CN105575024A - 抗干扰的光纤周界防护系统及方法 - Google Patents
抗干扰的光纤周界防护系统及方法 Download PDFInfo
- Publication number
- CN105575024A CN105575024A CN201511018128.1A CN201511018128A CN105575024A CN 105575024 A CN105575024 A CN 105575024A CN 201511018128 A CN201511018128 A CN 201511018128A CN 105575024 A CN105575024 A CN 105575024A
- Authority
- CN
- China
- Prior art keywords
- signal
- data
- length
- sorter
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
- G08B13/183—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
- G08B13/186—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
Abstract
本发明提供了一种抗干扰的光纤周界防护系统及方法,所述光纤周界防护系统包括:传感光缆,所述传感光缆布设在物理围界上;采集装置,所述采集装置安装在所述物理围界上,用于采集所述传感光纤传输来的信号,并送处理和报警装置;处理和报警装置,所述处理和报警装置安装在所述物理围界上,用于处理所述采集装置传输来的信号,并根据需要提示报警。本发明具有抗干扰能力强等优点。
Description
技术领域
本发明涉及光纤周界防护,特别涉及具有抗风雨干扰的光纤周界防护系统及方法。
背景技术
随着我国经济和科学技术的不断发展,人们的安全防范意识越来越强,学校周边、住宅小区、工业园区等居住生活的安全防范成为人们越来越关心的问题。不仅如此,油田油库、发电厂、飞机场等复杂环境的周界安全尤为值得关注,对于军事重地、司法监狱、政府机关等关系到国民安全的重要区域安全也提出了更高的要求,因此,一个安全有效的周界安防监测系统尤为重要。
传统光纤周界报警系统由电脑、信号处理报警系统装置和信号采集系统装置组成。信号采集系统由信号采集装置和传感光缆组成,信号采集装置和传感光缆安装于户外物理围界上,用于采集物理围界产生的振动信号,并通过传导光缆将采集到的振动信号传递给信号报警处理系统进行处理、分析并做出相应的判断,从而实现光纤周界报警系统的防护作用。信息处理报警系统由电脑和信息报警装置组成,并安装于系统控制室内并通过传导光缆和信号采集系统装置进行信号传递。信息处理报警装置用于分析信号采集系统反馈的信号,并通过电脑进行分析、控制和显示结果。信号报警系统置于室内,信号采集装置于室外物理围界上;两个系统的通信通过传导光缆来传递信号。
可见,传统光纤周界报警系统的实施需要对传导光缆进行敷设和熔接,随着周界范围的增大传导光缆的敷设和熔接难度大大增加,实施的周期长,效率低和品质无法保证,后期维护不便。
目前,市场上周界安防系统具有多种形式,比如主动式红外周界安防系统、泄漏电缆式周界安防系统、张力式电子周界安防系统、视频监控周界安防系统等。主动式红外周界安防系统监控距离较短,容易受外部环境气候影响,抗干扰能力差。泄漏电缆式周界安防系统容易被外界非入侵物体的磁场变化影响,引发误报,而且功耗比较大,成本较高。张力式电子周界安防系统控制装置各个点张力相对比较复杂,在安装和维护方面比较困难,限制了作用区域的增大。视频监控周界安防系统若采用定点监控,摄像探头很难覆盖整个安防周界,监控的范围就小;而采用连续扫描,则会浪费大量的资源,而且也容易形成监控盲区。
为解决上述问题,充分利用光纤传感技术灵敏度高、损耗低、抗电磁干扰的优点,基于光纤干涉原理,实现长距离大范围的实时监控。压力、振动通过敷设在物理围界上的光纤(缆)前端传感设备,产生探测信号,经过后端的数据处理和智能识别,对不同的动作进行分类,如攀爬围墙、割据铁丝网、禁行区域内行走等,判断其是否为入侵动作,实现光纤探测周界安防系统的及时预警或实时报警。光纤探测周界安防系统灵敏度高,抗电磁干扰,可用于易燃易爆场所,不怕雷击电闪,方便野外铺设,安装维护方便,满足人们对安全保卫的要求。然而该类系统也存在诸多问题,如:
该类系统本质是对振动信号的监测、处理和分析,目前还存在信号识别的问题。在非恶劣的天气条件和不复杂的环境条件下能够精确判定入侵动作,然而在环境恶劣、干扰较多的条件下,很难精确识别人为入侵。特别是在强风雨天气下,强风雨使光缆振动而产生的信号在强度和频率上和部分人为的入侵动作产生的信号相似,因而会发生很多误报。而要保证下雨时不发生误报,有些人为入侵行为在一般天气条件下又会无法被系统判断为入侵事件。因此,如何精确判断在恶劣天气条件下的人为入侵并且不发生误报是亟待解决的一个问题。
发明内容
为了解决上述现有技术方案中的不足,本发明提供一种施工效率高、维护方便、低成本的抗干扰的光纤周界防护系统。
本发明的目的是通过以下技术方案实现的:
一种抗干扰的光纤周界防护系统,所述光纤周界防护系统包括:
传感光缆,所述传感光缆布设在物理围界上;
采集装置,所述采集装置安装在所述物理围界上,用于采集所述传感光纤传输来的信号,并送处理和报警装置;
处理和报警装置,所述处理和报警装置安装在所述物理围界上,用于处理所述采集装置传输来的信号,并根据需要提示报警。
本发明的目的还在于提供了一种利用上述光纤周界防护系统的抗干扰的光纤周界防护方法,能有效地抗风雨干扰。该发明目的通过以下技术方案得以实现:
一种抗干扰的光纤周界防护方法,所述光纤周界防护方法包括以下步骤:
(A1)传感光缆感知外界振动,采集装置采集所述传感光缆的感知信号,并传送到处理和报警装置;
(A2)处理和报警装置采样所述感知信号,并对采样信号有效上升统计;
(A3)采用动态均值算法处理有效上升统计后的数据;
(A4)对所述数据进行平滑累加;
(A5)对平滑累加后的数据进行分段,并对分段信号进行动态修补,使每段包含一个完整动作;
(A6)提取动态修补后的分段信号的特征矢量,输入通过已经训练好的分类器,由分类器的输出结果代表的事件模式决定是否报警。
根据上述的光纤周界防护方法,优选地,所述分类器的建立方式为:
依据步骤(A1)-步骤(A6)的方式处理各类干扰和入侵动作的振动信号,提取处理后得到的信号的特征矢量作为分类器的输入,构建基于神经网络的分类器。
根据上述的光纤周界防护方法,优选地,在步骤(A2)中,有效上升统计的方式为:
统计采样信号穿过有效上升电平和噪声容限之和的次数,噪声容限大于最大噪声;有效上升电平的范围在1.548-2.048V,噪声容限的范围在0.06V-1.21V。
根据上述的光纤周界防护方法,优选地,在步骤(A3)中,提取环境当前时刻的前N秒数据来计算其均值,而当均值达到均值阈值时,动态均值算法作用于有效上升统计后的数据,对数据做如下的抑制处理:
均值阈值的范围在3-7,均值参数的范围在1-2,均值=N包数据均值之和/N。
根据上述的光纤周界防护方法,优选地,在步骤(A5)中,信号分段的方式为:
当信号数据大于最小强度阈值时,开始对信号分段;当出现连续小于最小强度阈值的数据个数等于信号间隔长度时,信号分段结束;超过最大长度的信号以最大长度分段;
信号间隔长度是两个分段信号之间的时间间隔;最大长度是一个完整动作产生信号的最大时间,最小强度阈值是外界环境干扰引起的最大振动频率:
信号间隔长度的范围为0.125-0.625s;最大长度的范围是1.25-2.51s。
根据上述的光纤周界防护方法,优选地,在步骤(A5)中,当分段信号的最后一个数据大于最小强度阈值时,该分段信号需要修补:
当修补长度中的数据值等于修补长度中最小的数据值或者小于最小强度时,就补上修补长度中截止到这个数据为止的数据,修补完成;如果到修补长度结束,也找不到满足要求的数据值,就补上修补长度中的所有数据,并强制截断;
修补长度是对分段信号补上后面接下去的数据的最长时间,为最大长度的1/5~1/4;最大长度是一个完整动作产生信号的最大时间,最大长度的范围是1.25-2.51s。
根据上述的光纤周界防护方法,可选地,在步骤(A5)中,对修补后的分段信号进行有效性判断,具体方式为:
若分段信号的持续时间小于有效长度,或者分段信号的最大振动频率小于最大强度阈值,这个分割信号为无效信号;
所述有效长度的范围为0.3-1.5s;最大振动频率的范围为15-25Hz。
根据上述的光纤周界防护方法,优选地,所述特征矢量包括:
信号的时域特征,包括持续时间、有效面积、主峰值、断续时间;
信号的频域特征,对信号进行可变尺度的分解,将具有显著特征的N个频带小波包分解系数作为信号的频域特征。
根据上述的光纤周界防护方法,优选地,构建基于神经网络的分类器,将所需识别的各种干扰和入侵事件进行预分类并确定对应的分类器目标输出,用各个入侵事件的特征矢量构建分类器的训练样本集,训练分类器。
根据上述的光纤周界防护方法,优选地,在步骤(A6)中,提取采样信号的特征矢量,输入已经训练好的分类器,分类器的输出与各种事件的分类器目标输出做对比,当所述分类器的输出与入侵事件的目标输出的误差在预设范围内,该采样信号被判定为该类入侵事件,决定是否产发生报警。
与现有技术相比,本发明具有的有益效果为:
1.信号采集装置、信号处理和报警系统放置在同一个壳体内,将系统模块化,无需考虑光纤熔接和传导光缆敷设问题,大大降低了施工难度和周期,成本也将大大降低,也便于后续维护;
2.采用动态均值算法抑制由于强风雨造成的光缆的振动,并且能够精确地区分与人为入侵动作产生的相似信号,从而拒绝误报的产生,保证准确有效的报警反应;
3.统计采样信号穿过有效上升电平和噪声容限之和的次数,从而滤除噪声,并且显著地减少了数据的处理量,保留有效的数据特征;
4.对信号分段并进行动态修补,以保证信号分割的完整性。
附图说明
参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于举例说明本发明的技术方案,而并非意在对本发明的保护范围构成限制。图中:
图1是本发明的光纤周界防护方法的流程图;
图2是根据本发明实施例1中信号分段的流程图;
图3是根据本发明实施例1的分段信号修补的流程图;
图4是根据本发明实施例1数据有效性判断的流程图;
图5是根据本发明实施例2中信号示意图;
图6是根据本发明实施例2的动态均值处理后的信号示意图;
图7是根据本发明实施例2动态修补后的信号示意图。
具体实施方式
图1-7和以下说明描述了本发明的可选实施方式以教导本领域技术人员如何实施和再现本发明。为了教导本发明技术方案,已简化或省略了一些常规方面。本领域技术人员应该理解源自这些实施方式的变型或替换将在本发明的范围内。本领域技术人员应该理解下述特征能够以各种方式组合以形成本发明的多个变型。由此,本发明并不局限于下述可选实施方式,而仅由权利要求和它们的等同物限定。
实施例1:
本发明实施例的抗干扰的光纤周界防护系统,所述光纤周界防护系统包括:
传感光缆,所述传感光缆布设在物理围界上;
采集装置,所述采集装置安装在所述物理围界上,用于采集所述传感光纤传输来的信号,并送处理和报警装置;
处理和报警装置,所述处理和报警装置安装在所述物理围界上(与所述采集装置安装在同一壳体内),用于处理所述采集装置传输来的信号,并根据需要提示报警;激光器安装在所述处理和报警装置内,上述装置均是本领域的现有技术,在此不再赘述。
图1示意性地给出了本发明实施例1的抗干扰的光纤周界防护方法的流程图,如图1所示,所述光纤周界防护方法包括以下步骤:
(A1)所述传感光缆感知外界振动,所述采集装置接收所述传感光缆的感知信号,并传输到所述处理和报警装置;
(A2)处理和报警装置采样所述感知信号,并对采样信号有效上升统计,具体为:
对接收到的采集信号进行采样,当采集信号的电压超过3.5V时,报警装置以250kbps采样频率进行信号的采样,一个数据帧为一秒内的数据段。对包含512个采样数据的采样信号进行统计,统计采样信号穿过有效上升电平同时穿过有效上升电平+噪声容限的次数,有效上升电平的范围在1.548V-2.048V,噪声容限的范围在0.06V-1.2V,噪声容限必须设置得比最大噪声稍大。512个统计的次数作为一个数据帧,大约1.05秒。这样进行的有效上升统计处理后的数据量比原来大大减少,为信号的后续处理提供了很大的方便,同时避免了光学噪声产生的干扰,但仍保留了原始振动信号的时频域特征。
(A3)采用动态均值算法处理有效上升统计后的数据,具体为:
采用动态均值算法处理有效上升统计后的数据,提取环境当前时刻的前N秒数据来计算其均值,在一般无干扰源的环境下,其均值会非常小甚至接近于0,在这个时候算法不发生作用;而当均值达到均值阈值时,动态均值算法作用于有效上升统计后的数据,对数据做如下的抑制处理:
其中,均值阈值范围在3-7,均值参数范围在1-2,均值=N包数据均值之和/N。如果接受到的前后两包数据之间的时间间隔大于2包间隔时间时,进行补零,从而降低环境均值。在强风雨时光缆发生强烈振动,这时环境均值越大,动态均值算法所起的抑制作用越大;
(A4)对所述数据进行平滑累加,具体为:
对经过动态均值算法抑制的数据进行平滑累加,消除不规则的随机干扰信号的影响,累加范围1-25次,对累加范围内的数据取其平均,这样做会提高信号数据曲线的光滑度,使信号特征更加明显;
(A5)对平滑累加后的数据进行分段,具体为:
图2示意性地给出了本发明实施例1的信号分段的流程图,如图1所示,所述信号分段的具体方式为:
通过信号预处理参数(信号间隔长度,最大长度,最小强度阈值)对信号进行分段。定义信号间隔长度是两个分段信号之间的时间间隔,范围为0.125s-0.625s。定义最大长度是一个完整动作产生信号的最大时间,超过最大长度的信号对应的动作是一个持续的行为动作,无需重复截取,只需其中的一段信号来表征这个持续动作,最大长度的范围可以是1.25s-2.5s,最好是2s。定义最小强度阈值是外界环境干扰引起的最大振动频率,小于最小强度阈值的信号数据是干扰数据,范围是1-10。
对平滑累加处理后的信号数据进行分段,当有信号数据大于最小强度阈值时,开始对信号分段。当出现连续小于等于最小强度阈值的数据个数等于信号间隔长度时,即一个动作隔了一段时间之后发生下一个动作,此时这个动作对应的信号分段结束。如果这个动作一直在持续产生振动,没有必要重复截取,以最大长度对信号进行分段。
在分段过程中,根据需要对分段信号进行动态修补,使每段包含一个完整动作,该分段(和可能需要的修补)完成后之后再进行下一个分段,也即分段是按照顺序进行的,而非完成所有分段后再去修补,动态修补具体为:
图3示意性地给出了本发明实施例1的分段信号修补的流程图,如图3所示,所述分段信号修补的具体方式为:
通过修补长度参数对分段信号进行修补判断,以获得完整的分割信号。定义修补长度是对分段信号补上后面接下去的数据的最长时间,为最大长度的1/5~1/4。
发生以下情况时对信号进行修补:分段信号的最后一个数据大于最小强度阈值,此时分段信号对应的动作是一个持续动作中分段得到的信号,但还不足以完整得表征出这个持续动作,需要补上一段数据,从而得到完整信号。
当修补长度中的某个数据值等于修补长度中最小的数据值或者小于等于最小强度时,就补上修补长度中截止到这个数据为止的数据,修补完成;如果到修补长度结束,也找不到满足要求的数据值,就补上修补长度中的所有数据,并强制截断。修补完成,分割出一个完整的信号,足以表征作用在物理围界上的动作产生的振动。
对修补后的分段信号进行有效性判断,具体为:
图4示意性地给出了本发明实施例1的有效性判断的流程图,如图4所示,所述有效性判断的具体方式为:
对完整的分割信号进行有效性判断,通过有效性判断参数(有效长度,最大强度阈值)提取有效信号。定义有效长度是分割信号不得小于的最小时间,如果分割信号的持续时间小于有效长度,这个分割信号持续时间过短,是强风雨等外界突发干扰产生的无效信号,范围在0.3s-1.5s。定义最大强度阈值是分割信号不得小于的最小振动频率,如果分割信号的最大振动频率小于最大强度阈值,这个分割信号是强风雨等外界突发干扰产生的无效信号,范围在15-25。
一个分割信号的持续时间小于有效长度,或者它的最大振动频率小于最大强度阈值,这个分割信号为无效信号,此信号不被采用。同时满足两个有效性判断的分割信号是有效信号,排除了强风雨等外界动作引起的干扰信号,报警装置可以对此信号对应的动作进行有效的判断。
(A6)提取动态修补后的分段信号的特征矢量,输入通过已经训练好的分类器,由分类器的输出结果代表的事件模式决定是否报警。
所述分类器的构建及训练方式为:对各类干扰和入侵动作的振动信号,依据以上步骤(A1)-(A5)的方式处理后得到的有效信号提取特征矢量,作为分类器的输入。对有效信号提取时域特征,包括持续时间即有效信号的长度、有效面积即有效信号的所有数据值总和、主峰值即有效信号的最大数据值、断续时间即有效信号中小于最小强度阈值的样本数据个数。对有效信号提取频域特征,对有效信号进行可变尺度的分解,将最为显著的N个频带小波包分解系数作为信号的频域特征。将时域特征和频域特征构建为后续算法处理的特征矢量,作为分类器的输入。
构建基于神经网络的分类器,将所需进行识别的各种干扰和入侵事件进行预分类并确定对应的分类器目标输出,用各个入事件的特征矢量构建分类器的训练样本集,训练分类器。所述分类器的构建和训练须在上述防护方法的实际应用之前完成。
提取采样信号的特征矢量,输入通过已经训练好的分类器得到输出,输出与各种事件的分类器目标输出对比,当输出与某个干扰或者入侵事件的目标输出的误差在一定预设范围内,该采样信号即判定为该种事件,系统决定是否产发生报警。
实施例2:
根据本发明实施例1的光纤周界防护系统及方法的应用例。
在本应用例中,光纤周界防护方法具体为:
(A1)安装在围栏上的光缆受到碰撞,光缆感知到的振动信号通过采集装置输出到后端的处理和报警装置,处理和报警装置对接收到的采集信号进行采样;
(A2)统计信号有效上升的示意图,设置穿越电平2.048V,噪声容限0.12V,每个包含512个采样数据的采样信号的有效上升次数为黑色矩形标记部分,因此得到该信号处理后穿越次数值分别为8、7、6,如图5所示,穿越统计处理后的数据量只有原来的1/512,为信号的后续处理提供了很大的方便。
(A3)对统计有效上升后的数据采用动态均值算法处理,提取环境当前25秒数据来计算其均值,设置均值阈值为4,均值参数为1。此时动态均值算法对暴雨数据进行的抑制作用如图6所示,经有效上升统计后的数据通过计算均值及抑制处理:
得到处理后的信号,暴雨数据被抑制,而无干扰的数据依然保持。
(A4)对经过动态均值算法处理后的数据进行预处理,过程如下:
对数据进行累加平滑算法,累加平滑参数设置为16,即对每16个由以上步骤处理后的数据取其平均值。1秒数据帧就得到32个累加平滑处理的数据。
(A5)设置信号预处理参数(信号间隔长度为0.315s,最大长度2s,最小强度阈值5)对信号进行分段。最大长度2秒可以作为基本的信号长度,满足一个一般性动作的分段。对平滑累加处理后的信号数据进行分段,当有信号数据大于5时,开始对信号分段。当连续小于等于5的数据个数等于0.315s时,即一个动作隔了0.315s之后发生下一个动作,此时这个动作对应的信号分段结束。当这个动作一直在持续产生振动,以2s对信号进行分段。
设置修补长度为最大长度的1/4即0.5s,当分段信号的最后一个数据大于5时,分段信号对应的动作是一个持续动作中分段得到的信号,但还不足以完整得表征出这个持续动作,补上接下去0.5s的信号数据,从而得到完整信号。如果遇到在这0.5s数据中小于等于5的第一个点或者接这0.5s中最小的数据值对应的点,修补结束,获得完整的分割信号。如图7所示,累加平滑处理后的数据经过信号分段和信号修补之后不会出现分割到峰值的情况,信号分段到竖直线,修补后分割出完整信号。
对完整的分割信号进行有效性判断,设置有效性判断参数(有效长度0.3s,最大强度阈值20),提取有效信号。
(A6)提取各类干扰和入侵动作的多个完整信号数据的特征矢量,作为分类器的输入,构建基于神经网络的分类器。提取采样信号的特征矢量,输入通过已经训练好的分类器得到输出,由分类器的输出结果代表的事件模式决定是否报警。
Claims (10)
1.一种抗干扰的光纤周界防护系统,所述光纤周界防护系统包括:
传感光缆,所述传感光缆布设在物理围界上;
采集装置,所述采集装置安装在所述物理围界上,用于采集所述传感光纤传输来的信号,并送处理和报警装置;
处理和报警装置,所述处理和报警装置安装在所述物理围界上,用于处理所述采集装置传输来的信号,并根据需要提示报警。
2.根据权利要求1所述的光纤周界防护系统的抗干扰的光纤周界防护方法,所述光纤周界防护方法包括以下步骤:
(A1)传感光缆感知外界振动,采集装置采集所述传感光缆的感知信号,并传送到处理和报警装置;
(A2)处理和报警装置采样所述感知信号,并对采样信号有效上升统计;
(A3)采用动态均值算法处理有效上升统计后的数据;
(A4)对所述数据进行平滑累加;
(A5)对平滑累加后的数据进行分段,并对分段信号进行动态修补,使每段包含一个完整动作;
(A6)提取动态修补后的分段信号的特征矢量,输入通过已经训练好的分类器,由分类器的输出结果代表的事件模式决定是否报警。
3.根据权利要求2所述的光纤周界防护方法,其特征在于:所述分类器的建立方式为:
依据步骤(A1)-步骤(A6)的方式处理各类干扰和入侵动作的振动信号,提取处理后得到的信号的特征矢量作为分类器的输入,构建基于神经网络的分类器;
所述特征矢量包括:
信号的时域特征,包括持续时间、有效面积、主峰值、断续时间;
信号的频域特征,对信号进行可变尺度的分解,将具有显著特征的N个频带小波包分解系数作为信号的频域特征。
4.根据权利要求2所述的光纤周界防护方法,其特征在于:在步骤(A2)中,有效上升统计的方式为:
统计采样信号穿过有效上升电平和噪声容限之和的次数,噪声容限大于最大噪声;有效上升电平的范围在1.548-2.048V,噪声容限的范围在0.06V-1.21V。
5.根据权利要求4所述的光纤周界防护方法,其特征在于:在步骤(A3)中,提取环境当前时刻的前N秒数据来计算其均值,而当均值达到均值阈值时,动态均值算法作用于有效上升统计后的数据,对数据做如下的抑制处理:
均值阈值的范围在3-7,均值参数的范围在1-2,均值=N包数据均值之和/N。
6.根据权利要求2所述的光纤周界防护方法,其特征在于:在步骤(A5)中,信号分段的方式为:
当信号数据大于最小强度阈值时,开始对信号分段;当出现连续小于最小强度阈值的数据个数等于信号间隔长度时,信号分段结束;超过最大长度的信号以最大长度分段;
信号间隔长度是两个分段信号之间的时间间隔;最大长度是一个完整动作产生信号的最大时间,最小强度阈值是外界环境干扰引起的最大振动频率:
信号间隔长度的范围为0.125-0.625s;最大长度的范围是1.25-2.51s。
7.根据权利要求2所述的光纤周界防护方法,其特征在于:在步骤(A5)中,当分段信号的最后一个数据大于最小强度阈值时,该分段信号需要修补:
当修补长度中的数据值等于修补长度中最小的数据值或者小于最小强度时,就补上修补长度中截止到这个数据为止的数据,修补完成;如果到修补长度结束,也找不到满足要求的数据值,就补上修补长度中的所有数据,并强制截断;
修补长度是对分段信号补上后面接下去的数据的最长时间,为最大长度的1/5~1/4;最大长度是一个完整动作产生信号的最大时间,最大长度的范围是1.25-2.51s。
8.根据权利要求7所述的光纤周界防护方法,其特征在于:在步骤(A5)中,对修补后的分段信号进行有效性判断,具体方式为:
若分段信号的持续时间小于有效长度,或者分段信号的最大振动频率小于最大强度阈值,这个分割信号为无效信号;
所述有效长度的范围为0.3-1.5s;最大振动频率的范围为15-25Hz。
9.根据权利要求3所述的光纤周界防护方法,其特征在于:构建基于神经网络的分类器,将所需识别的各种干扰和入侵事件进行预分类并确定对应的分类器目标输出,用各个入侵事件的特征矢量构建分类器的训练样本集,训练分类器。
10.根据权利要求2所述的光纤周界防护方法,其特征在于:在步骤(A6)中,提取采样信号的特征矢量,输入已经训练好的分类器,分类器的输出与各种事件的分类器目标输出做对比,当所述分类器的输出与入侵事件的目标输出的误差在预设范围内,该采样信号被判定为该类入侵事件,决定是否产发生报警。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511018128.1A CN105575024B (zh) | 2015-12-30 | 2015-12-30 | 抗干扰的光纤周界防护系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511018128.1A CN105575024B (zh) | 2015-12-30 | 2015-12-30 | 抗干扰的光纤周界防护系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105575024A true CN105575024A (zh) | 2016-05-11 |
CN105575024B CN105575024B (zh) | 2018-05-08 |
Family
ID=55885102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511018128.1A Active CN105575024B (zh) | 2015-12-30 | 2015-12-30 | 抗干扰的光纤周界防护系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105575024B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107633222A (zh) * | 2017-09-14 | 2018-01-26 | 浙江亨特科技有限公司 | 一种具有自适应学习功能的光纤振动传感方法及系统 |
CN108416953A (zh) * | 2018-03-09 | 2018-08-17 | 北京环境特性研究所 | 一种智能光纤周界报警系统 |
CN109470352A (zh) * | 2018-10-19 | 2019-03-15 | 威海北洋光电信息技术股份公司 | 基于自适应阈值的分布式光纤管道安全监测算法 |
CN114268365A (zh) * | 2021-12-02 | 2022-04-01 | 国网甘肃省电力公司酒泉供电公司 | 一种基于可视化技术的通信光缆智能预警方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005227808A (ja) * | 2004-02-10 | 2005-08-25 | Mitsubishi Electric Engineering Co Ltd | 検知通報装置 |
CN103236127A (zh) * | 2013-05-06 | 2013-08-07 | 无锡成电光纤传感科技有限公司 | 一种光纤围栏入侵监测系统及其模式识别方法 |
CN103956013A (zh) * | 2014-05-04 | 2014-07-30 | 中国电子科技集团公司第四十一研究所 | 一种风雨扰动信号实时判定方法 |
CN104794839A (zh) * | 2015-04-27 | 2015-07-22 | 武汉世纪金桥安全技术有限公司 | 一种基于potdr光纤入侵识别算法 |
-
2015
- 2015-12-30 CN CN201511018128.1A patent/CN105575024B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005227808A (ja) * | 2004-02-10 | 2005-08-25 | Mitsubishi Electric Engineering Co Ltd | 検知通報装置 |
CN103236127A (zh) * | 2013-05-06 | 2013-08-07 | 无锡成电光纤传感科技有限公司 | 一种光纤围栏入侵监测系统及其模式识别方法 |
CN103956013A (zh) * | 2014-05-04 | 2014-07-30 | 中国电子科技集团公司第四十一研究所 | 一种风雨扰动信号实时判定方法 |
CN104794839A (zh) * | 2015-04-27 | 2015-07-22 | 武汉世纪金桥安全技术有限公司 | 一种基于potdr光纤入侵识别算法 |
Non-Patent Citations (1)
Title |
---|
韩晓阳: "光纤入侵探测系统的可靠性研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107633222A (zh) * | 2017-09-14 | 2018-01-26 | 浙江亨特科技有限公司 | 一种具有自适应学习功能的光纤振动传感方法及系统 |
CN108416953A (zh) * | 2018-03-09 | 2018-08-17 | 北京环境特性研究所 | 一种智能光纤周界报警系统 |
CN108416953B (zh) * | 2018-03-09 | 2020-04-21 | 北京环境特性研究所 | 一种智能光纤周界报警系统 |
CN109470352A (zh) * | 2018-10-19 | 2019-03-15 | 威海北洋光电信息技术股份公司 | 基于自适应阈值的分布式光纤管道安全监测算法 |
CN109470352B (zh) * | 2018-10-19 | 2021-03-16 | 威海北洋光电信息技术股份公司 | 基于自适应阈值的分布式光纤管道安全监测算法 |
CN114268365A (zh) * | 2021-12-02 | 2022-04-01 | 国网甘肃省电力公司酒泉供电公司 | 一种基于可视化技术的通信光缆智能预警方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105575024B (zh) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105469523A (zh) | 抗风雨干扰的光纤周界防护方法 | |
CN101930649B (zh) | 光纤围栏报警系统在恶劣天气条件下防止误报的方法 | |
CN108509850B (zh) | 一种基于分布式光纤系统的入侵信号识别方法 | |
CN103236127A (zh) | 一种光纤围栏入侵监测系统及其模式识别方法 | |
CN105261136B (zh) | 一种光纤监测报警系统中屏蔽天气干扰的方法及装置 | |
CN105575024A (zh) | 抗干扰的光纤周界防护系统及方法 | |
AU2008234405B2 (en) | Method and apparatus for monitoring a structure | |
CN112907869B (zh) | 基于多种传感技术的入侵检测系统 | |
CN105931402A (zh) | 基于图像识别的光纤周界入侵监测方法 | |
CN102708643B (zh) | 一种入侵检测方法及系统 | |
CN106652285A (zh) | 分布式多防区振动光纤周界报警系统以及周界监测方法 | |
CN103116957B (zh) | 一种光纤周界安防系统屏蔽气候影响的方法 | |
CN106600869A (zh) | 一种用于光纤围栏安防系统的围栏入侵识别方法 | |
CN106781152A (zh) | 一种光纤光栅围栏入侵报警检测系统及方法 | |
CN104021638A (zh) | 一种高速公路沿线电缆预警防盗的方法及装置 | |
CN206610396U (zh) | 一种光纤光栅围栏入侵报警检测系统 | |
CN103544793A (zh) | 一种智能化复合围栏系统 | |
CN102663032A (zh) | 一种光纤光栅围栏入侵事件模式识别方法 | |
CN109064696A (zh) | 基于深度学习实现的光纤周界安防系统 | |
CN116826958A (zh) | 一种数字化输电通道智能安全巡检方法 | |
CN114964330A (zh) | 基于光纤传感及多参数融合的故障监测系统及其监测方法 | |
CN112560673A (zh) | 一种基于图像识别的雷声检测方法及系统 | |
CN105374141A (zh) | 雷达、震动、打击物联网电子墙及其方法 | |
CN108765814A (zh) | 基于光纤传感的边境线周界防入侵报警系统及方法 | |
CN110481600A (zh) | 无人自主综合报警系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |