤积及水位传感器与外壳一起投入水库后下沉,逐渐穿过水库底部的淤泥和淤积到达库底,并在这一过程中定时监测当时的水深、淤泥和淤积的厚度,并将每次监测的数据送入监测主机的单片机存储;
④管理部门上位监测计算机通过远程通讯网络与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期;
⑤管理部门将上传的数据,经与水库水位计以及当地大气压力等相关数据进行数据融合,得到该测点的水深、淤泥和淤积的标高,计算并绘出确切的水位/库容曲线,得到准确的水库容量,并为何时清淤提供依据。
9.一种淤积及水位监测仪用于河道水位及淤积厚度的监测方法,采用权利要求1-6所述方法中限定的淤积及水位监测仪实现,其特征在于:在河道中应设置板状物(19),板状物顺水流设置,固定在河底,淤积及水位监测仪垂直设置在板状物的后沿;
包括以下步骤:
①在河道中顺水流方向将板状物(19)牢固的固定在河底基础(18)上,板状物的高度应高于河道最高水位,必要时,板状物顶部加装行船避让标识,板状物的宽度应大于河道中最常见漂浮物的长度;
②在板状物顺水流的下游方向的后沿,垂直设置淤积及水位监测仪;
③由于同一监测断面的河底淤积厚度不同,在河道同一监测断面设置多个淤积及水位监测仪,生成该监测断面的淤积曲线;
④淤积及水位监测仪定时监测河道的水位、淤泥和淤积的标高,并将每次监测的数据存储;
⑤管理部门上位监测计算机通过远程通讯网络与监测主机的无线通讯模块匹配连接,根据事先设定,单片机定时将相关数据送到水面浮子中的无线通讯模块上传,相关数据包含:淤积及水位监测仪编号、已记录的水深、淤泥和淤积的厚度、电池电量、时间日期;
⑥管理部门上位监测计算机将接收到的数据信息进一步处理,从而实现对河道的水位、淤泥和淤积的自动监测。
10.一种淤积及水位监测仪用于农业灌溉计量渠道水位及淤积厚度的监测,采用权利要求1-6所述方法中限定的淤积及水位监测仪实现,其特征在于包括以下步骤:
①在渠道中顺水流方向将板状物牢固的固定在河底,板状物的高度应高于渠道最高水位,板状物的宽度应大于渠道中最常见漂浮物的长度;淤积及水位监测仪定时监测计量渠道的水位和淤积的标高,并将每次监测的数据存储;
②按照“渠道量水规范”的要求,利用流速/面积法,重新校准该淤积条件下的水位/流量关系曲线,校准该计量渠道各种淤积条件下的水位/流量关系曲线,并输入到管理部门的上位监测计算机;
③管理部门的上位监测计算机通过远程公网监测淤积及水位监测仪定时采集的计量渠道的水位和淤积的标高,通过计量渠道该淤积条件下的水位/流量关系曲线,准确的计算出该计量渠道的流量;
④管理部门的上位监测计算机通过监测淤积及水位监测仪数据和该计量渠道各种淤积条件下的水位/流量关系曲线实现水量的精确计量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610420704.3A CN105823526A (zh) | 2016-06-16 | 2016-06-16 | 一种淤积及水位监测仪及其应用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610420704.3A CN105823526A (zh) | 2016-06-16 | 2016-06-16 | 一种淤积及水位监测仪及其应用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105823526A true CN105823526A (zh) | 2016-08-03 |
Family
ID=56532125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610420704.3A Withdrawn CN105823526A (zh) | 2016-06-16 | 2016-06-16 | 一种淤积及水位监测仪及其应用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105823526A (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106525192A (zh) * | 2016-11-16 | 2017-03-22 | 北京中船信息科技有限公司 | 一种实时河流断面测量装置和方法 |
CN107340029A (zh) * | 2017-06-26 | 2017-11-10 | 燕永存 | 水面跟踪传感器 |
CN107449487A (zh) * | 2017-09-15 | 2017-12-08 | 交通运输部天津水运工程科学研究所 | 适航水深淤泥厚度快速测量系统 |
CN107561839A (zh) * | 2017-09-29 | 2018-01-09 | 明基电通有限公司 | 色轮模组 |
CN108225244A (zh) * | 2017-12-29 | 2018-06-29 | 深圳市宏电技术股份有限公司 | 一种淤积厚度的测量方法及系统 |
CN108775936A (zh) * | 2018-03-23 | 2018-11-09 | 中国航天系统科学与工程研究院 | 一种流量计量装置、计量方法及测控一体化闸门系统 |
CN109634314A (zh) * | 2019-01-11 | 2019-04-16 | 中铁隧道集团二处有限公司 | 智能水位测控装置 |
CN110530450A (zh) * | 2019-09-02 | 2019-12-03 | 长沙凯泽工程设计有限公司 | 一种水库水位监测装置 |
CN110823143A (zh) * | 2019-10-09 | 2020-02-21 | 中水淮河规划设计研究有限公司 | 在线监测泵站前池淤积深度的新型传感装置及监测方法 |
CN111006735A (zh) * | 2019-12-31 | 2020-04-14 | 太原理工大学 | 一种动态测量水库内淤积及容积量变化的传感装置的使用方法 |
CN111006736A (zh) * | 2019-12-31 | 2020-04-14 | 太原理工大学 | 一种动态测量水库内淤积及容积量变化的传感装置 |
CN111214180A (zh) * | 2018-12-29 | 2020-06-02 | 尚科宁家(中国)科技有限公司 | 一种扫地机器人 |
CN111426353A (zh) * | 2020-04-08 | 2020-07-17 | 中国民用航空飞行学院 | 一种精确流量获取装置及方法 |
CN111665086A (zh) * | 2020-06-02 | 2020-09-15 | 山东省环科院环境科技有限公司 | 一种水体淤泥监测取样装置及方法 |
CN111677549A (zh) * | 2020-06-10 | 2020-09-18 | 开滦(集团)有限责任公司电信分公司 | 矿井排水控制方法、装置、设备和存储介质 |
CN112074710A (zh) * | 2018-02-08 | 2020-12-11 | 阿札姆家用电器公司 | 一种用于感测液位的设备、使用所述设备的装置和校准方法 |
CN113120225A (zh) * | 2021-04-28 | 2021-07-16 | 华北水利水电大学 | 一种渠道在线监测系统及监测方法 |
CN115404933A (zh) * | 2022-08-25 | 2022-11-29 | 北京恒润安科技有限公司 | 一种渠道淤积识别方法及清淤装置 |
WO2022257235A1 (zh) * | 2021-06-11 | 2022-12-15 | 中国地质大学(武汉) | 一种水库滑坡水下地表溢出渗流监测装置及监测方法 |
CN117629158A (zh) * | 2023-11-30 | 2024-03-01 | 长安大学 | 一种河流区间渗漏量的确定方法 |
CN117890462A (zh) * | 2024-03-14 | 2024-04-16 | 陕西多奇电子科技有限公司 | 一种矿用水仓液泥双位监测系统及监测方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1570573A (zh) * | 2004-04-30 | 2005-01-26 | 汪平 | 具有伺服跟踪系统的智能化渠道流量计及其测量方法 |
CN101619972A (zh) * | 2009-08-12 | 2010-01-06 | 国网电力科学研究院 | 一种水库蓄水量的测算方法 |
TW201042241A (en) * | 2009-05-22 | 2010-12-01 | Easymap Digital Technology Co Ltd | Method and system for silt consistency measurement |
CN102401674A (zh) * | 2011-08-26 | 2012-04-04 | 中国农业大学 | 坡面小区水土流失自动测量系统 |
CN102853875A (zh) * | 2012-10-06 | 2013-01-02 | 南京大五教育科技有限公司 | 水库蓄水量的测量方法 |
CN202994212U (zh) * | 2012-12-03 | 2013-06-12 | 中州大学 | 一种河道断面流量自动测量系统 |
CN203630123U (zh) * | 2013-12-13 | 2014-06-04 | 天津孚感科技有限公司 | 一种水域监测装置 |
CN105526976A (zh) * | 2015-12-30 | 2016-04-27 | 中国科学院地理科学与资源研究所 | 流量测量装置及方法 |
CN105674869A (zh) * | 2016-03-30 | 2016-06-15 | 华北理工大学 | 一种不同介质厚度的自动测量方法及其测量装置 |
-
2016
- 2016-06-16 CN CN201610420704.3A patent/CN105823526A/zh not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1570573A (zh) * | 2004-04-30 | 2005-01-26 | 汪平 | 具有伺服跟踪系统的智能化渠道流量计及其测量方法 |
TW201042241A (en) * | 2009-05-22 | 2010-12-01 | Easymap Digital Technology Co Ltd | Method and system for silt consistency measurement |
CN101619972A (zh) * | 2009-08-12 | 2010-01-06 | 国网电力科学研究院 | 一种水库蓄水量的测算方法 |
CN102401674A (zh) * | 2011-08-26 | 2012-04-04 | 中国农业大学 | 坡面小区水土流失自动测量系统 |
CN102853875A (zh) * | 2012-10-06 | 2013-01-02 | 南京大五教育科技有限公司 | 水库蓄水量的测量方法 |
CN202994212U (zh) * | 2012-12-03 | 2013-06-12 | 中州大学 | 一种河道断面流量自动测量系统 |
CN203630123U (zh) * | 2013-12-13 | 2014-06-04 | 天津孚感科技有限公司 | 一种水域监测装置 |
CN105526976A (zh) * | 2015-12-30 | 2016-04-27 | 中国科学院地理科学与资源研究所 | 流量测量装置及方法 |
CN105674869A (zh) * | 2016-03-30 | 2016-06-15 | 华北理工大学 | 一种不同介质厚度的自动测量方法及其测量装置 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106525192A (zh) * | 2016-11-16 | 2017-03-22 | 北京中船信息科技有限公司 | 一种实时河流断面测量装置和方法 |
CN107340029A (zh) * | 2017-06-26 | 2017-11-10 | 燕永存 | 水面跟踪传感器 |
CN107449487A (zh) * | 2017-09-15 | 2017-12-08 | 交通运输部天津水运工程科学研究所 | 适航水深淤泥厚度快速测量系统 |
CN107449487B (zh) * | 2017-09-15 | 2023-06-23 | 天津伴海科技有限公司 | 适航水深淤泥厚度快速测量系统 |
CN107561839A (zh) * | 2017-09-29 | 2018-01-09 | 明基电通有限公司 | 色轮模组 |
CN108225244A (zh) * | 2017-12-29 | 2018-06-29 | 深圳市宏电技术股份有限公司 | 一种淤积厚度的测量方法及系统 |
CN112074710A (zh) * | 2018-02-08 | 2020-12-11 | 阿札姆家用电器公司 | 一种用于感测液位的设备、使用所述设备的装置和校准方法 |
CN112074710B (zh) * | 2018-02-08 | 2023-10-13 | 阿札姆家用电器公司 | 一种用于感测液位的设备、使用所述设备的装置和校准方法 |
CN108775936A (zh) * | 2018-03-23 | 2018-11-09 | 中国航天系统科学与工程研究院 | 一种流量计量装置、计量方法及测控一体化闸门系统 |
CN111214180A (zh) * | 2018-12-29 | 2020-06-02 | 尚科宁家(中国)科技有限公司 | 一种扫地机器人 |
CN109634314A (zh) * | 2019-01-11 | 2019-04-16 | 中铁隧道集团二处有限公司 | 智能水位测控装置 |
CN110530450A (zh) * | 2019-09-02 | 2019-12-03 | 长沙凯泽工程设计有限公司 | 一种水库水位监测装置 |
CN110823143A (zh) * | 2019-10-09 | 2020-02-21 | 中水淮河规划设计研究有限公司 | 在线监测泵站前池淤积深度的新型传感装置及监测方法 |
CN111006736A (zh) * | 2019-12-31 | 2020-04-14 | 太原理工大学 | 一种动态测量水库内淤积及容积量变化的传感装置 |
CN111006735A (zh) * | 2019-12-31 | 2020-04-14 | 太原理工大学 | 一种动态测量水库内淤积及容积量变化的传感装置的使用方法 |
CN111426353A (zh) * | 2020-04-08 | 2020-07-17 | 中国民用航空飞行学院 | 一种精确流量获取装置及方法 |
CN111426353B (zh) * | 2020-04-08 | 2022-02-11 | 中国民用航空飞行学院 | 一种精确流量获取装置及方法 |
CN111665086A (zh) * | 2020-06-02 | 2020-09-15 | 山东省环科院环境科技有限公司 | 一种水体淤泥监测取样装置及方法 |
CN111677549A (zh) * | 2020-06-10 | 2020-09-18 | 开滦(集团)有限责任公司电信分公司 | 矿井排水控制方法、装置、设备和存储介质 |
CN113120225A (zh) * | 2021-04-28 | 2021-07-16 | 华北水利水电大学 | 一种渠道在线监测系统及监测方法 |
WO2022257235A1 (zh) * | 2021-06-11 | 2022-12-15 | 中国地质大学(武汉) | 一种水库滑坡水下地表溢出渗流监测装置及监测方法 |
CN115404933A (zh) * | 2022-08-25 | 2022-11-29 | 北京恒润安科技有限公司 | 一种渠道淤积识别方法及清淤装置 |
CN117629158A (zh) * | 2023-11-30 | 2024-03-01 | 长安大学 | 一种河流区间渗漏量的确定方法 |
CN117629158B (zh) * | 2023-11-30 | 2024-06-21 | 长安大学 | 一种河流区间渗漏量的确定方法 |
CN117890462A (zh) * | 2024-03-14 | 2024-04-16 | 陕西多奇电子科技有限公司 | 一种矿用水仓液泥双位监测系统及监测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105823526A (zh) | 一种淤积及水位监测仪及其应用方法 | |
CN205785424U (zh) | 一种淤积及水位监测仪 | |
CN102305618B (zh) | 一种串联固定式无线测斜仪 | |
CN208238853U (zh) | 一种渠道流量自动监测装置 | |
CN104111091A (zh) | 一种泥石流力学参数监测系统及泥石流预警系统 | |
CN105203158A (zh) | 一种基于gprs的水平位移、沉降自动监测系统 | |
CN109253765A (zh) | 河流流量在线监测测量系统及流量计算方法 | |
CN110874976B (zh) | 一种岩溶大泉地下水动态的模拟方法 | |
CN102901537A (zh) | 一种闸门测流方法及装置 | |
CN107153038B (zh) | 地层渗透系数快速测定探头及其使用方法 | |
CN104567831B (zh) | 一种易沉淀水质明渠流量测量仪及其测量方法 | |
CN202885872U (zh) | 一种闸门测流装置 | |
CN205448987U (zh) | 一种利用激光传感的结构变形测量和采集装置 | |
CN108411844A (zh) | 一种天然沟道不规则断面的泥石流流速场的分析及装置 | |
CN209979011U (zh) | 一种钻孔地下水位实时监测装置 | |
CN102589497A (zh) | 金矿尾矿库干滩长度的实时测量计算方法 | |
CN112925028B (zh) | 一种基于高密度电法的基岩裂隙优势通道的探测方法 | |
CN110455259A (zh) | 一种地形监测装置及基于该装置的河道形态演变监测系统 | |
CN208172969U (zh) | 一种高边坡表面变形监测预警系统 | |
CN206684904U (zh) | 一种矿山排土场监测装置 | |
CN205748254U (zh) | 一种不同介质厚度的自动测量装置 | |
CN205280163U (zh) | 一种沟渠流量测量及远程监测系统 | |
CN104501783A (zh) | 一种河道流冰疏密度自动监测装置及方法 | |
CN205027414U (zh) | 一种坝体静水位原位自动监测系统 | |
CN110207677B (zh) | 一种关于黄河水的净水测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20160803 |