Nothing Special   »   [go: up one dir, main page]

CN1056595C - 多种进料烃类直接转化制烯烃方法 - Google Patents

多种进料烃类直接转化制烯烃方法 Download PDF

Info

Publication number
CN1056595C
CN1056595C CN97119048A CN97119048A CN1056595C CN 1056595 C CN1056595 C CN 1056595C CN 97119048 A CN97119048 A CN 97119048A CN 97119048 A CN97119048 A CN 97119048A CN 1056595 C CN1056595 C CN 1056595C
Authority
CN
China
Prior art keywords
hydrocarbon
oil
reactor
cracking
hydro carbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97119048A
Other languages
English (en)
Other versions
CN1215041A (zh
Inventor
沙颖逊
崔中强
王国良
王明党
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petrochemical Corp
Sinopec Luoyang Guangzhou Engineering Co Ltd
Original Assignee
Sinopec Luoyang Petrochemical Engineering Corp
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Luoyang Petrochemical Engineering Corp, China Petrochemical Corp filed Critical Sinopec Luoyang Petrochemical Engineering Corp
Priority to CN97119048A priority Critical patent/CN1056595C/zh
Priority to US09/174,462 priority patent/US6420621B2/en
Priority to EP98119730A priority patent/EP0911308B1/en
Priority to DE69809685T priority patent/DE69809685T2/de
Priority to JP1998298280A priority patent/JP3953208B6/ja
Publication of CN1215041A publication Critical patent/CN1215041A/zh
Application granted granted Critical
Publication of CN1056595C publication Critical patent/CN1056595C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/919Apparatus considerations
    • Y10S585/921Apparatus considerations using recited apparatus structure
    • Y10S585/922Reactor fluid manipulating device
    • Y10S585/923At reactor inlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种烃类与固体粒状催化剂接触转化制乙烯、丙烯等低碳烯烃和轻质芳烃的烃类转化方法。本方法采用活塞流式反应器,并在反应器上设置多组进料口,可以使性质不同的烃类从不同的进料口进入装置,并在各不相同的工艺条件下进行裂解反应,实现优化反应条件、优化产品结构、节省设备投资和操作费用的目的。本方法适用于从炼厂气、液态烃到重质渣油的各种烃类的单独裂解或者共为原料的裂解。

Description

多种进料烃类直接转化制烯烃方法
本发明属于烃类转化制取以乙烯为主的低碳烯烃的工艺方法。
近年来,国内外对重油裂解制乙烯的研究十分活跃,如美国S & W公司研究的QC(Quick Contact)反应系统(USA4663019,CN1031245A和EP0381870A等)、英国石油有限公司开发的蒸汽裂解工艺(USP4087350)、日本东京科学技术公司开发的以焦炭粒子为热载体的生产烯烃工艺(USP4259177)、中国石化洛阳石油化工工程公司开发的HCC工艺(ZL92105507.2)等都能以重油为原料生产乙烯。但是上述工艺在工艺流程上只考虑新原料油单一原料进料情况。美国专利USP5,348,644是关于改进提升管催化裂化装置的设备和工艺过程的发明专利。通过在提升管预提升段安装特殊的设备,使催化剂在提升管中的流化状态得到优化,从而改善了提升管中催化剂与催化裂化原料油的接触状态,得到更理想的催化裂化产品分布。美国专利USP5,264,115及USP5,506,365给出了一种改善催化裂化装置的产物分布、提高产物中丙烯产率的方法。在管式催化裂化反应装置上,采用多个原料进口,使多种原料分别从不同入口进料,即在提升管的最高温度区,注入轻质烃和占烃重量20~50%的水蒸汽的混合物,使轻烃发生蒸汽裂解反应;在提升管反应器的较低温度区,注入重质烃原料,使其在常规的催化裂化条件下进行催化裂化反应。将C2烃从反应产物中分离出来,乙烯进入齐聚反应器进行齐聚反应;乙烷及齐聚产物与一定比例的水蒸汽混合,分别返回到提升管的不同温位区进行再反应。这两篇专利虽然提到了多点进料方法,但仅限于在催化裂化装置上使用,其目的在于改善催化裂化产物分布和获得更多丙烯,所用的催化剂为常规催化裂化催化剂。
本发明的目的是针对重油裂解制乙烯工艺中多种原料油同时进料或/和某些裂解副产品(如乙烷、丙烷等)需要回炼的问题,提出一种有效的处理方法,实现不同性质的原料在各不相同的工艺条件下裂解,达到优化反应条件,优化产品结构,节省设备投资和操作费用的目的。
本发明的主要特点是多点进料。在烃类与固体粒子催化剂接触转化制取气体烯烃的工艺过程中,原料烃往往不只一种,而各种烃类的理想裂解条件又不尽相同,如乙烷的最佳反应温度高于石脑油的最佳反应温度。而石脑油裂解的最佳反应温度高于减压馏分油裂解的最佳反应温度等。为了使各股原料烃尽可能在各自最适宜的反应条件下进行裂解反应,管式炉裂解工艺中采取分炉裂解,如以石脑油或轻柴油为原料的工厂中,必然还有一到二台乙烷裂解炉进行回炼。在接触裂解制烯烃工艺中,由于只有一台反应器,不可能对不同性质的原料进行分炉裂解,而把各种烃类混合在一起进料又不能满足不同烃类的最佳裂解条件,以常压渣油和乙烷同时为原料的裂解为例,常压渣油的最佳裂解温度为650~750℃,在此温度下,乙烷裂解速度不能满足工业生产要求;而若温度提高到800℃以上,满足了乙烷的裂解条件,则常压渣油的裂解深度难以控制。在上述情况下,采用本发明提出的分段多点进料方法,可以将常压渣油和乙烷分开进料,使各股物料均达到理想的裂解深度。在活塞流式反应器,如上行或下行管式反应器上设置多组原料入口,可以把物化性质不同的原料分别从不同的入口引入反应器中,使之分别与温度和/或活性不同的催化剂接触,于温度600~900℃,压力0.13~0.40MPa(绝压),剂油比5~100,剂油接触时间0.02~5秒下进行反应。反应后的油气与催化剂快速分离并被急冷。裂解油气的急冷可以直接急冷,也可以间接急冷。待生催化剂汽提后送入再生器烧焦再生,再生温度为750~950℃。再生催化剂最好在再生剂输送线上经水蒸汽汽提后再返回反应器循环使用。采用的催化剂的组分可选自SiO2、Al2O3和碱金属、碱土金属及过渡金属的氧化物或其混合物,也可采用经碱性或碱土金属氧化物改性的硅酸铝;在本催化剂中还可以加入部分分子筛。从不同入口进入反应器的烃类,其反应条件不同,轻烃的反应温度控制在700~900℃,重质烃类的反应温度为600~800℃。进料时把性质不同的烃类依次引入反应器,各股烃类在反应器内的停留时间的差别为0.01~3秒。而且最好把难裂解的烃类首先引入反应器,使从再生器来的高温高活性催化剂首先与之接触使之裂解,同时使催化剂降温并减活,然后依次引入其他较易裂解的各股进料,后引入的烃类对先之引入的烃类起到急冷作用。该方法适用于同时采用数种烃类为原料的工艺,所说的烃类包括重质烃类和轻质烃类,所说的重质烃类指馏程在350℃以上的烃类包括直流重质烃和二次加工的重质烃,如各种直馏减压瓦斯油、常压渣油、焦化瓦斯油、热裂化重油、溶剂脱沥青油以及各种重质烃类经溶剂抽提的抽余油;所说的轻质烃类指馏程在350℃以下的烃类,如乙烷、丙烷、液化石油气、炼厂石油气、油田气、油田轻烃、石脑油和轻柴油。具体方法以提升管反应器为例说明如下(见附图1):从再生器来的再生催化剂4进入提升管1后在由提升管底部进入提升管的预提升蒸汽2的推动下,自下而上流动。从原料入口I将乙烷原料与一定量水蒸汽的混合物喷入提升管,一方面部分代替了预提升蒸汽使催化剂加速,另一方面乙烷在800~900℃的炽热催化剂作用下迅速裂解。在原料入口II,将丙烷或/和丁烷与一定量水蒸汽的混合物雾化喷入提升管,在此,与温度约为780~850℃的催化剂和乙烷反应物的混合物流接触发生催化裂解反应。在原料入口III将石脑油或/和焦化汽油、或者轻柴油或/和焦化轻柴油与一定量的水蒸汽的混合物雾化喷入提升管,在此,与温度约为750~830℃的催化剂和上游的反应物料的混合物接触,发生催化裂解反应。在原料入口IV将直馏蜡油或/和常压渣油或/和焦化蜡油等重质烃馏分与一定量的水蒸汽的混合物雾化喷入提升管,与温度约为700~800℃的催化剂和上游的反应物流的混合物接触,发生催化裂解反应。计算各原料油入口之间的距离,使乙烷、丙烷、丁烷等裂解物流在与重质原料油接触前的反应时间达到0.01~1秒。较重原料油依次从较轻原料油入口上方喷入提升管,可以对较轻原料油的裂解物流起到急冷作用,迅速终止或减慢较轻原料油裂解物流的二次反应。提升管中的催化剂与烃原料的反应物流的混合物上行,进入沉降器3,在此进行气固物流的快速分离。裂解气从沉降器顶部出口6排出,失活的催化剂沿沉降器下行,被从管线5喷入的汽提蒸汽汽提。汽提后的待生催化剂向下进入再生器,在此进行烧焦再生反应。在烧焦再生过程中催化剂吸收大量的热量,温度升高到800~900℃。高温再生催化剂从再生器引出沿再生斜管返回提升管的预提升段循环使用。
如果裂解原料烃为石脑油、轻柴油、直馏蜡油、常压渣油、焦化蜡油、乙烷、丙烷等中的两种或两种以上时,均可按上述方法使不同原料从不同位置进入装置,实现裂解条件的优化。
发明效果实现不同性质的原料在各不相同的工艺条件下裂解达到优化反应条件,优化产品结构,例如乙烯产率能达到21.30%(wt)以上,并能节省设备投资和操作费用。
                          实施例一
本实施例为常压渣油与乙烷共同为原料的裂解结果。在高低并列式提升管装置上,先将难裂解的乙烷从提升管低部引入装置,与高活性的炽热再生催化剂接触反应,此时再生催化剂的温度为820℃,引入乙烷后的烃剂混合物流温度为810℃。常压渣油入口设置在乙烷入口上方4.2米处。此时,乙烷停留时间为0.4~0.5秒。加入常渣后的混合物流温度为740℃,提升管出口温度为710℃,本例所用的催化剂编号A,其性质和组成见表1。提升管中型试验的工艺条件和物料平衡情况见表2。为了便于对比,表2中同时列出了常压渣油与乙烷从同一进料口混合进料的中试情况。
本实施例说明,常压渣油制烯烃工艺中,采用本发明的多点进料法,重质渣油和乙烷都实现了较优化的裂解条件,转化率亦比较合适。常压渣油裂解的乙烯产率为22.36w%,乙烷裂解的乙烯产率为43.88w%,乙烷转化率达到61.13w%,乙烷转化的乙烯选择性达到71.78w%。而若乙烷与重油从同一进料口入装置,在剂油混合温度为740℃时,乙烷的转化率只有8.61%。
                          实施例二
本实施例为常压渣油和直馏汽油同时为原料的裂解结果,提升管中型试验的工艺条件和物料平衡情况见表3。直馏汽油从提升管底部进入装置,油剂混合温度为780℃,在直馏汽油进料口上方4.2米处喷入常压渣油,此处的混合物流温度为700℃,提升管出口温度为660℃。
本实施例说明,采用本发明的多点进料方法,在保证常压渣油在优化条件下裂解的前提下,直馏汽油达到了较高的裂解深度。
附图及其说明
附图1-本发明方法以提升管反应器为例的示意图
1-提升管
2-预提升气
3-沉降器
4-再生催化剂
5-汽提蒸汽管线
6-裂解气出口
I、II、III、IV均为原料入口
             表1  催化剂的性质及组成
    项    目     催化剂A     催化剂B
    活性组分种类     碱土金属氧化物     过渡金属氧化物
化学组成   Al2O3,W%Na2O,W%Fe2O3,W%活性组分,W%     40<0.30.88.2     42<0.30.86.5
比表面积,m2/g孔容,ml/g堆积密度,g/ml     580.120.85     650.130.85
筛分组成,W%0~20μ20~40μ40~60μ60~80μ>80μ 2.619.431.524.721.8 3.220.232.123.920.6
      表2  乙烷与常压渣油同时为原料的裂解结果
项    目  单独常渣裂解物料平衡 常渣与乙烷裂解的物料平衡 计算乙烷裂解物料平衡
  进料口数量     单     双     单   双   单
  进料中乙烷的比例,W%再生床层温度,℃再生剂汽提蒸汽温度,℃喷入乙烷后物流温度,℃喷入常渣后物流温度,℃提升管出口温度,℃急冷后温度,℃催化剂型号水烃比,w/w剂油比,w/w     0.0820400/740710600A0.2318.0     6.5820400810740710600A0.2318.0     6.5820400740740710600A0.2318.0   100//810740710600A//   100//740740710600A//
  主要产品产率,w%氢气甲烷乙烯乙烷丙烯丙烷丁烷丁烯丁二烯裂解汽油(<200℃)裂解中间馏分油裂解重油(>300℃)焦炭损失 0.8711.4422.364.5612.860.710.223.041.8712.465.239.8613.231.29 1.0311.1323.766.7912.210.680.212.901.7611.854.899.2212.371.21 0.8410.7621.3010.2012.050.670.212.851.7511.684.949.3012.401.05 3.336.6743.8838.872.860.2500.890.183.070000 0.480.966.1291.390.420.0400.140.020.430000
         表3  直馏汽油与常压渣油同时为原料的裂解结果
项    目   单独常渣裂解物料平衡 常渣与直汽裂解的物料平衡   计算直汽裂解物料平衡
进料口数量     单     双     双
进料中汽油的比例,w%再生床层温度,℃再生剂汽提蒸汽温度,℃喷入汽油后物流温度,℃喷入常渣后物流温度,℃提升管出口温度,℃急冷后温度,℃催化剂型号水烃比,w/w剂油比,w/w     0.0800400/700660600B0.2518.6     20800400780700660600B0.2519.0     100//780700660600B//
主要产品产率,w%乙烯丙烯C4烯烃裂解汽油(<200℃)裂解中间馏分裂解重油(>300℃)焦炭 23.0514.016.7313.456.609.319.00 24.5014.517.0814.605.687.457.30 30.3016.518.4819.202.000.010.50

Claims (6)

1、一种烃类与固体粒状催化剂接触转化制取乙烯为主的低碳烯烃并且兼产轻质芳烃的烃类转化方法,包括:
(1)在活塞流式反应器上设置多组原料入口,使物化性质不同的烃类原料分别从不同位置的入口引入反应器中,使之分别与温度和/或活性不同的催化剂接触,于温度600~900℃,压力为0.13~0.40MPa(绝压),剂油比5~100,剂油接触时间为0.02~5秒下进行反应,反应后的油气与催化剂快速分离并被急冷,催化剂经再生后循环使用;
(2)上述物化性质不同的烃类原料包括重质烃类和轻质烃类,重质烃类指馏程在350℃以上的烃类,轻质烃类指馏程在350℃以下的烃类;
(3)多种进料方式是把难裂解的烃类首先引入反应器,使从再生器来的高温高活性催化剂首先与之接触使之裂解,同时使催化剂降温并减活,然后依次引入其他较易裂解的各股烃类进料,后引入的烃类对先引入的烃类起到急冷作用,依次引入反应器的各股烃类在反应器内的停留时间差别为0.01~3秒;
(4)待生催化剂汽提后送入再生器烧焦再生,再生温度为750~950℃。
2、如权利要求1所述烃类转化方法,其特征在于:所述馏程在350℃以上的重质烃类是指各种直馏减压瓦斯油、常压渣油、焦化瓦斯油、热裂化重油、溶剂脱沥青油以及各种重质烃类经溶剂抽提的抽余油,所述馏程在350℃以下轻质烃类是指乙烷、丙烷、液化石油气、炼厂石油气、油田气、油田轻烃、石脑油和轻柴油。
3、如权利要求1所述烃类转化方法,其特征在于:从不同入口进入反应器的烃类反应温度控制范围:轻质烃类为700~900℃,重质烃类为600~800℃。
4、如权利要求1所述烃类转化方法,其特征在于:再生催化剂在再生剂输送线上经水蒸汽汽提后再返回反应器循环使用。
5、如权利要求1所述的烃类转化方法,其特征在于:采用的催化剂组分选自SiO2、Al2O3和碱金属、碱土金属及过渡金属的氧化物或其混合物,以及任选地加入部分分子筛。
6、如权利要求1所述的烃类转化方法,其特征在于:采用的催化剂组分选自经碱性或碱土金属氧化物改性的硅酸铝,以及任选地加入部分分子筛。
CN97119048A 1997-10-20 1997-10-20 多种进料烃类直接转化制烯烃方法 Expired - Fee Related CN1056595C (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN97119048A CN1056595C (zh) 1997-10-20 1997-10-20 多种进料烃类直接转化制烯烃方法
US09/174,462 US6420621B2 (en) 1997-10-20 1998-10-19 Optimized process for the preparation of olefins by direct conversion of multiple hydrocarbons
EP98119730A EP0911308B1 (en) 1997-10-20 1998-10-20 Process for the preparation of olefins by direct conversion of multiple hydrocarbons
DE69809685T DE69809685T2 (de) 1997-10-20 1998-10-20 Verfahren zur Herstellung von Olefinen durch direkte Umsetzung mehrerer Kohlenwasserstoffe
JP1998298280A JP3953208B6 (ja) 1997-10-20 1998-10-20 複数の炭化水素の直接転換によるオレフィンの最適化生産プロセス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97119048A CN1056595C (zh) 1997-10-20 1997-10-20 多种进料烃类直接转化制烯烃方法

Publications (2)

Publication Number Publication Date
CN1215041A CN1215041A (zh) 1999-04-28
CN1056595C true CN1056595C (zh) 2000-09-20

Family

ID=5175152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97119048A Expired - Fee Related CN1056595C (zh) 1997-10-20 1997-10-20 多种进料烃类直接转化制烯烃方法

Country Status (4)

Country Link
US (1) US6420621B2 (zh)
EP (1) EP0911308B1 (zh)
CN (1) CN1056595C (zh)
DE (1) DE69809685T2 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116471A1 (en) * 2001-08-29 2003-06-26 China Petroleum & Chemical Corporation Catalytic cracking process of petroleum hydrocarbons
US6867341B1 (en) 2002-09-17 2005-03-15 Uop Llc Catalytic naphtha cracking catalyst and process
US20050085677A1 (en) * 2003-10-15 2005-04-21 Fina Technology, Inc. Method for improved production of cyclohexenyl and alkenyl aromatic compounds
CN100487080C (zh) * 2004-03-08 2009-05-13 中国石油化工股份有限公司 一种生产低碳烯烃和芳烃的化工型炼油方法
WO2005085391A1 (en) * 2004-03-08 2005-09-15 China Petroleum & Chemical Corporation A process of production of lower olefins and aromaticas
US7560020B2 (en) * 2006-10-30 2009-07-14 Exxonmobil Chemical Patents Inc. Deasphalting tar using stripping tower
CN101932672B (zh) 2007-08-09 2015-01-21 中国石油化工股份有限公司 一种催化转化方法
CN101362669B (zh) * 2007-08-09 2012-12-12 中国石油化工股份有限公司 一种制取乙烯、丙烯和芳烃的催化转化方法
CN101362959B (zh) * 2007-08-09 2012-09-05 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
ES2645694T3 (es) * 2008-12-10 2017-12-07 Reliance Industries Limited Procedimiento de craqueo catalítico en lecho fluidizado (FCC) para fabricar propileno y etileno con un rendimiento aumentado
CN101760227B (zh) * 2008-12-25 2013-06-05 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
US9242909B2 (en) 2008-12-26 2016-01-26 Jx Nippon Oil & Energy Corporation Method for refining dicyclopentadiene
US9458390B2 (en) * 2009-07-01 2016-10-04 Exxonmobil Chemical Patents Inc. Process and system for preparation of hydrocarbon feedstocks for catalytic cracking
EP2527036A4 (en) 2010-01-20 2014-03-05 Jx Nippon Oil & Energy Corp CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
US9181146B2 (en) 2010-12-10 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US8969602B2 (en) 2011-01-24 2015-03-03 Shell Oil Company Process for the production of ethylene oxide
SG191979A1 (en) * 2011-01-24 2013-08-30 Shell Int Research Process for the production of ethylene oxide
JP5690624B2 (ja) * 2011-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9181147B2 (en) 2012-05-07 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US8921633B2 (en) 2012-05-07 2014-12-30 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US8937205B2 (en) 2012-05-07 2015-01-20 Exxonmobil Chemical Patents Inc. Process for the production of xylenes
WO2014129585A1 (ja) 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9993620B2 (en) 2013-06-28 2018-06-12 Safesharp Technologies Corporation Catheter anchoring device and method
US9896627B2 (en) 2015-10-14 2018-02-20 Saudi Arabian Oil Company Processes and systems for fluidized catalytic cracking
US10767117B2 (en) 2017-04-25 2020-09-08 Saudi Arabian Oil Company Enhanced light olefin yield via steam catalytic downer pyrolysis of hydrocarbon feedstock
US10870802B2 (en) 2017-05-31 2020-12-22 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
US10889768B2 (en) 2018-01-25 2021-01-12 Saudi Arabian Oil Company High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds
CN110724550B (zh) * 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用快速流化床进行催化裂解的方法和系统
US11066606B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins with steam
US11066605B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US11505754B2 (en) 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
CN112973579B (zh) * 2021-02-07 2022-04-12 中国科学院过程工程研究所 一种气固短接触时间的反应装置及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034949A (zh) * 1987-12-30 1989-08-23 法国精制和总分配公司 流化床烃类转化方法和装置
CN1069016A (zh) * 1992-07-16 1993-02-17 中国石油化工总公司 重质烃类直接转化制取乙烯的方法
US5348644A (en) * 1989-11-10 1994-09-20 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for contacting a hydrocarbon feedstock with hot solid particles in a tubular reactor with a rising fluidized bed

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493888A (en) 1975-09-25 1977-11-30 British Petroleum Co Olefins production
US4291185A (en) * 1978-12-14 1981-09-22 Mobil Oil Corporation Alkylation of benzene in petroleum
JPS585225B2 (ja) 1978-12-21 1983-01-29 工業技術院長 コ−クス粒子の加熱方法
US4242100A (en) * 1979-10-15 1980-12-30 Tri-Pak, Inc. Motor fuel composition
US4320241A (en) * 1980-08-28 1982-03-16 Occidental Research Corporation Process for converting oxygenated hydrocarbons into hydrocarbons
US4422925A (en) * 1981-12-28 1983-12-27 Texaco Inc. Catalytic cracking
US4670021A (en) * 1983-01-10 1987-06-02 Texaco Inc. Detergent and corrosion inhibiting additive and motor fuel composition containing same
US4663019A (en) 1984-03-09 1987-05-05 Stone & Webster Engineering Corp. Olefin production from heavy hydrocarbon feed
US4693991A (en) * 1986-05-02 1987-09-15 Phillips Petroleum Company Hydrotreating catalyst composition
US5264115A (en) 1987-12-30 1993-11-23 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for fluidized bed hydrocarbon conversion
US5173174A (en) * 1988-07-07 1992-12-22 Uop Metal-tolerant FCC catalyst and process
ATE89308T1 (de) 1989-02-08 1993-05-15 Stone & Webster Eng Corp Verfahren zur herstellung von olefinen.
JP2966985B2 (ja) * 1991-10-09 1999-10-25 出光興産株式会社 重質炭化水素油の接触水素化処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034949A (zh) * 1987-12-30 1989-08-23 法国精制和总分配公司 流化床烃类转化方法和装置
US5348644A (en) * 1989-11-10 1994-09-20 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for contacting a hydrocarbon feedstock with hot solid particles in a tubular reactor with a rising fluidized bed
CN1069016A (zh) * 1992-07-16 1993-02-17 中国石油化工总公司 重质烃类直接转化制取乙烯的方法

Also Published As

Publication number Publication date
DE69809685T2 (de) 2003-04-10
EP0911308A1 (en) 1999-04-28
JPH11193250A (ja) 1999-07-21
US20010056216A1 (en) 2001-12-27
CN1215041A (zh) 1999-04-28
JP3953208B2 (ja) 2007-08-08
EP0911308B1 (en) 2002-11-27
US6420621B2 (en) 2002-07-16
DE69809685D1 (de) 2003-01-09

Similar Documents

Publication Publication Date Title
CN1056595C (zh) 多种进料烃类直接转化制烯烃方法
CN101045881B (zh) 一种催化转化装置
CN102051213B (zh) 一种催化裂解方法
CN100338185C (zh) 一种催化裂化方法及装置
CN102286294B (zh) 一种生产丙烯和轻芳烃的烃类催化转化方法
CN103131463B (zh) 一种多产丙烯的烃类催化转化方法
CN101029248B (zh) 一种增产轻烯烃的方法
CN109575982A (zh) 一种原油催化裂解制低碳烯烃和芳烃的方法
CN102952577B (zh) 一种提高丙烯产率的催化转化方法
CN101665710B (zh) 一种轻烃催化转化方法及其装置
CN102086402B (zh) 一种增产丙烯并改善汽油性质的催化裂化方法和装置
CN102250641B (zh) 一种最大限度制乙烯、丙烯的方法和装置
CN109679686B (zh) 一种多产乙烯和轻芳烃的烃类催化裂化方法
CN201695001U (zh) 一种制乙烯、丙烯的装置
CN102399579B (zh) 一种催化裂化方法
CN102268291B (zh) 一种降低汽油烯烃的催化裂化工艺与装置
CN103666551B (zh) 一种高温费托合成油的催化加工方法和装置
CN109232153A (zh) 一种石脑油制备低碳烯烃的方法
CN111689829B (zh) 一种石油烃催化转化制乙烯的方法及其装置
CN102311767B (zh) 一种降低汽油烯烃的催化裂化方法与装置
CN103540356A (zh) 一种提高低碳烯烃和柴油收率的劣质重油催化转化工艺
CN115725330B (zh) 一种生产低碳烯烃的催化转化方法
CN214400379U (zh) 一种基于双沉降器的催化裂化装置
CN115725326B (zh) 一种生产乙烯、丙烯和轻芳烃的催化转化方法和装置
CN115992005B (zh) 一种反应原料为烃类原料的催化转化制低碳烯烃和芳烃的反应方法及反应器

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
DD01 Delivery of document by public notice

Addressee: China Petrochemical Corporation

Document name: Notification to Pay the Fees

DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: China Petrochemical Corporation

Document name: Notification of Termination of Patent Right

DD01 Delivery of document by public notice
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20000920

Termination date: 20161020

CF01 Termination of patent right due to non-payment of annual fee