CN105479836A - 一种光驱动可控变形的复合材料及其制备方法 - Google Patents
一种光驱动可控变形的复合材料及其制备方法 Download PDFInfo
- Publication number
- CN105479836A CN105479836A CN201610002754.XA CN201610002754A CN105479836A CN 105479836 A CN105479836 A CN 105479836A CN 201610002754 A CN201610002754 A CN 201610002754A CN 105479836 A CN105479836 A CN 105479836A
- Authority
- CN
- China
- Prior art keywords
- composite
- paraffin
- cnt
- light
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/005—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
- B32B9/007—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/02—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/08—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B43/00—Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
- B32B43/003—Cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B9/045—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
Landscapes
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Laminated Bodies (AREA)
Abstract
本发明属于敏感材料技术领域,具体为一种光驱动可控变形的复合材料及其制备方法。本发明的复合材料的组成结构为:聚酰亚胺薄膜为基底,上层为取向碳纳米管和石蜡组成的具有各向异性的复合层,基底和复合层之间紧密接触。该复合材料可实现光致和热致驱动的响应。本发明通过控制取向碳纳米管的取向方向,能够实现向光、背光及三维变形等多种变形形式。进一步优化取向碳纳米管和石蜡的含量,可实现快速的、大变形量的变形。这种光致变形材料为其他智能响应材料提供了新的思路。
Description
技术领域
本发明属于敏感材料技术领域,具体涉及一种光驱动可控变形的复合材料及其制备方法。
背景技术
智能敏感材料近年来得到了蓬勃的发展,通过感知环境中的光、电、热和湿度等因素,产生智能的形状变化或颜色变化等行为,这一类智能敏感材料也是未来功能性材料发展的主流方向。其中,光响应产生机械运动的智能材料具有远程控制,易操控等优点,是其中一类重要的材料。近年来已经发展出一系列具有光致变形能力的材料,如偶氮苯等。但是这些材料的响应变形往往较慢,变形形式单一,且需要通过高强度的紫外光照来实现,而这在实际应用中造成诸多不便。因此,制备出能够实现可见光快速响应,多种变形模式的智能材料,显得尤为重要。
自然界中的许多植物,通过控制其微观结构的各向异性的膨胀收缩,也具有刺激相应的行为。如松果在干态下呈现打开的状态,湿态下呈现关闭的形状,就是因为其微观结构的各向异性膨胀收缩导致。而各向异性的膨胀收缩是通过植物微纤维来调控,本发明通过运用取向碳纳米管纤维,来模拟植物中的微纤结构,控制石蜡和聚酰亚胺各向异性的膨胀,实现多种变形模式的快速光响应材料,为其他智能敏感材料的制备和运用提供了新的思路。
发明内容
本发明的目的在于提供一种具有光驱动可控变形的复合材料及其制备方法。
本发明提供的具有可见光驱动可控变形的复合材料,是一种能够实现不同变形方向的光驱动材料。其结构组成如下:热膨胀系数小的聚酰亚胺薄膜为基底,上层为取向碳纳米管和热膨胀系数大的石蜡组成的具有各向异性的复合层,基底和复合层之间紧密接触。
本发明提供的可见光驱动可控变形的复合材料的制备方法,具体步骤为:
(1)把聚酰亚胺薄膜固定于表面干净的玻璃板上,将石蜡加热融化后,旋涂在聚酰亚胺表面,冷却得到表面有石蜡层的聚酰亚胺薄膜;
(2)将取向碳纳米管薄膜从碳纳米管阵列中拉出,均匀的铺在石蜡层的表面,再加热至60-100℃,使石蜡完全融化,进入碳纳米管之间的缝隙;待逐渐冷却后,去掉玻璃板,得到碳纳米管/石蜡/聚酰亚胺复合薄膜;参见图1;
(3)将步骤(2)得到复合薄膜沿着不同取向剪成具有不同取向的长条形薄片,得到具有光致或热致变形的复合材料。
本发明中,当碳纳米管的取向方向为长条形薄片的长度方向时,可见光照射复合薄片,会产生向碳纳米管/石蜡复合层方向的弯曲;当碳纳米管的取向方向为长条形薄片的宽度方向时,可见光照射复合薄片,会产生向聚酰亚胺层的方向弯曲。
本发明制备得到的光驱动复合膜具有优异性能,见图2、图3和图4所示。图2中,a为制备得到的15cm*15cm的复合薄膜。b、c显示该复合薄膜由于取向碳纳米管的作用,具有很好的各向异性。e显示该复合膜具有典型的双片层结构,石蜡与碳纳米管和聚酰亚胺具有很好的相亲性,因此两层结构连接紧密,f显示石蜡能够很均匀的填充在碳纳米管之前的缝隙中。
图3中,a显示,当碳纳米管的取向方向为长条形薄片的长度方向时,可见光照射复合薄片时产生向碳纳米管/石蜡复合层方向的弯曲。当碳纳米管的取向方向为长条形薄片的宽度方向时,可见光照射复合薄片时产生向聚酰亚胺层的方向弯曲。b、c显示,该复合薄膜的具有快速的光响应性能,能够在约1秒的时间内分别实现两个方向的弯曲变形。
图4中,a显示该复合薄膜弯曲幅度能够分别达到~85°和~60°。b显示该光驱动复合薄膜在不同光照强度下的变形能力。当光强逐渐增加时,该材料的变形程度也逐渐增加,体现出了良好的光驱动的可控性。当光强大于120mW/cm2时,弯曲的程度达到极限,进一步增加光强,弯曲程度不再增加。该光驱动复合薄膜具有很好的可逆性和循环性能。碳纳米管的引入能够有效的提高复合材料的驱动性能和稳定性。两种不同方向弯曲的复合薄膜都能够在重复变形100000次,并且没有明显的衰减(c)。
附图说明
图1为本发明光驱动可控变形的复合材料的制备流程。
图2为复合薄膜基本结构表征。其中,a,复合薄膜光学照片。b,碳纳米管/石蜡复合层荧光显微镜照片,石蜡被罗丹明123荧光分子标记。c,小角X射线衍射光谱,体现出碳纳米管具有高度的取向性,并且诱导石蜡取向结晶。复合薄膜截面低倍(d)和高倍(e)扫描电镜照片。f,复合薄膜的激光共聚焦显微镜照片,石蜡被罗丹明123荧光分子标记。
图3为复合薄膜光致变形的示意图及光学照片。其中,a,不同取向复合薄片制备示意图。b,碳纳米管取向沿薄片宽度方向复合薄片背光弯曲光学照片。c,碳纳米管取向沿薄片长度方向复合薄片向光弯曲光学照片。其中b,c的光照均从碳纳米管/石蜡复合层方向照射,光照强度为100mW/cm2。
图4为两种不同光致变形材料的驱动性能表征。其中,a,两种不同碳纳米管取向薄膜弯曲角度随时间变化曲线。b,两种不同碳纳米管取向薄膜的最大弯曲量随光照强度的变化关系。c,两种不同碳纳米管取向薄膜及不含碳纳米管薄膜的弯曲幅度随弯曲次数的变化关系。
具体实施方式
第一,石蜡/聚酰亚胺复合薄膜的制备
把聚酰亚胺薄膜固定于表面平整的玻璃板上,加热至250℃并保持2小时,冷却至室温,使聚酰亚胺薄膜保持各向同性。之后将石蜡粉末撒在聚酰亚胺薄膜表面,加热至60-100℃,并趁热转移至旋涂仪上旋涂,通过旋涂转速控制在300-3000转/分钟时,石蜡层面密度可以控制在0.3-1.5mg/cm2,冷却至室温后,制备得到石蜡/聚酰亚胺薄膜。
第二,取向碳纳米管/石蜡/聚酰亚胺薄膜的制备
把取向碳纳米管薄膜从取向碳纳米管阵列中拉出,铺于石蜡/聚酰亚胺薄膜表层,厚度为100-400nm。再将其加热至60-100℃,使石蜡融化,均匀进入取向碳纳米管之间的缝隙,逐渐冷却至室温后,将复合薄膜沿不同方向剪裁,得到不同取向的碳纳米管/石蜡/聚酰亚胺复合薄膜。当碳纳米管的取向方向沿长方形薄片的长度方向时,该复合薄膜在可见光的照射下,会向着碳纳米管/石蜡复合层的方向弯曲变形。当碳纳米管的取向方向沿长方形的宽度方向是,该复合薄膜在可见光的照射下,会向着聚酰亚胺薄膜的方向弯曲变形。
Claims (3)
1.一种可见光驱动可控变形的复合材料,其特征在于结构组成如下:热膨胀系数小的聚酰亚胺薄膜为基底,上层为取向碳纳米管和热膨胀系数大的石蜡组成的具有各向异性的复合层,基底和复合层之间紧密接触。
2.根据权利要求1所述的可见光驱动可控变形的复合材料,其特征在于:当碳纳米管的取向方向为长条形薄片的长度方向时,可见光照射复合薄片,产生向碳纳米管/石蜡复合层方向的弯曲;当碳纳米管的取向方向为长条形薄片的宽度方向时,可见光照射复合薄片,产生向聚酰亚胺层的方向弯曲。
3.一种可见光驱动可控变形的复合材料的制备方法,其特征在于具体步骤为:
(1)把聚酰亚胺薄膜固定于表面干净的玻璃板上,将石蜡加热融化后,旋涂在聚酰亚胺表面,冷却得到表面有石蜡层的聚酰亚胺薄膜;
(2)将取向碳纳米管薄膜从碳纳米管阵列中拉出,均匀的铺在步骤(1)得到的石蜡层的表面,再加热至60-100℃,石蜡完全融化,进入碳纳米管之间的缝隙;待逐渐冷却后,去掉玻璃板,得到碳纳米管/石蜡/聚酰亚胺复合薄膜;
(3)将步骤(2)得到复合薄膜沿着不同取向剪成具有不同取向的长条形薄片,得到具有光致或热致变形的复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610002754.XA CN105479836A (zh) | 2016-01-06 | 2016-01-06 | 一种光驱动可控变形的复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610002754.XA CN105479836A (zh) | 2016-01-06 | 2016-01-06 | 一种光驱动可控变形的复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105479836A true CN105479836A (zh) | 2016-04-13 |
Family
ID=55667263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610002754.XA Pending CN105479836A (zh) | 2016-01-06 | 2016-01-06 | 一种光驱动可控变形的复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105479836A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106810719A (zh) * | 2017-02-24 | 2017-06-09 | 中国科学院化学研究所 | 一种热功能复合材料及其制备方法和应用 |
CN107541068A (zh) * | 2017-09-30 | 2018-01-05 | 合肥工业大学 | 一种智能驱动复合材料、制备方法及用途 |
CN106192452B (zh) * | 2016-07-15 | 2018-08-03 | 东华大学 | 一种光致变形布料的制备方法 |
CN108493161A (zh) * | 2018-04-16 | 2018-09-04 | 上海集成电路研发中心有限公司 | 半导体结构及其形成方法 |
CN110207868A (zh) * | 2019-06-19 | 2019-09-06 | 安徽理工大学 | 一种基于微悬臂阵列传感技术的微纳光控致动器的制备及检测方法 |
CN112736186A (zh) * | 2020-12-29 | 2021-04-30 | 合肥工业大学 | 一种适用于柔性机械爪的基于vo2的双层柔性驱动器、制备方法、应用 |
CN117369117A (zh) * | 2023-11-24 | 2024-01-09 | 西湖大学光电研究院 | 一种微镜阵列器件及驱动方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468904B1 (fr) * | 1990-07-26 | 1994-11-23 | Le Carbone Lorraine | Procédé de fabrication de pièces étanches en matériau composite tout carbone |
CN103909715A (zh) * | 2014-03-28 | 2014-07-09 | 复旦大学 | 溶剂诱导可逆定向变形共轭高分子和碳纳米管复合薄膜制备方法 |
-
2016
- 2016-01-06 CN CN201610002754.XA patent/CN105479836A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468904B1 (fr) * | 1990-07-26 | 1994-11-23 | Le Carbone Lorraine | Procédé de fabrication de pièces étanches en matériau composite tout carbone |
CN103909715A (zh) * | 2014-03-28 | 2014-07-09 | 复旦大学 | 溶剂诱导可逆定向变形共轭高分子和碳纳米管复合薄膜制备方法 |
Non-Patent Citations (1)
Title |
---|
JUE DENG ET.AL: "Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106192452B (zh) * | 2016-07-15 | 2018-08-03 | 东华大学 | 一种光致变形布料的制备方法 |
CN106810719A (zh) * | 2017-02-24 | 2017-06-09 | 中国科学院化学研究所 | 一种热功能复合材料及其制备方法和应用 |
CN106810719B (zh) * | 2017-02-24 | 2019-07-16 | 中国科学院化学研究所 | 一种热功能复合材料及其制备方法和应用 |
CN107541068A (zh) * | 2017-09-30 | 2018-01-05 | 合肥工业大学 | 一种智能驱动复合材料、制备方法及用途 |
CN108493161A (zh) * | 2018-04-16 | 2018-09-04 | 上海集成电路研发中心有限公司 | 半导体结构及其形成方法 |
WO2019200809A1 (zh) * | 2018-04-16 | 2019-10-24 | 上海集成电路研发中心有限公司 | 半导体结构及其形成方法 |
CN110207868A (zh) * | 2019-06-19 | 2019-09-06 | 安徽理工大学 | 一种基于微悬臂阵列传感技术的微纳光控致动器的制备及检测方法 |
CN112736186A (zh) * | 2020-12-29 | 2021-04-30 | 合肥工业大学 | 一种适用于柔性机械爪的基于vo2的双层柔性驱动器、制备方法、应用 |
CN112736186B (zh) * | 2020-12-29 | 2022-09-02 | 合肥工业大学 | 一种适用于柔性机械爪的基于vo2的双层柔性驱动器、制备方法、应用 |
CN117369117A (zh) * | 2023-11-24 | 2024-01-09 | 西湖大学光电研究院 | 一种微镜阵列器件及驱动方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105479836A (zh) | 一种光驱动可控变形的复合材料及其制备方法 | |
Han et al. | Carbon‐based photothermal actuators | |
Cui et al. | Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites | |
Yu et al. | Photonic-structure colored radiative coolers for daytime subambient cooling | |
CN102615885B (zh) | 可逆光致变形液晶高分子和碳纳米管复合薄膜的制备方法 | |
Chen et al. | A bamboo/PNIPAM composite hydrogel assembly for both programmable and remotely-controlled light-responsive biomimetic actuations | |
Zhang et al. | Boosting the photothermal conversion efficiency of MXene film by porous wood for light-driven soft actuators | |
Liu et al. | Superhydrophobic VO2 nanoparticle/PDMS composite films as thermochromic, anti-icing, and self-cleaning coatings | |
Chen et al. | Multistimuli‐Responsive Insect‐Scale Soft Robotics Based on Anisotropic Super‐Aligned VO2 Nanowire/Carbon Nanotube Bimorph Actuators | |
Weng et al. | Programmable and self-healing light-driven actuators through synergetic use of water-shaping and-welding methods | |
Weng et al. | Multi-responsive soft paper-based actuators with programmable shape-deformations | |
Zhong et al. | Hierarchical cellulose aerogel reinforced with in situ-assembled cellulose nanofibers for building cooling | |
Wang et al. | Photothermal‐Responsive Crosslinked Liquid Crystal Polymers | |
Wang et al. | Multicoating nanoarchitectonics for facile preparation of multi-responsive paper actuators | |
CN113061274B (zh) | 一种多形形状记忆驱动的多重结构色转变的智能光学膜及其制备方法和应用 | |
CN102621805A (zh) | 基于液气平衡的聚合物纳米通道自构建机理制备微纳米通道的方法 | |
EP3507487B1 (de) | Aktuatoreinrichtung für eine windenergieanlage, windenergieanlage und montageverfahren | |
CN101958163A (zh) | 导电板的制作方法 | |
TWI416545B (zh) | 導電板的製作方法及其製備系統 | |
TWI468336B (zh) | 導電元件之製備裝置及製備方法 | |
Chen et al. | Biobased Inks Based on Cuttlefish Ink and Cellulose Nanofibers for Biodegradable Patterned Soft Actuators | |
Peng et al. | Dynamically Tunable Thermochromic Smart Windows for Building Energy Conservation | |
CN114317005A (zh) | 一种光子晶体材料在制备光驱动或温度驱动器件中的应用 | |
Huang et al. | Nanofiber-based flexible actuator with high transparency and large-scale deformation for biomimetic and intelligent control | |
CN109942864B (zh) | 一种智能材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160413 |
|
WD01 | Invention patent application deemed withdrawn after publication |