CN105310712A - Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine - Google Patents
Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine Download PDFInfo
- Publication number
- CN105310712A CN105310712A CN201410257648.7A CN201410257648A CN105310712A CN 105310712 A CN105310712 A CN 105310712A CN 201410257648 A CN201410257648 A CN 201410257648A CN 105310712 A CN105310712 A CN 105310712A
- Authority
- CN
- China
- Prior art keywords
- image
- single photon
- patient
- computer tomography
- uptake value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000009206 nuclear medicine Methods 0.000 title abstract description 18
- 238000003384 imaging method Methods 0.000 title description 23
- 238000002591 computed tomography Methods 0.000 claims abstract description 51
- 238000012937 correction Methods 0.000 claims description 38
- 239000011159 matrix material Substances 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 21
- 230000005855 radiation Effects 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 11
- 239000000523 sample Substances 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000000155 isotopic effect Effects 0.000 claims description 6
- 210000000577 adipose tissue Anatomy 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 208000031229 Cardiomyopathies Diseases 0.000 claims 2
- 238000013016 damping Methods 0.000 claims 2
- 230000010354 integration Effects 0.000 claims 2
- 230000037396 body weight Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 238000002603 single-photon emission computed tomography Methods 0.000 abstract description 75
- 238000011002 quantification Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 9
- 230000035515 penetration Effects 0.000 description 6
- 229920013655 poly(bisphenol-A sulfone) Polymers 0.000 description 6
- 239000003814 drug Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- GYHNNYVSQQEPJS-OIOBTWANSA-N Gallium-67 Chemical compound [67Ga] GYHNNYVSQQEPJS-OIOBTWANSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- YCKRFDGAMUMZLT-BJUDXGSMSA-N fluorine-18 atom Chemical compound [18F] YCKRFDGAMUMZLT-BJUDXGSMSA-N 0.000 description 1
- 229940006110 gallium-67 Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
Landscapes
- Nuclear Medicine (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种影像测量方法及系统的设计,特别是关于一种核医单光子影像测量肿瘤标准摄取值的方法及系统。 The present invention relates to an image measurement method and system design, in particular to a method and system for nuclear medicine single-photon image measurement of tumor standard uptake values.
背景技术 Background technique
目前在临床上,为了量测肿瘤对于药物的标准摄取值(standardizeduptakevalue,SUV),首先需要先建立如通过正子造影(positronemissiontomography,PET)或是正子造影/计算机断层摄影(PET/ComputedTomography,PET/CT)所得到的同等属性的影像。然而PET或PET/CT虽然可以准确量测肿瘤标准摄取值,但受限于造影药物的普及度和检查经费负担过高等问题,PET和PET/CT无法在各层级医院广泛使用。 At present, in clinical practice, in order to measure the standardized uptake value (SUV) of tumors for drugs, it is first necessary to establish the ) obtained images with the same attributes. However, although PET or PET/CT can accurately measure the standard uptake value of tumors, they cannot be widely used in hospitals at all levels due to problems such as the popularity of contrast drugs and the high burden of examination funds.
SPECT以及SPECT/CT的影像模式相较于PET以及PET/CT具有经济平价的优点,可广泛地应用于各层级医院中,但传统SPECT及SPECT/CT造影由于物理干扰和空间分辨率低等问题,诊断上经常遭遇到图像伪影(artifacts)及准确度不够的困扰,而无法被用于量化肿瘤标准摄取值,因此局限了SPECT以及SPECT/CT作为诊断肿瘤疾病的一种经济型的临床工具。鉴于以上所述,实需要一经济型的量化成像系统,以用于实现肿瘤标准摄取值的量化。 Compared with PET and PET/CT, the imaging modes of SPECT and SPECT/CT have the advantages of economical parity, and can be widely used in hospitals at all levels. However, traditional SPECT and SPECT/CT angiography have problems such as physical interference and low spatial resolution. , diagnosis often encounters image artifacts and insufficient accuracy, and cannot be used to quantify tumor standard uptake values, thus limiting SPECT and SPECT/CT as an economical clinical tool for diagnosing tumor diseases . In view of the above, there is a real need for an economical quantitative imaging system for the quantification of tumor standard uptake values.
发明内容 Contents of the invention
缘此,本发明的目的即是提供一种核医单光子影像测量肿瘤标准摄取值的方法及系统,以改善现有技术的问题,达到经济与准确量测的效果。 Therefore, the object of the present invention is to provide a method and system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine, so as to improve the problems of the prior art and achieve economical and accurate measurement.
本发明为解决现有技术的问题所采用的技术手段为一种核医单光子影像测量肿瘤标准摄取值的方法,利用单光子放射计算机断层摄影或利用单光子放射计算机断层摄影/计算机断层摄影以进行影像测量肿瘤标准摄取值,方法包含:一摄影步骤,通过单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影以拍摄一患者的一影像;一散射校正步骤,通过得自一光峰能窗的原始投影减去散射分量而校正影像的散射分量;一衰减校正步骤,通过转换计算机断层摄影影像以及放射性核素影像而计算经散射校正的影像的每个放射影像像素的衰减数;一影像分辨率恢复步骤,通过自一点源移动测量建立一点扩散函数矩阵并将点扩散函数矩阵予以迭代整合重建而重新恢复分辨率;一噪声去除步骤,将经影像重建的影像经由一分析噪声滤波器以及一卜瓦松(Poisson)仿真器予以迭代整合重建,以去除影像中的噪声;以及一摄取值计算步骤,根据一浓度影像射线关系,计算出经去除噪声的影像的一感兴趣区所对应的同位素浓度,并根据患者的体重以及施加于患者的一同位素的剂量,计算出患者的肿瘤标准摄取值。 The technical means adopted by the present invention to solve the problems of the prior art is a method for measuring the standard uptake value of tumors by single-photon imaging in nuclear medicine, using single-photon emission computed tomography or single-photon emission computed tomography/computed tomography Carrying out image measurement of tumor standard uptake value, the method includes: a photographing step, by single-photon emission computed tomography or single-photon emission computed tomography/computed tomography to take an image of a patient; a scatter correction step, by obtaining an image from a correcting the scatter component of the image by subtracting the scatter component from the raw projection of the photopeak energy window; an attenuation correction step calculating the attenuation number per radiographic pixel of the scatter-corrected image by converting the computed tomography image and the radionuclide image ; an image resolution restoration step, by establishing a point spread function matrix from a point source movement measurement and then iteratively integrating and reconstructing the point spread function matrix to restore the resolution; a noise removal step, passing the reconstructed image through an analysis noise The filter and a Poisson simulator are iteratively integrated and reconstructed to remove the noise in the image; and an uptake value calculation step is to calculate an ROI of the noise-removed image according to a density image-ray relationship The corresponding isotope concentration, and according to the patient's weight and the dose of the isotope applied to the patient, the patient's tumor standard uptake value is calculated.
在本发明的一实施例中,在散射校正步骤中,更根据一放射线探头的转动时间与同位素的半衰期校正影像的同位素衰减。 In an embodiment of the present invention, in the scatter correction step, the isotope attenuation of the image is further corrected according to the rotation time of a radiation probe and the half-life of the isotope.
在本发明的一实施例中,在衰减校正步骤中,使用得自计算机断层摄影或放射性核素穿透影像的衰减数计算影像的每个放射影像像素的衰减数而创建一个衰减矩阵,以及于一迭代重建中整合衰减矩阵以校正衰减。 In an embodiment of the invention, in the attenuation correction step, an attenuation matrix is created by calculating attenuation numbers for each radiographic pixel of the image using attenuation numbers from computed tomography or radionuclide penetration images, and in The attenuation matrix is integrated in an iterative reconstruction to correct for attenuation.
在本发明的一实施例中,在影像分辨率恢复步骤中,通过建立深度依赖性的点扩散函数矩阵以测量一准直仪(collimator)的特性。 In an embodiment of the present invention, in the image resolution restoration step, the characteristics of a collimator are measured by establishing a depth-dependent PSF matrix.
在本发明的一实施例中,更包括一患者移动校正步骤,包含校正扫描中的患者移动(Intra-scanpatientmotion)及校正扫描之间的患者移动(Inter-scanpatientmotion),其中校正扫描中的患者移动包含针对放射线探头的角度以迭代投影方式量测患者移动的位移量,校正扫描之间的患者移动包含通过手动重新对准计算机断层摄影影像与放射性核素影像。 In one embodiment of the present invention, it further includes a patient motion correction step, including correcting intra-scan patient motion (Intra-scan patient motion) and correcting inter-scan patient motion (Inter-scan patient motion), wherein correcting scan patient motion Involves measuring the displacement of patient movement in iterative projections against the angle of the radiation probe, correcting for patient movement between scans involves manually realigning computed tomography and radionuclide images.
在本发明的一实施例中,在摄取值计算步骤中,更根据患者的全身质量、体脂肪率、及/或全身表面积而正规化肿瘤标准摄取值。 In an embodiment of the present invention, in the step of calculating the uptake value, the tumor standard uptake value is further normalized according to the patient's whole body mass, body fat percentage, and/or whole body surface area.
在本发明的一实施例中,在摄取值计算步骤中,浓度影像射线关系根据注入于一假体的同位素的浓度、通过单光子放射计算机断层摄影所拍摄假体的影像、以及注入有同位素的假体的放射线强度计算而得。 In one embodiment of the present invention, in the uptake value calculation step, the concentration image ray relationship is based on the concentration of the isotope injected into a phantom, the image of the phantom taken by single photon emission computed tomography, and the isotope injected The radiation intensity of the prosthesis was calculated.
在本发明的一实施例中,在摄取值计算步骤中,其中假体为一对称性假体。 In an embodiment of the present invention, in the step of calculating the uptake value, the prosthesis is a symmetrical prosthesis.
本发明为解决现有技术的问题所采用的另一技术手段为一种利用单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的核医单光子影像测量肿瘤标准摄取值的系统,包含一单光子放射计算机断层摄影/计算机断层摄影设备、一计算机、及一程序产品。单光子放射计算机断层摄影/计算机断层摄影设备用于拍摄一单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的影像。计算机具有一处理单元。程序产品包括一计算机可读取程序代码,经由计算机的处理单元加载而执行下列步骤:接收单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的影像;校正影像的散射;校正影像的衰减;恢复影像的空间分辨率;去除影像的影像噪声;以及计算影像所对应的一肿瘤标准摄取值。 Another technical means adopted by the present invention to solve the problems of the prior art is a system for measuring the standard uptake value of tumors using single-photon emission computed tomography or single-photon emission computed tomography/computer tomography nuclear medicine single-photon images , comprising a single photon emission computed tomography/computed tomography device, a computer, and a program product. The single photon emission computed tomography/computed tomography device is used for taking a single photon emission computed tomography or single photon emission computed tomography/computed tomography image. The computer has a processing unit. The program product includes a computer-readable program code loaded by a processing unit of a computer to perform the following steps: receiving a single photon emission computed tomography or single photon emission computed tomography/computed tomography image; correcting the scattering of the image; correcting the image attenuation; restore the spatial resolution of the image; remove the image noise of the image; and calculate a tumor standard uptake value corresponding to the image.
经由本发明所采用的技术手段,通过解决了SPECT以及SPECT/CT的物理干扰和空间分辨率低等问题,避免肿瘤疾病诊断上的图像伪影及准确度低所可能造成的误判问题,而作为量化肿瘤标准摄取值的一种经济型的临床工具,达到经济与准确量测的效果。 Through the technical means adopted in the present invention, by solving the problems of physical interference and low spatial resolution of SPECT and SPECT/CT, avoiding image artifacts and misjudgment problems caused by low accuracy in the diagnosis of tumor diseases, and As an economical clinical tool to quantify the standard uptake value of tumors, it achieves the effect of economical and accurate measurement.
附图说明 Description of drawings
本发明所采用的具体实施例,将通过以下的实施例及附呈图式作进一步的说明。 The specific embodiments adopted by the present invention will be further described through the following embodiments and attached drawings.
图1系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的方法的流程图。 FIG. 1 is a flow chart showing a method for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention.
图2系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统的设备图。 FIG. 2 is an equipment diagram showing a system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention.
图3系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统的方块图。 FIG. 3 is a block diagram showing a system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention.
图4A系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统自右前斜方至左后斜方拍摄患者影像的示意图。 FIG. 4A is a schematic diagram showing a system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention, taking images of patients from the right front oblique to the left rear oblique.
图4B系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统自前方至后方拍摄患者影像的示意图。 4B is a schematic diagram showing a system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention, taking images of patients from front to back.
图4C系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统自左前斜方至右后斜方拍摄患者影像的示意图。 4C is a schematic diagram showing a system for measuring standard uptake values of tumors with single-photon imaging in nuclear medicine according to an embodiment of the present invention, taking images of patients from the left front oblique to the right rear oblique.
图4D系显示依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统自后方至前方拍摄患者影像的示意图。 FIG. 4D is a schematic diagram showing a system for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine according to an embodiment of the present invention, taking images of patients from the rear to the front.
图5A系显示依据本发明的一实施例的患者移动校正步骤的流程图。 FIG. 5A is a flowchart showing steps of patient motion correction according to an embodiment of the present invention.
图5B系显示依据本发明的一实施例的患者影像于分辨率恢复前的示意图。 FIG. 5B is a schematic diagram showing a patient image before resolution restoration according to an embodiment of the present invention.
图5C系显示依据本发明的一实施例的患者影像于分辨率恢复后的示意图。 FIG. 5C is a schematic diagram showing a patient image after resolution restoration according to an embodiment of the present invention.
图6A至6C系显示依据本发明的患者影像于SPECT与CT对位前的示意图。 6A to 6C are schematic diagrams showing patient images before SPECT and CT alignment according to the present invention.
图7A至7C系显示依据本发明的患者影像于SPECT与CT对位后的示意图。 7A to 7C are schematic diagrams showing the alignment of SPECT and CT images of patients according to the present invention.
图8系显示依据本发明的一实施例的患者影像的衰减矩阵的示意图。 FIG. 8 is a schematic diagram showing an attenuation matrix of a patient image according to an embodiment of the present invention.
图9A系显示依据本发明的一实施例的患者影像于无校正时的示意图。 FIG. 9A is a schematic diagram showing a patient image without correction according to an embodiment of the present invention.
图9B至9F系显示依据本发明的一实施例的患者影像于各项校正时的示意图。 9B to 9F are schematic diagrams showing various corrections of patient images according to an embodiment of the present invention.
图10A至10C系显示依据本发明的患者的CT、SPECT、SPECT/CT影像于肿瘤治疗前的示意图。 10A to 10C are schematic diagrams showing CT, SPECT, and SPECT/CT images of patients before tumor treatment according to the present invention.
图11A至11C系显示依据本发明的患者的CT、SPECT、SPECT/CT影像于肿瘤治疗后的示意图。 11A to 11C are schematic diagrams showing CT, SPECT, and SPECT/CT images of patients after tumor treatment according to the present invention.
其中: in:
100核医单光子影像测量肿瘤标准摄取值的系统 100 nuclear medicine single-photon imaging system for measuring tumor standard uptake values
1单光子放射计算机断层摄影/计算机断层摄影设备 1 Single Photon Emission Computed Tomography/Computed Tomography Equipment
10放射线探头 10 radiation probes
12放射线探头 12 radiation probes
14计算机断层摄影摄影机 14 Computed tomography cameras
16成像台 16 imaging table
18机架 18 racks
2计算机 2 computers
3程序产品 3 program products
30计算模块 30 computing modules
31影像接收模块 31 image receiving module
32散射校正模块 32 scatter correction modules
33衰减校正模块 33 attenuation correction module
34分辨率恢复模块 34 resolution recovery module
35噪声去除模块 35 noise removal modules
36患者移动校正模块 36 Patient Movement Correction Modules
a、b、c、d、e、f、g参考点 a, b, c, d, e, f, g reference points
M1衰减矩阵 M1 decay matrix
P1处理单元 P1 processing unit
U患者 Patient U
具体实施方式 detailed description
本发明提供一量化单光子放射计算机断层摄影(SPECT)重建系统,以SPECT或单光子放射计算机断层摄影/计算机断层摄影(SPECT/CT)的动态成像而进行肿瘤标准摄取值的量化。请参阅图2及图3所示,依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的系统100,系利用单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的影像测量肿瘤标准摄取值,系统100包含一单光子放射计算机断层摄影/计算机断层摄影设备1、一计算机2、及一程序产品3(加载于计算机2)。 The present invention provides a quantitative single-photon emission computed tomography (SPECT) reconstruction system, which quantifies tumor standard uptake values by means of SPECT or single-photon emission computed tomography/computed tomography (SPECT/CT) dynamic imaging. Please refer to FIG. 2 and FIG. 3 . According to an embodiment of the present invention, a system 100 for measuring standard uptake values of tumors by single-photon imaging in nuclear medicine uses single-photon emission computed tomography or single-photon emission computed tomography/computed tomography. The photographed image is used to measure the standard uptake value of the tumor. The system 100 includes a single photon emission computed tomography/computed tomography device 1, a computer 2, and a program product 3 (loaded on the computer 2).
程序产品3可包括计算机可读取程序代码,经计算机2加载而执行一些处理步骤。计算机2可包括但不限定于任何类型的计算机,其包括桌面计算机、笔记本电脑、及智能型装置,例如,平板计算机及智能型手机。程序产品2可包括软件,其可加载于计算机2或通过计算机2所存取。经加载的软件可包括加载于计算机2硬盘的程序,或是智能型装置的一应用程序。在一些实施例中,可通过计算机2而使用一网页浏览器存取该软件。计算机2可利用因特网、外部网络、内部网络、主机服务器(hostserver)、及网络云端(internetcloud)等而存取该软件。本发明于医疗环境中可转换为医学成像的计算机软件,而对患者进行SPECT或SPECT/CT的研究。 The program product 3 may include computer-readable program codes loaded by the computer 2 to execute some processing steps. The computer 2 may include, but is not limited to, any type of computer, including desktop computers, notebook computers, and smart devices, such as tablet computers and smart phones. The program product 2 may comprise software, which may be loaded on or accessed by the computer 2 . The loaded software may include a program loaded on the hard disk of the computer 2, or an application program of the smart device. In some embodiments, the software can be accessed through computer 2 using a web browser. The computer 2 can use the Internet, external network, internal network, host server (hostserver), and network cloud (internetcloud) to access the software. The invention can be converted into computer software for medical imaging in a medical environment, so as to conduct SPECT or SPECT/CT research on patients.
单光子放射计算机断层摄影/计算机断层摄影设备1用于对于一示例性患者U(配合图4A至图4B)拍摄一单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的影像。为了拍摄该影像,示例性患者U可被置于单光子放射计算机断层摄影/计算机断层摄影设备1的一成像台(imagingtable)16上。单光子放射计算机断层摄影/计算机断层摄影设备1可具有一放射线探头10、12。一计算机断层摄影摄影机14可被放置于机架18内。机架18可包括一柱状扫描仪组件,以拍摄该影像。 The single photon emission computed tomography/computed tomography apparatus 1 is used for taking a single photon emission computed tomography or single photon emission computed tomography/computed tomography image for an exemplary patient U (cooperating with FIGS. 4A-4B ). In order to take the image, the exemplary patient U may be placed on an imaging table 16 of the single photon emission computed tomography/computed tomography apparatus 1 . The single-photon emission computed tomography/computed tomography system 1 can have a radiation probe 10 , 12 . A computed tomography camera 14 may be placed within the gantry 18 . Rack 18 may include a cylindrical scanner assembly to capture the image.
计算机2具有一处理单元P1。程序产品3包括一计算机可读取程序代码,经由计算机2的处理单元P1加载而执行下列步骤:接收单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影的影像;校正影像的散射;校正影像的衰减;恢复影像的空间分辨率;去除影像的影像噪声;以及计算影像所对应的一肿瘤标准摄取值。如图3所示,在本实施例中,程序产品3可包括一影像接收模块31、一散射校正模块32、一衰减校正模块33、一分辨率恢复模块34、一噪声去除模块35、一患者移动校正模块36、及一计算模块30,分别依序执行上述步骤。 The computer 2 has a processing unit P1. The program product 3 includes a computer-readable program code loaded by the processing unit P1 of the computer 2 to perform the following steps: receiving single photon emission computed tomography or single photon emission computed tomography/computed tomography images; correcting the scattering of the images ; correcting the attenuation of the image; restoring the spatial resolution of the image; removing the image noise of the image; and calculating a tumor standard uptake value corresponding to the image. As shown in Figure 3, in this embodiment, the program product 3 may include an image receiving module 31, a scatter correction module 32, an attenuation correction module 33, a resolution restoration module 34, a noise removal module 35, a patient The movement correction module 36 and a calculation module 30 respectively execute the above steps in sequence.
请参阅图1所示,依据本发明的一实施例的核医单光子影像测量肿瘤标准摄取值的方法,系为利用单光子放射计算机断层摄影或利用单光子放射计算机断层摄影/计算机断层摄影以进行影像测量肿瘤标准摄取值,核医单光子影像测量肿瘤标准摄取值的方法包含一摄影步骤(步骤S1)、一散射校正步骤(步骤S2)、一衰减校正步骤(步骤S3)、一影像分辨率恢复步骤(步骤S4)、一噪声去除步骤(步骤S5)、及一摄取值计算步骤(步骤S6)。以下并配合图2所示的核医单光子影像测量肿瘤标准摄取值的系统100,对于本发明的核医单光子影像测量肿瘤标准摄取值的方法详细说明如下: Please refer to FIG. 1 , the method for measuring the standard uptake value of a tumor by nuclear medicine single-photon imaging according to an embodiment of the present invention is to use single-photon emission computed tomography or single-photon emission computed tomography/computed tomography Carrying out imaging measurement of tumor standard uptake value, the method for measuring tumor standard uptake value by single-photon imaging in nuclear medicine includes a photography step (step S1), a scattering correction step (step S2), an attenuation correction step (step S3), an image resolution step A rate restoration step (step S4), a noise removal step (step S5), and an uptake value calculation step (step S6). In conjunction with the system 100 for measuring standard uptake values of tumors by nuclear medicine single-photon imaging shown in FIG.
首先,摄影步骤(步骤S1),通过单光子放射计算机断层摄影或单光子放射计算机断层摄影/计算机断层摄影以拍摄患者U的影像。影像的撷取系为通过放射线探头10、12以180度或360度绕行于注射同位素后的患者U而取得的一影像数据形式。在每一轮旋转中,影像数据系通过动态框架(frame)及角度的两个指标而表示。同位素可为鎝-99m、碘-131、碘-123、镓-67、氟-18等药物,但不限于此。如图4A至图4D所示,放射线探头10、12可从一右前斜方至左前后方(图4A)、前方至后方(图4B)、左前斜方和右后斜方(图4C)、后方至前方(图4D)的旋转方向拍摄该患者U的影像,或是相反于该旋转方向的方向拍摄患者U影像。本发明可包括以一标准的医疗数字影像传输协议(digitalimagingandcommunicationsinmedicine,DICOM)格式或以机器专属格式拍摄以及接收影像数据,以用于后续的图像处理。该些影像可为自SPECT或SPECT/CT所拍摄的影像,以及得自SPECT/CT或CT的DICOM格式CT影像,或得自SPECT的机器专属格式或DICOM格式的放射性核素影像的数据。 Firstly, in the imaging step (step S1 ), an image of the patient U is captured by single-photon emission computed tomography or single-photon emission computed tomography/computed tomography. The image capture is a form of image data obtained by the radiation probes 10 and 12 going around the patient U after the isotope injection by 180 degrees or 360 degrees. In each round of rotation, the image data is represented by two indexes of dynamic frame (frame) and angle. The isotope can be drugs such as 鎝-99m, iodine-131, iodine-123, gallium-67, fluorine-18, but not limited thereto. As shown in Figures 4A to 4D, the radiation probes 10 and 12 can be moved from a right front oblique to left front and rear (Figure 4A), front to rear (Figure 4B), left front oblique and right rear oblique (Figure 4C), rear The patient U is imaged in a rotational direction to the front (FIG. 4D), or in a direction opposite to the rotational direction. The present invention may include capturing and receiving image data in a standard digital imaging and communications in medicine (DICOM) format or in a machine-specific format for subsequent image processing. The images may be images taken from SPECT or SPECT/CT, and CT images in DICOM format from SPECT/CT or CT, or data from radionuclide images in machine specific format or DICOM format from SPECT.
然后,散射校正步骤(步骤S2),通过得自一光峰能窗的原始投影减去散射分量而校正影像的散射分量(步骤S21)。该散射校正可通过重新调整得自例如康普顿散射(Comptonscatter)能窗的原始投影的计数,以及减去得自一光峰能窗的原始投影(量测投影)中的散射分量而予以计算。除此之外,在较佳的实施例中,在散射校正步骤中(步骤S2),更根据放射线探头10、12的转动时间与同位素的半衰期校正影像的同位素衰减(步骤S22)。在某些实施例中,可对影像执行同位素衰变校正。通过重新调整对应于SPECT撷取中的框架及角度的原始投影中的计数,而可执行SPECT的原始投影的同位素衰变校正。当SPECT机架18环绕于患者U时,该重新调整因素可通过具备定义于对应时间点的角度及框架的时间因素的一指数衰变模块(exponentialdecaymodel)而予以计算。 Then, in the scatter correction step (step S2 ), the scatter component of the image is corrected by subtracting the scatter component from the original projection obtained from an optical peak energy window (step S21 ). The scatter correction can be calculated by rescaling counts from raw projections from, for example, Compton scatter windows, and subtracting the scatter component from raw projections from a photopeak window (measurement projections) . Besides, in a preferred embodiment, in the scatter correction step (step S2), the isotope attenuation of the image is corrected according to the rotation time of the radiation probes 10, 12 and the half-life of the isotope (step S22). In some embodiments, isotopic decay correction may be performed on the imagery. Isotopic decay correction of raw projections for SPECT can be performed by rescaling the counts in the raw projections corresponding to the frame and angle in the SPECT acquisition. As the SPECT gantry 18 surrounds the patient U, the readjustment factor can be calculated by an exponential decay model with a time factor defined for the angle and frame at the corresponding point in time.
其后,衰减校正步骤(步骤S3),通过转换计算机断层摄影影像以及放射性核素影像而计算经散射校正(步骤S2)的影像的每个放射影像像素的衰减数。详细来说,在本实施例中,系使用得自计算机断层摄影或放射性核素穿透影像的衰减数计算影像的每个放射影像像素的衰减数而创建一个衰减矩阵M1,以及于一迭代重建中整合衰减矩阵M1以校正衰减。衰减可通过使用得自计算机断层摄影或140千电子伏特(keV)或对应于其他SPECT同位素的特定能量的放射性核素穿透影像的衰减系数(attenuationcoefficients)而予以校正。计算机断层影像或放射性核素穿透影像可被转换为衰减矩阵M1,衰减矩阵M1会记录对应于以五个标志(x、y、z、角度、框架)所标记的一影像中的每个像素的光子衰减的幅度。衰减校正前通过SPECT/CT与CT进行影像对位,提高衰减校正的准确性,SPECT/CT与CT影像对位后(图7A至7B)相较于SPECT/CT与CT影像对位前(图6A至6B)具有正确的影像的位置数据。 Thereafter, the attenuation correction step (step S3 ) calculates the attenuation number of each radiographic image pixel of the scatter-corrected (step S2 ) image by converting the computed tomography image and the radionuclide image. Specifically, in this embodiment, an attenuation matrix M1 is created by calculating the attenuation number of each radiographic pixel of the image using the attenuation number obtained from computed tomography or radionuclide penetration images, and in an iterative reconstruction Integrate the attenuation matrix M1 to correct for attenuation. Attenuation can be corrected by using attenuation coefficients from computed tomography or radionuclide penetration images at 140 kiloelectron volts (keV) or specific energies corresponding to other SPECT isotopes. Computed tomography or radionuclide penetration images can be converted into an attenuation matrix M1 that records the values corresponding to each pixel in an image labeled with five labels (x, y, z, angle, frame) The magnitude of photon attenuation. Image alignment between SPECT/CT and CT was performed before attenuation correction to improve the accuracy of attenuation correction. After image alignment between SPECT/CT and CT (Fig. 6A to 6B) have correct image location data.
然后,影像分辨率恢复步骤(步骤S4),通过自一点源移动测量建立一点扩散函数矩阵并将点扩散函数矩阵(pointspreadfunction,PSF)予以迭代整合重建而重新恢复影像的分辨率。详细而言,在本实施例中,系通过自一点源移动测量建立一点扩散函数矩阵并将点扩散函数矩阵予以迭代整合重建而重新恢复影像的分辨率。藉此,而可更进一步通过建立深度依赖性的点扩散函数矩阵以测量单光子放射计算机断层摄影/计算机断层摄影设备1的一准直仪(图未示)的特性。对于具有一特定类型准直仪的一SPECT扫描仪类型可测量出一组PSF。PSF可通过解析函数(analyticfunctions)而建模,进而对于具有至该准直仪表面已知距离的每个影像像素(通过六个标记(x、y、z、距离、角度、框架)所标示)产生一组完整的PSF。该PSF然后可被应用于迭代重建中的前投射步骤之前的该放射影像。除此之外,上述衰减矩阵M1也可被应用于迭代重建中的前投射步骤之前的放射影像。 Then, the image resolution restoration step (step S4 ) restores the resolution of the image by establishing a point spread function matrix from a point source movement measurement and iteratively integrating and reconstructing the point spread function matrix (point spread function, PSF). Specifically, in this embodiment, the resolution of the image is restored by establishing a point spread function matrix from a point source movement measurement and iteratively integrating and reconstructing the point spread function matrix. In this way, the characteristics of a collimator (not shown in the figure) of the single photon emission computed tomography/computed tomography apparatus 1 can be further measured by establishing a depth-dependent point spread function matrix. A set of PSFs can be measured for a SPECT scanner type with a particular type of collimator. The PSF can be modeled by analytical functions such that for each image pixel with a known distance to the collimator surface (labeled by six labels (x, y, z, distance, angle, frame)) Generate a complete set of PSFs. The PSF can then be applied to the radiographic image prior to the front projection step in iterative reconstruction. Besides, the aforementioned attenuation matrix M1 can also be applied to the radiological images before the front projection step in the iterative reconstruction.
为了避免患者U移动的干扰,较佳地,更包括一患者移动校正步骤(步骤S15),包含校正扫描中的患者U移动(Intra-scanpatientmotion)及校正扫描之间的患者U移动(Inter-scanpatientmotion),系通过一患者移动校正模块36而予以执行,配合参阅图5A所示,其中校正扫描中的患者U移动包含针对放射线探头10、12的角度以迭代投影方式量测患者U移动的位移量,校正扫描之间的患者U移动包含通过手动重新对准计算机断层摄影影像与放射性核素影像。其中,校正扫描中的患者U移动(Intra-scanpatientmotion)必须要在散射校正步骤(步骤S2)前执行,而校正扫描之间的患者U移动(Inter-scanpatientmotion)只要在衰减校正步骤(步骤S3)前执行即可。 In order to avoid the interference of the patient U movement, preferably, a patient movement correction step (step S15) is further included, including correcting the patient U movement (Intra-scanpatientmotion) in the scan and correcting the patient U movement (Inter-scanpatientmotion) between scans. ), which is implemented by a patient movement correction module 36, as shown in FIG. 5A , where correcting the patient U movement in the scan includes measuring the displacement of the patient U movement in an iterative projection manner for the angles of the radiation probes 10 and 12 , correcting for patient U movement between scans involves manually realigning the computed tomography and radionuclide images. Among them, the patient U movement (Intra-scanpatientmotion) in the correction scan must be performed before the scatter correction step (step S2), and the patient U movement between correction scans (Inter-scanpatientmotion) only needs to be performed in the attenuation correction step (step S3) Execute before.
扫描中的患者移动(Intra-scanpatientmotion)系为发生在动态SPECT扫描期间的一种患者移动型态,该扫描中的患者U的移动可能会造成伪影。每个动态框架的经量测的投影中的扫描中的患者U的移动系个别地被评估以进行校正。在一些实施例中,该校正可通过针对角度及框架迭代地位移经量测的投影而予以执行。针对角度及框架的垂直及水平方向的位移,可通过最大化在垂直及水平方向两者之间的个别互相关性而比较具有前投射投影的经量测的该投影而定义。直到每个投影皆达到稳定的最大互相关性,相同的过程可针对多个角度及框架迭代地执行。 Intra-scan patient motion is a type of patient motion that occurs during a dynamic SPECT scan, and the movement of the patient U in the scan may cause artifacts. The movement of the patient U in the scan in the measured projections of each dynamic frame is evaluated individually for correction. In some embodiments, this correction may be performed by iteratively displacing the measured projections for angle and frame. The vertical and horizontal displacements for angle and frame can be defined by comparing the measured projections with the front projection projections by maximizing the individual cross-correlations between both vertical and horizontal directions. The same process can be performed iteratively for multiple angles and frames until each projection reaches a stable maximum cross-correlation.
扫描之间的患者移动(Inter-scanpatientmotion)系为在动态SPECT扫描及CT或放射性核素穿透扫描之间所引起的一种患者移动的型态,扫描之间的患者移动可造成衰减校正伪影。SPECT及CT间,或SPECT及穿透影像之间的扫描之间的患者移动,可通过手动重新对准x、y、z方向和σ、δ、θ角度个别地校正。SPECT/CT与CT影像对位后(图7A至7B)相较于SPECT/CT与CT影像对位前(图6A至6B)具有正确的影像的位置数据。 Inter-scan patient motion is a type of patient motion caused between dynamic SPECT scans and CT or radionuclide penetration scans. Patient motion between scans can cause attenuation correction artifacts. film. Patient motion between scans between SPECT and CT, or between SPECT and through-images, can be individually corrected by manually realigning the x, y, z directions and σ, δ, θ angles. After the alignment of the SPECT/CT and CT images ( FIGS. 7A to 7B ) has correct image position data compared to before the alignment of the SPECT/CT and CT images ( FIGS. 6A to 6B ).
经由影像分辨率恢复步骤(步骤S4)后,图4A至图4B的各参考点a、b、c、d、e、f、g的影像分辨率于恢复后(图5C)相较于恢复前(图5B)具有明显的改善。 After the image resolution restoration step (step S4), the image resolutions of the reference points a, b, c, d, e, f, and g in Fig. 4A to Fig. 4B are compared with those before restoration (Fig. 5C) (FIG. 5B) There was a clear improvement.
随后,噪声去除步骤(步骤S5),将经影像重建(步骤S4)的影像经由一分析噪声滤波器以及一卜瓦松(Poisson)仿真器予以迭代整合重建,以去除影像中的噪声。影像的噪声可通过应用一可控制的分析滤波器至前投射的投影数据,而产生被量测的投影数据的均化噪声分布而予以去除,该经量测的投影数据的均化噪声分布也可通过等效分析滤波器(equivalentanalyticfilter)而在迭代重建中比较两个数据组的步骤中而予以过滤。作为一替代性的实施例,前投射的投影中的噪声可通过Poisson分布(Poissondistribution)的随机过程模拟,以在迭代重建比较两个数据组的步骤中产生经量测的投影数据的均化噪声分布。 Subsequently, the noise removal step (step S5 ) is to iteratively integrate and reconstruct the image reconstructed (step S4 ) through an analysis noise filter and a Poisson simulator to remove noise in the image. Image noise can be removed by applying a controllable analysis filter to the front-projected projection data, resulting in an averaged noise distribution of the measured projection data that is also Filtering can be done during the step of comparing the two data sets in the iterative reconstruction by means of an equivalent analytical filter. As an alternative embodiment, the noise in the projections of the front projection can be simulated by a stochastic process of Poisson distribution to generate an averaged noise of the measured projection data during the iterative reconstruction step comparing the two data sets distributed.
最后,摄取值计算步骤(步骤S6),根据一浓度影像射线关系,计算出经去除噪声(步骤S5)的影像的一感兴趣区所对应的同位素浓度,并根据患者U的体重以及施加于患者U的同位素的剂量,计算出患者U的肿瘤标准摄取值。其中,为了对于人体的放射性穿透性进行校正,在本实施例中,浓度影像射线关系根据注入于一假体的同位素的浓度、通过单光子放射计算机断层摄影所拍摄假体的影像、以及注入有同位素的假体的放射线强度计算而得。为了方便测量,较佳地,假体为一对称性假体。然而,由于生物的特异性,在本实施例中,更根据患者U的全身质量、体脂肪率、及全身表面积而正规化肿瘤标准摄取值。再其他的实施例中,也可以只根据患者U的全身质量、体脂肪率、全身表面积的其中之一或其中之二而正规化肿瘤标准摄取值。当然,本发明不限于此,也可以根据患者U的其他生理参数而正规化肿瘤标准摄取值,例如,利用患者U的骨质疏松度正规化骨肿瘤的肿瘤标准摄取值。 Finally, the uptake value calculation step (step S6) is to calculate the isotope concentration corresponding to a region of interest in the image after noise removal (step S5) according to the ray relationship of a concentration image, and calculate the isotope concentration corresponding to a region of interest of the image after denoising (step S5), and according to the weight of the patient U and the The dose of the isotope of U is used to calculate the standard uptake value of the patient U's tumor. Among them, in order to correct the radioactive penetration of the human body, in this embodiment, the concentration image ray relationship is based on the concentration of the isotope injected into a prosthesis, the image of the prosthesis taken by single photon emission computed tomography, and the injected The radiation intensity of the prosthesis with isotope is calculated. For the convenience of measurement, preferably, the prosthesis is a symmetrical prosthesis. However, due to biological specificity, in this embodiment, the tumor standard uptake value is normalized according to the patient U's body mass, body fat percentage, and body surface area. In still other embodiments, the tumor standard uptake value can also be normalized only according to one or both of the patient U's whole body mass, body fat percentage, and whole body surface area. Of course, the present invention is not limited thereto, and the tumor standard uptake value can also be normalized according to other physiological parameters of the patient U, for example, the tumor standard uptake value of the bone tumor can be normalized by using the osteoporosis degree of the patient U.
图9A至9F系分别表示患者U的未经校正的影像(图9A)、经噪声去除的影像(图9B)、经噪声去除、患者移动校正的影像(图9C)、经噪声去除、患者移动校正、衰减校正的影像(图9D)、经噪声去除、患者移动校正、衰减校正、散射校正的影像(图9E)、经噪声去除、患者移动校正、衰减校正、散射校正、影像重建的影像(图9F)。由图9A至9F的对比可明显观察以及定义出肿瘤位置与影像射线强度。 Figures 9A to 9F show, respectively, an uncorrected image (Figure 9A), a noise-removed image (Figure 9B), a noise-removed, patient-motion-corrected image (Figure 9C), a noise-removed, patient-motion image of patient U, respectively. Corrected, attenuation-corrected image (Fig. 9D), noise-removed, patient-motion-corrected, attenuation-corrected, scatter-corrected image (Fig. 9E), noise-removed, patient-motion-corrected, attenuation-corrected, scatter-corrected, image-reconstructed image ( Figure 9F). From the comparison of Figures 9A to 9F, the tumor location and image radiation intensity can be clearly observed and defined.
图10A至10C系显示依据本发明的患者的CT、SPECT、SPECT/CT影像于肿瘤治疗前的示意图。图11A至11C系显示依据本发明的患者的CT、SPECT、SPECT/CT影像于肿瘤治疗后的示意图。可证明相较于现有技术,经由本发明的技术手段,肿瘤于治疗前后的差异由肉眼可更明显观察出。 10A to 10C are schematic diagrams showing CT, SPECT, and SPECT/CT images of patients before tumor treatment according to the present invention. 11A to 11C are schematic diagrams showing CT, SPECT, and SPECT/CT images of patients after tumor treatment according to the present invention. It can be proved that compared with the prior art, the difference of the tumor before and after treatment can be more clearly observed by the naked eye through the technical means of the present invention.
上述计算机基础数据处理系统与方法仅用于例示的目的,并且可实施成任何计算机系统、编程、或处理环境的形态,或是单独或结合硬件的一计算机程序。本发明也可实施成储存于一计算机可读取媒体上的软件,并作为一般用途或是特殊用途计算机的一计算机程序而执行。为简明起见,本文仅描述该些与本发明密切相关的系统的态样,并省略于本领域中众所周知的产品细节。基于相同原因,亦不对该计算机硬件进一步详细说明。因此,应当理解的是,本发明并不限于任何特定的计算机语言、程序、或计算机。可进一步预期的是,本发明可运作于一独立的计算机系统、或者可在一计算机服务器系统运作,该计算机服务器系统能由多个客户端计算机系统透过一内部网络互联而存取、或可透过因特网而由客户端存取。此外,本发明的许多实施例适用于广泛范围的产业中。本发明揭示一系统、该系统所实施的方法、以及储存于计算机可读取媒体上并作为一计算机程序而于一般用途或特定用途的计算机执行该方法的软件,皆于本发明的范围内。更进一步,于本发明揭示一方法、一经设置而实施该方法的装置系统,彼等均包含在本发明范围内。 The computer-based data processing system and method described above are for illustrative purposes only, and can be implemented in the form of any computer system, programming, or processing environment, or a computer program alone or in combination with hardware. The present invention can also be implemented as software stored on a computer readable medium and executed as a computer program for a general purpose or special purpose computer. For the sake of brevity, this article only describes the aspects of these systems closely related to the present invention, and details of products well known in the art are omitted. For the same reason, the computer hardware will not be further described in detail. Therefore, it should be understood that the present invention is not limited to any particular computer language, program, or computer. It is further contemplated that the present invention may operate on a stand-alone computer system, or on a computer server system that can be accessed by multiple client computer systems interconnected by an internal network, or on a Accessed by clients over the Internet. Furthermore, the many embodiments of the present invention are applicable in a wide range of industries. The present invention discloses a system, a method implemented by the system, and software stored on a computer-readable medium and used as a computer program to execute the method on a general-purpose or special-purpose computer, all within the scope of the present invention. Furthermore, the present invention discloses a method and a device system configured to implement the method, and they are all included in the scope of the present invention.
以上的叙述仅为本发明的较佳实施例说明,凡精于此项技艺者当可依据上述的说明而作其它种种的改良,然而这些改变仍属于本发明的发明精神及所界定的专利范围中。 The above narration is only a description of the preferred embodiment of the present invention, and those who are proficient in this art can make other various improvements according to the above description, but these changes still belong to the spirit of the present invention and the defined patent scope middle.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410257648.7A CN105310712A (en) | 2014-06-11 | 2014-06-11 | Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410257648.7A CN105310712A (en) | 2014-06-11 | 2014-06-11 | Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105310712A true CN105310712A (en) | 2016-02-10 |
Family
ID=55239718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410257648.7A Pending CN105310712A (en) | 2014-06-11 | 2014-06-11 | Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105310712A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105816197A (en) * | 2016-05-25 | 2016-08-03 | 刘丽 | SPECT dopamine development quantitative analysis technique and application thereof in brain dopamine assessment |
CN110599472A (en) * | 2019-09-03 | 2019-12-20 | 佛山原子医疗设备有限公司 | Method and system for calculating SUV normalization coefficient in SPECT quantitative tomographic image |
CN111882499A (en) * | 2020-07-15 | 2020-11-03 | 上海联影医疗科技有限公司 | PET image noise reduction method and device and computer equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101884545A (en) * | 2009-05-13 | 2010-11-17 | 株式会社东芝 | Nuclear medical imaging apparatus, image processing apparatus and image processing method |
JP2013044615A (en) * | 2011-08-23 | 2013-03-04 | Toshiba Corp | Medical image diagnostic device, image information display device and control program |
CN103099634A (en) * | 2011-10-14 | 2013-05-15 | 美国西门子医疗解决公司 | Method and apparatus for correcting medical imaging data |
WO2013077963A1 (en) * | 2011-11-23 | 2013-05-30 | General Electric Company | Systems and methods for communicating dose calibration information |
-
2014
- 2014-06-11 CN CN201410257648.7A patent/CN105310712A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101884545A (en) * | 2009-05-13 | 2010-11-17 | 株式会社东芝 | Nuclear medical imaging apparatus, image processing apparatus and image processing method |
JP2013044615A (en) * | 2011-08-23 | 2013-03-04 | Toshiba Corp | Medical image diagnostic device, image information display device and control program |
CN103099634A (en) * | 2011-10-14 | 2013-05-15 | 美国西门子医疗解决公司 | Method and apparatus for correcting medical imaging data |
WO2013077963A1 (en) * | 2011-11-23 | 2013-05-30 | General Electric Company | Systems and methods for communicating dose calibration information |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105816197A (en) * | 2016-05-25 | 2016-08-03 | 刘丽 | SPECT dopamine development quantitative analysis technique and application thereof in brain dopamine assessment |
CN110599472A (en) * | 2019-09-03 | 2019-12-20 | 佛山原子医疗设备有限公司 | Method and system for calculating SUV normalization coefficient in SPECT quantitative tomographic image |
CN111882499A (en) * | 2020-07-15 | 2020-11-03 | 上海联影医疗科技有限公司 | PET image noise reduction method and device and computer equipment |
CN111882499B (en) * | 2020-07-15 | 2024-04-16 | 上海联影医疗科技股份有限公司 | PET image noise reduction method and device and computer equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104161534B (en) | Dynamic single photon Emission Computed Tomography or Single Photon Emission computerized tomography/computerized tomography myocardial blood flow quantify system and method | |
JP7203852B2 (en) | Estimation of full-dose PET images from low-dose PET imaging using deep learning | |
Maier et al. | Real‐time scatter estimation for medical CT using the deep scatter estimation: method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation | |
US8421021B2 (en) | Motion correction of SPECT images | |
Buechel et al. | Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation | |
US7378660B2 (en) | Computer program, method, and system for hybrid CT attenuation correction | |
US10863946B2 (en) | Respiratory motion estimation in projection domain in nuclear medical imaging | |
CN105147312A (en) | PET image acquiring method and system | |
CN104306011B (en) | SPECT imaging tumors absorb quantitative analysis tech and the purposes in tumor evaluation | |
Park et al. | Metal artifact reduction in CT by identifying missing data hidden in metals | |
Valenta et al. | New reconstruction algorithm allows shortened acquisition time for myocardial perfusion SPECT | |
TWI547266B (en) | Method and system to quantify standardized uptake value in tumors with single photon emission computed tomography (spect) and spect/computed tomography (spect/ct) | |
CN105310712A (en) | Method and system for measuring tumor standard uptake value with single photon imaging in nuclear medicine | |
JP4997575B2 (en) | Attenuation coefficient map creation apparatus, attenuation coefficient map creation method and program | |
JP2019032211A (en) | Nuclear medicine diagnosis device | |
US20150356754A1 (en) | Method and apparatus for calibration of medical image data | |
Vaska et al. | Quantitative Imaging with the Micro‐pet Small‐Animal Pet Tomograph | |
CN110730977B (en) | Low dose imaging method and device | |
JP7511350B2 (en) | Attenuation distribution image creating device, image processing device, radiation tomography system, attenuation distribution image creating method, and image processing method | |
Us | Reduction of Limited Angle Artifacts in Medical Tomography via Image Reconstruction | |
TWI607739B (en) | The technique of quantitative analysis in dopamine spect imaging and its applications in evaluation of dopamine transporter activity | |
Lagopati | Quantification in Nuclear Medicine Imaging | |
JP2024098144A (en) | Attenuation map generation method and medical image processing apparatus | |
D'ambrosio et al. | Reconstruction of dynamic PET images using accurate system point spread function modeling: effects on parametric images | |
King et al. | Attenuation/scatter/resolution correction: Physics aspects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160823 Address after: Sao Zhen GUI Zhu Cun tower of 414202 cities in Hunan province Yueyang city Huarong County three Group No. 012 Applicant after: Liu Li Applicant after: Xu Bailing Address before: Taiwan Taitung County Chinese chishang Fuxing Village 8 o No. 113 Applicant before: Xu Bailing |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160210 |