CN105820799A - Environment-friendly type refrigeration composition containing HFO-1234ze(E) - Google Patents
Environment-friendly type refrigeration composition containing HFO-1234ze(E) Download PDFInfo
- Publication number
- CN105820799A CN105820799A CN201510002724.4A CN201510002724A CN105820799A CN 105820799 A CN105820799 A CN 105820799A CN 201510002724 A CN201510002724 A CN 201510002724A CN 105820799 A CN105820799 A CN 105820799A
- Authority
- CN
- China
- Prior art keywords
- hfo
- hfc
- type refrigeration
- hfe
- compositions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
Abstract
The invention provides an environment-friendly type refrigeration composition which contains three ingredients, namely HFO-1234ze(E), HFE-143a and HC-290. The composition will not destroy atmospheric ozonosphere, has advantages of super-low greenhouse effect value, excellent environmental performance, extremely low flammability, high safety and the like, and can be used as a long-term substitute for HFC-134a.
Description
Technical field
The present invention relates to a kind of cold-producing medium, particularly relate to a kind of environmental protection type refrigeration compositions that can directly substitute HFC-134a.
Background technology
1,1,1,2-tetrafluoroethane (HFC-134a) is as the substitute of CFC-12, it is widely used with the serviceability of its excellence, but the greenhouse effect value having up to 1430 due to it, it is classified as one of first batch of high GWP value cold-producing medium eliminated by " Kyoto Protocol ".For the HFC-134a being applied in small-type refrigeration appliance, major part has used HC-600a to be substituted, and has become as focus and the urgent problem of countries in the world research for being applied to industrial and commercial refrigeration and the replacement of HFC-134a in air conditioning for automobiles.
The research direction that HFC-134a is substituted by international community at present is mainly: carbon dioxide (CO2), 1,1-Difluoroethane (HFC-152a), 2,3,3,3-tetrafluoropropenes (HFO-1234yf) etc., but these schemes are all respectively arranged with pluses and minuses.Use CO2Good environmental protection, non-combustible, but system pressure is high, efficiency is low, system needs to redesign, alternative cost is high;Although using, HFC-152a efficiency is high, cold-producing medium price is low, but its flammable strong, secondary circuit etc. need to be increased cause alternative cost high;Although using, HFO-1234yf and combinations thereof thing combustibility is low, the system reform is few, but efficiency is low, refrigerating capacity is little and coolant is relatively costly relatively.Therefore the research of HFC-134a substitute is all persistently being carried out in countries in the world, and wherein mix refrigerant is a main research direction.
In the prior art, Chinese patent CN103732715A discloses a kind of with Trans-1, the mixture that 3,3,3-tetrafluoropropenes (HFO-1234ze (E)) and difluoromethane (HFC-32) form;CN101283071A discloses a kind of with Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)) and 1,1,1,2-tetrafluoroethane (HFC-134a) or 1,1,1,2,3,3,3-heptafluoro-propane (HFC-227ea) or 1,1,1, the mixture that 2,2-pentafluoroethane (HFC-125) forms;CN102083935B discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf) and 1,1,1,2-tetrafluoroethane (HFC-134a);CN102918132A discloses a kind of mixture formed with Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), difluoromethane (HFC-32) and 1,1,1,2-tetrafluoroethane (HFC-134a);CN102216411A discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf) and propylene (HC-1270);CN1973016A discloses a kind of with carbon dioxide (CO2) and the mixture that forms of 2,3,3,3-tetrafluoropropene (HFO-1234yf) or Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E));CN101671542A discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1-Difluoroethane (HFC-152a) and iso-butane;CN101864277A discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1-Difluoroethane (HFC-152a) and dimethyl ether (DME);CN102703033A discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1,1,2-tetrafluoroethane (HFC-134a) and dimethyl ether (DME);CN102066518A discloses a kind of mixture formed with 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1-Difluoroethane (HFC-152a);The mixture that CN102083935A discloses a kind of 1,1,1,2-tetrafluoroethane (HFC-134a), 2,3,3,3-tetrafluoropropene (HFO-1234yf) forms;The mixture that CN102083935A discloses a kind of 1,1,1,2-tetrafluoroethane (HFC-134a), 2,3,3,3-tetrafluoropropene (HFO-1234yf) forms;CN102712837A discloses the mixture that a kind of 1,1,1,2-tetrafluoroethane (HFC-134a), 2,3,3,3-tetrafluoropropene (HFO-1234yf) and difluoromethane (HFC-32) form.
Refrigerant composition earl august eugene lund ian robert disclosed in above-mentioned patent exists or GWP value is higher or combustibility is compared with strong or efficiency is relatively low or volume refrigerating capacity compressor is less or not directly charges shortcomings such as being applied to HFC-134a system, therefore refrigeration performance is more excellent and existing system is compatible more preferably and environmental-protecting performance more preferably substitutes the cold-producing medium of HFC-134a to need exploitation to have.
Summary of the invention
It is an object of the invention to provide a kind of refrigerant compositions containing HFO-1234ze (E), can directly substitute use in the system using HFC-134a, combustibility is the most weak, alternative cost is low.
For reaching goal of the invention the technical solution used in the present invention it is:
A kind of environmental protection type refrigeration compositions, described refrigerant compositions contains Trans-1,3,3,3-tetrafluoropropenes (HFO-1234ze (E)), f-methyl methyl ether (CF3OCH3, HFE-143a) and propane (HC-290), and the mass percent of each component is:
HFO-1234ze (E): 70%-85%;
HFE-143a:5%-15%;
HC-290:5%-15%.
As the preferred mode of one, in above-mentioned refrigerant compositions, the mass percent of each component is:
HFO-1234ze (E): 70%-85%;
HFE-143a:5%-10%;
HC-290:5%-10%.
In above-mentioned refrigerant compositions, for improving its performance further, it is also possible to be added with 1 further, 1-Difluoroethane (HFC-152a), in described refrigerant compositions, the mass percent of each component is preferably:
HFO-1234ze (E): 60%-75%;
HFE-143a:10%-15%;
HC-290:5%-10%;
HFC-152a:5%-15%.
The GWP of the refrigerant compositions that the present invention provides is preferably≤150.
The refrigerant compositions that the present invention provides is suitable as heat transfer medium, is particularly suitable for substituting HFC-134a and is used as heat transfer medium, is especially suitable for air conditioning for automobiles.
The refrigerant compositions that the present invention provides, compared with existing disclosed technology, has the advantage that
(1) environmental performance is better than HFC-134a, and ozone layer depletion potential ODP value is zero, and global warming potential GWP value the most relatively HFC-134a is greatly lowered;
(2) using safety, combustibility is the most weak;
(3) no matter under air conditioning for automobiles operating mode or standard air conditioning condition, its evaporating pressure, condensing pressure and pressure ratio etc. are all suitable with HFC-134a, and refrigerating effect per unit swept volume is above HFO-1234yf and HFO-1234ze (E), suitable with HFC-134a;Energy Efficiency Ratio is above HFO-1234yf, suitable with HFO-1234ze (E) and HFC-134a;Combination property relatively HFO-1234yf, HFO-1234ze (E) and HFC-134a are all greatly improved.
(4) on the premise of not changing equipment critical piece, refrigerant compositions of the present invention can be directly used in the system of former use HFC-134a, compatible with the refrigeration system pipeline parts of former use HFC-134a, and filling quantity can be reduced, improve refrigerating capacity and Energy Efficiency Ratio, there is the advantage saved resource, save the energy.
Detailed description of the invention
The following examples are the several detailed description of the invention for the present invention is described, but do not limit the invention to these detailed description of the invention.One skilled in the art would recognize that all alternatives, improvement project and the equivalents potentially included in present invention encompasses Claims scope.
The refrigerant compositions that the present invention provides, its preparation method is by Trans-1,3,3,3-tetrafluoropropenes (HFO-1234ze (E)), f-methyl methyl ether (CF3OCH3, HFE-143a) and propane (HC-290), or by Trans-1,3,3,3-tetrafluoropropenes (HFO-1234ze (E)), f-methyl methyl ether (CF3OCH3, HFE-143a), propane (HC-290) and 1,1-Difluoroethane (HFC-152a), under liquid phase state, carry out physical mixed according to the corresponding proportioning of each component.
Trans-1 in above-mentioned refrigerant compositions, 3,3,3-tetrafluoropropenes (HFO-1234ze (E)), its molecular formula is CHFCHCF3, molecular weight is 114.04, and normal boiling point is-19.0 DEG C, and critical temperature is 109.4 DEG C, and critical pressure is 3.64MPa, and GWP value is 6.
F-methyl methyl ether (CF in above-mentioned refrigerant compositions3OCH3, HFE-143a), its molecular formula is CF3OCH3, molecular weight is 100.04, and normal boiling point is-24.0 DEG C, and critical temperature is 104.8 DEG C, and critical pressure is 3.59MPa, and GWP value is 840.
Propane (HC-290) in above-mentioned refrigerant compositions, its molecular formula is CH3CH2CH3, molecular weight is 44.10, and normal boiling point is-42.1 DEG C, and critical temperature is 96.7 DEG C, and critical pressure is 4.25MPa, and GWP value is about 20.
In above-mentioned refrigerant compositions 1,1-Difluoroethane (HFC-152a), its molecular formula is C2H4F2, molecular weight is 66.05, and normal boiling point is-24.02 DEG C, and critical temperature is 113.5 DEG C, and critical pressure is 4.52MPa, and GWP value is about 133.
Embodiment 1: HFO-1234ze (E), HC-290 and HFE-143a are carried out physical mixed by the mass percent of 75:10:15 under liquid phase.
Embodiment 2: HFO-1234ze (E), HC-290 and HFE-143a are carried out physical mixed by the mass percent of 70:15:15 under liquid phase.
Embodiment 3: HFO-1234ze (E), HC-290 and HFE-143a are carried out physical mixed by the mass percent of 80:15:5 under liquid phase.
Embodiment 4: HFO-1234ze (E), HC-290 and HFE-143a are carried out physical mixed by the mass percent of 85:10:5 under liquid phase.
Embodiment 5: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 60:10:15:15 under liquid phase.
Embodiment 6: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 70:10:10:10 under liquid phase.
Embodiment 7: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 65:10:10:15 under liquid phase.
Embodiment 8: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 70:10:15:5 under liquid phase.
Embodiment 9: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 65:5:15:15 under liquid phase.
Embodiment 10: HFO-1234ze (E), HC-290, HFE-143a and HFC-152a are carried out physical mixed by the mass percent of 75:10:10:5 under liquid phase.
Now the performance of refrigerant compositions described in above-described embodiment is compared with HFO-1234yf, HFO-1234ze (E) and HFC-134a, feature and the effect of the present invention is described.
1, comparison of environmental performance
Table 1 compares refrigerant compositions described in above-described embodiment and HFO-1234yf, HFO-1234ze (E) and the environmental performance of HFC-134a.Wherein ODP value is using CFC-11 as reference value 1.0, and GWP value is with CO2As reference value 1.0 (100 years).
Table 1 comparison of environmental performance
Working medium | ODP | GWP |
Embodiment 1 | 0 | 130 |
Embodiment 2 | 0 | 130 |
Embodiment 3 | 0 | 50 |
Embodiment 4 | 0 | 50 |
Embodiment 5 | 0 | 150 |
Embodiment 6 | 0 | 100 |
Embodiment 7 | 0 | 110 |
Embodiment 8 | 0 | 140 |
Embodiment 9 | 0 | 150 |
Embodiment 10 | 0 | 100 |
HFO-1234yf | 0 | 4 |
HFO-1234ze(E) | 0 | 6 |
HFC-134a | 0 | 1430 |
As can be seen from Table 1, Ozone depletion potential (ODP) value of refrigerant compositions described in above-described embodiment is zero, global warming potential (GWP) value is 50~150, it is respectively less than HFC-134a and meets the requirement that European Union's MAC instruction is not more than 150 to car air conditioner refrigerant GWP value, impact on environment is much smaller than HFC-134a, environmental performance is the most excellent, is the long-term substitute of HFC-134a.
2, under air conditioning for automobiles operating mode, thermal parameter and thermal performance compare
(i.e. evaporating temperature=-1.0 DEG C under air conditioning for automobiles operating mode, condensation temperature=60.0 DEG C, suction temperature=4 DEG C, supercooling temperature=57 DEG C), refrigerant compositions described in above-described embodiment and HFO-1234yf, HFO-1234ze (E) and thermal parameter (that is: the evaporating pressure P of HFC-134a0, condensing pressure Pk, pressure ratio Pk/P0, delivery temperature t2) and thermal performance (that is: COP, unit mass refrigerating capacity q0, refrigerating effect per unit swept volume qv) and 25 DEG C at density of liquid phase be relatively shown in Table 2.
Thermal parameter and the comparison of thermal performance under table 2 air conditioning for automobiles operating mode
As seen from Table 2, under air conditioning for automobiles operating mode, the condensing pressure of refrigerant compositions described in the various embodiments described above is all suitable with HFO-1234yf and HFC-134a;Pressure ratio is suitable with HFO-1234yf, is below HFO-1234ze (E) and HFC-134a;Delivery temperature is below HFC-134a, can directly charge in the system of former use HFC-134a;The density of refrigerant compositions described in the various embodiments described above is below HFO-1234yf, HFO-1234ze (E) and HFC-134a, it is possible to reduce the filling quantity of systematic working medium;The volume refrigerating capacity compressor of refrigerant compositions described in each embodiment is above HFO-1234yf and HFO-1234ze (E), major part embodiment is higher than HFC-134a, the COP value of refrigerant compositions described in each embodiment is above HFO-1234yf, suitable with HFO-1234ze (E) and HFC-134a, in performance, relatively HFO-1234yf, HFO-1234ze (E) and HFC-134a are all obviously improved.
3, thermal parameter and thermal performance under standard air conditioning condition
Under standard air conditioning condition (i.e. evaporating temperature=7.2 DEG C, condensation temperature=54.4 DEG C, suction temperature=18.3 DEG C, supercooling temperature=46.1 DEG C), refrigerant compositions described in above-described embodiment and thermal parameter (that is: the evaporating pressure P of HFC-134a0, condensing pressure Pk, pressure ratio Pk/P0, delivery temperature t2) and relative thermal performance (that is: COP, unit mass refrigerating capacity q0, refrigerating effect per unit swept volume qv) be relatively shown in Table 3.
Thermal parameter and the comparison of thermal performance under table 3 standard air conditioning condition
As seen from Table 3, under standard air conditioning condition, the condensing pressure of refrigerant compositions described in the various embodiments described above is all suitable with HFO-1234yf and HFC-134a;Pressure ratio is suitable with HFO-1234yf, is below HFO-1234ze (E) and HFC-134a;Delivery temperature is below HFC-134a, can directly charge in the system of former use HFC-134a;The volume refrigerating capacity compressor of refrigerant compositions described in each embodiment is above HFO-1234yf and HFO-1234ze (E), described in major part embodiment, refrigerant compositions is higher than HFC-134a, the COP value of refrigerant compositions described in each embodiment is above HFO-1234yf, suitable with HFO-1234ze (E) and HFC-134a, in performance, relatively HFO-1234yf, HFO-1234ze (E) and HFC-134a are all obviously improved.
Claims (7)
1. an environmental protection type refrigeration compositions, it is characterised in that described refrigerant compositions contains HFO-1234ze (E), HFE-143a and HC-290, and the mass percent of each component and is:
HFO-1234ze (E): 70%-85%;
HFE-143a:5%-15%;
HC-290:5%-15%.
2. according to the environmental protection type refrigeration compositions described in claim 1, it is characterised in that in described refrigerant compositions, the mass percent of each component is:
HFO-1234ze (E): 70%-85%;
HFE-143a:5%-10%;
HC-290:5%-10%.
3. according to the environmental protection type refrigeration compositions described in claim 1, it is characterised in that described refrigerant compositions contains HFC-152a, and the mass percent of each component is:
HFO-1234ze (E): 60%-75%;
HFE-143a:10%-15%;
HC-290:5%-10%;
HFC-152a:5%-15%.
4. according to the environmental protection type refrigeration compositions one of claims 1 to 3 Suo Shu, it is characterised in that GWP≤150 of described refrigerant compositions.
5. according to the environmental protection type refrigeration compositions one of claims 1 to 3 Suo Shu, it is characterised in that described refrigerant compositions is used as heat transfer medium.
6. according to the environmental protection type refrigeration compositions described in claim 5, it is characterised in that described refrigerant compositions substitutes HFC-134a and is used as heat transfer medium.
7. according to the environmental protection type refrigeration compositions described in claim 6, it is characterised in that described refrigerant compositions is for air conditioning for automobiles, domestic air conditioning or business air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510002724.4A CN105820799A (en) | 2015-01-05 | 2015-01-05 | Environment-friendly type refrigeration composition containing HFO-1234ze(E) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510002724.4A CN105820799A (en) | 2015-01-05 | 2015-01-05 | Environment-friendly type refrigeration composition containing HFO-1234ze(E) |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105820799A true CN105820799A (en) | 2016-08-03 |
Family
ID=56513301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510002724.4A Pending CN105820799A (en) | 2015-01-05 | 2015-01-05 | Environment-friendly type refrigeration composition containing HFO-1234ze(E) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105820799A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110655909A (en) * | 2019-09-12 | 2020-01-07 | 珠海格力电器股份有限公司 | Environment-friendly mixed refrigerant suitable for automobile air conditioner |
CN110845995A (en) * | 2019-10-16 | 2020-02-28 | 珠海格力电器股份有限公司 | Environment-friendly mixed working medium, composition and heat exchange system |
CN116162443A (en) * | 2023-02-08 | 2023-05-26 | 珠海格力电器股份有限公司 | Mixed environment-friendly refrigeration working medium, refrigeration device and application |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1544569A (en) * | 2003-11-12 | 2004-11-10 | �㽭���컷���߿Ƽ��ɷ�����˾ | Environmental protection type refrigerant for replacement of R502 |
CN1896174A (en) * | 2006-06-26 | 2007-01-17 | 浙江蓝天环保高科技股份有限公司 | CFC-12 substituting environmental-protective cryogen |
CN101014680A (en) * | 2004-04-29 | 2007-08-08 | 霍尼韦尔国际公司 | Compositions containing fluorine substituted olefins |
WO2007144623A1 (en) * | 2006-06-14 | 2007-12-21 | Ineos Fluor Holdings Limited | Refrigerant compositions |
CN101680691A (en) * | 2007-05-11 | 2010-03-24 | 纳幕尔杜邦公司 | Method for exchanging heat in a vapor compression heat transfer system and a vapor compression heat transfer system comprising an intermediate heat exchanger with a dual-row evaporator or condenser |
CN101688817A (en) * | 2007-06-21 | 2010-03-31 | 纳幕尔杜邦公司 | Method for leak detection in heat transfer system |
CN102408876A (en) * | 2010-09-20 | 2012-04-11 | 阿克马法国公司 | Composition based on 1,3,3, 3-tetrafluoropropene |
CN102746825A (en) * | 2012-06-27 | 2012-10-24 | 西安交通大学 | Fluoroethane-containing mixed working medium |
CN102939350A (en) * | 2010-05-20 | 2013-02-20 | 墨西哥化学阿玛科股份有限公司 | Heat transfer compositions |
CN102959036A (en) * | 2010-06-25 | 2013-03-06 | 墨西哥化学阿玛科股份有限公司 | Heat transfer compositions |
EP2568028A2 (en) * | 2007-07-05 | 2013-03-13 | Honeywell International Inc. | Compositions of tetrafluoropropene and n-butane |
-
2015
- 2015-01-05 CN CN201510002724.4A patent/CN105820799A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1544569A (en) * | 2003-11-12 | 2004-11-10 | �㽭���컷���߿Ƽ��ɷ�����˾ | Environmental protection type refrigerant for replacement of R502 |
CN101014680A (en) * | 2004-04-29 | 2007-08-08 | 霍尼韦尔国际公司 | Compositions containing fluorine substituted olefins |
CN104164216A (en) * | 2004-04-29 | 2014-11-26 | 霍尼韦尔国际公司 | Compositions containing fluorine substituted olefins |
WO2007144623A1 (en) * | 2006-06-14 | 2007-12-21 | Ineos Fluor Holdings Limited | Refrigerant compositions |
CN1896174A (en) * | 2006-06-26 | 2007-01-17 | 浙江蓝天环保高科技股份有限公司 | CFC-12 substituting environmental-protective cryogen |
CN101680691A (en) * | 2007-05-11 | 2010-03-24 | 纳幕尔杜邦公司 | Method for exchanging heat in a vapor compression heat transfer system and a vapor compression heat transfer system comprising an intermediate heat exchanger with a dual-row evaporator or condenser |
CN101688817A (en) * | 2007-06-21 | 2010-03-31 | 纳幕尔杜邦公司 | Method for leak detection in heat transfer system |
EP2568028A2 (en) * | 2007-07-05 | 2013-03-13 | Honeywell International Inc. | Compositions of tetrafluoropropene and n-butane |
CN102939350A (en) * | 2010-05-20 | 2013-02-20 | 墨西哥化学阿玛科股份有限公司 | Heat transfer compositions |
CN102959036A (en) * | 2010-06-25 | 2013-03-06 | 墨西哥化学阿玛科股份有限公司 | Heat transfer compositions |
CN102408876A (en) * | 2010-09-20 | 2012-04-11 | 阿克马法国公司 | Composition based on 1,3,3, 3-tetrafluoropropene |
CN102746825A (en) * | 2012-06-27 | 2012-10-24 | 西安交通大学 | Fluoroethane-containing mixed working medium |
Non-Patent Citations (1)
Title |
---|
丛伟,等: "三氟甲醚作为汽车空调制冷剂的性能研究", 《制冷与空调》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110655909A (en) * | 2019-09-12 | 2020-01-07 | 珠海格力电器股份有限公司 | Environment-friendly mixed refrigerant suitable for automobile air conditioner |
CN110845995A (en) * | 2019-10-16 | 2020-02-28 | 珠海格力电器股份有限公司 | Environment-friendly mixed working medium, composition and heat exchange system |
CN116162443A (en) * | 2023-02-08 | 2023-05-26 | 珠海格力电器股份有限公司 | Mixed environment-friendly refrigeration working medium, refrigeration device and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11549042B2 (en) | Environmentally friendly near-azeotropic mixed refrigerant | |
CN107987797B (en) | Environment-friendly mixed refrigerant replacing HCFC-22 | |
CN107987798B (en) | Environment-friendly mixed refrigerant | |
EP3012307B1 (en) | Mixed refrigerant | |
CN110699043A (en) | Environment-friendly mixed refrigeration working medium | |
CN105820800A (en) | Environment-friendly type refrigeration composition | |
CN103965836B (en) | Environment-friendly refrigerant for automobile air conditioner and preparation method of refrigerant | |
CN105820799A (en) | Environment-friendly type refrigeration composition containing HFO-1234ze(E) | |
CN102241962A (en) | Composition with low global warming potential (GWP) value | |
CN102676119B (en) | Refrigerant with low GWP (global warming potential) and preparation method thereof | |
CN102229793A (en) | Refrigerant with low GWP value | |
CN106543963B (en) | Environment-friendly refrigeration composition | |
CN102229794A (en) | Refrigerant composition with low GWP (Global Warming Potential) value | |
CN101781548A (en) | Refrigerant | |
CN112552875B (en) | Novel environment-friendly refrigerant and preparation method thereof | |
CN110655909B (en) | Environment-friendly mixed refrigerant suitable for automobile air conditioner | |
CN108841360B (en) | Composition refrigerant containing perfluoromethyl vinyl ether | |
CN104974718B (en) | A kind of refrigerant and its application | |
CN106543965A (en) | A kind of ternary mixed refrigerant | |
CN104974717A (en) | Environment-friendly and energy-saving refrigerator refrigerant | |
CN102676120A (en) | Improved environment-friendly refrigerant and preparation method thereof | |
CN101671544B (en) | Refrigerant composition | |
CN105038711A (en) | Mixed refrigerant containing 1,1-difluoroethane | |
CN102676122B (en) | Environment-friendly refrigerant and preparation method thereof | |
CN117050731A (en) | Refrigerant and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160803 |