Nothing Special   »   [go: up one dir, main page]

CN105304471A - 一种使用碳球在氮化镓内部制作孔隙层的方法 - Google Patents

一种使用碳球在氮化镓内部制作孔隙层的方法 Download PDF

Info

Publication number
CN105304471A
CN105304471A CN201510675151.1A CN201510675151A CN105304471A CN 105304471 A CN105304471 A CN 105304471A CN 201510675151 A CN201510675151 A CN 201510675151A CN 105304471 A CN105304471 A CN 105304471A
Authority
CN
China
Prior art keywords
gallium nitride
layer
substrate
sucrose
pore layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510675151.1A
Other languages
English (en)
Other versions
CN105304471B (zh
Inventor
王再恩
张嵩
齐成军
程红娟
徐永宽
陈建丽
兰飞飞
李宝珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 46 Research Institute
Original Assignee
CETC 46 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 46 Research Institute filed Critical CETC 46 Research Institute
Priority to CN201510675151.1A priority Critical patent/CN105304471B/zh
Publication of CN105304471A publication Critical patent/CN105304471A/zh
Application granted granted Critical
Publication of CN105304471B publication Critical patent/CN105304471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种使用碳球在氮化镓内部制作孔隙层的方法,使用MOCVD设备在蓝宝石衬底的表面外延一层5微米厚氮化镓外延层,然后将液态蔗糖均匀涂覆在氮化镓外延层上,经过900℃高温退火,将蔗糖层碳化,形成均匀碳球层,在随后的HVPE外延生长氮化镓过程中,碳球层部位会出现纳米级的均匀孔隙形成孔隙层,技术效果是此孔隙层可以有效降低相应部位氮化镓的结构强度,提高了氮化镓从衬底上断裂剥离的可能性,达到制备氮化镓单晶衬底的目的,制造工艺简单、实用。

Description

一种使用碳球在氮化镓内部制作孔隙层的方法
技术领域
本发明涉及在氮化镓内部制作孔隙层的方法,特别涉及一种使用碳球在氮化镓内部制作孔隙层的方法。
背景技术
氮化镓材料由于其特有的带隙宽度和优良的光电特性,在可见光波段发光二极管,高频、大功率电子器件,紫外探测器等光电子器件有着广泛的应用前景,因此也成为宽禁带半导体材料中极具吸引力的材料。然而,制约氮化物半导体的发展重要因素之一是衬底材料。通常氮化镓器件使用Si、Al2O3、SiC等异质衬底材料制造。这些衬底材料不同程度的存在着晶体结构失配,晶格常数失配,热膨胀系数失配等因素,造成了薄膜质量下降,进而严重影响着器件的性能,所以需要同质氮化镓单晶衬底。氮化镓单晶一般生长在其它的衬底上,要得到自支撑氮化镓单晶最重要的就是去除原衬底,目前去除原衬底最常用的技术是自剥离技术,自剥离技术的关键是在氮化镓内部制作孔隙层,孔隙层可以降低氮化镓的结构强度,在降温过程中使氮化镓单晶从衬底上断裂剥离。
发明内容
鉴于现有技术中氮化镓单晶从衬底剥离过程中出现的问题,本发明提供一种使用碳球在氮化镓内部制作孔隙层的方法,具体技术方案是,
本发明的技术效果是,碳球层部位会出现纳米级的均匀孔隙,有效降低相应部位氮化镓的结构强度,提高了氮化镓从衬底上断裂剥离的可能性,达到制备氮化镓单晶衬底的目的,工艺简单、易于操作。
附图说明
图1是本发明的工艺流程图。
具体实施方式
一种使用碳球在氮化镓内部制作孔隙层的方法,工艺步骤为,
a)选取2英寸单抛衬底的蓝宝石,用乙醇溶液将其表面清洗干净;
b)使用MOCVD设备在蓝宝石衬底表面外延一层氮化镓,得到MO-GaN衬底,厚度约5μm;
c)将蔗糖在加热炉内加热至200℃,使其达到融化状态;
d)将MO-GaN衬底放置到自制匀胶机上,将匀胶机托盘加热至230~300℃;
e)将融化状态的蔗糖滴至MO-GaN衬底上,设置转速为4000,旋转时间15秒,使蔗糖均匀涂覆在MO-GaN衬底上,厚度为2μm,随后自然降温至室温;
f)将涂覆蔗糖后的衬底放入高温退火炉,在高纯氮气保护下900℃退火10min,随后自然降温至室温,制得碳球层;
g)将覆有碳球层的MO-GaN衬底放入氮化镓HVPE生长炉中,在1020℃条件下,以500ml/min速度通入NH3、以20ml/min速度通入HCl,进行氮化镓外延层生长,层厚500μm,在氮化镓外延层底面的碳球层出现纳米级的均匀孔隙而形成了孔隙层。

Claims (1)

1.一种使用碳球在氮化镓内部制作孔隙层的方法,其特征在于:工艺步骤为,
a)选取2英寸单抛衬底的蓝宝石,用乙醇溶液将其表面清洗干净;
b)使用MOCVD设备在蓝宝石衬底表面外延一层氮化镓,得到MO-GaN衬底,厚度约5μm;
c)将蔗糖在加热炉内加热至200℃,使其达到融化状态;
d)将MO-GaN衬底放置到自制匀胶机上,将匀胶机托盘加热至230~300℃;
e)将融化状态的蔗糖滴至MO-GaN衬底上,设置转速为2000~4000,旋转时间10~15秒,使蔗糖均匀涂覆在MO-GaN衬底上,厚度为1~2μm,随后自然降温至室温;
f)将涂覆蔗糖后的衬底放入高温退火炉,在高纯氮气保护下900℃退火10min,随后自然降温至室温,制得碳球层;
g)将覆有碳球层的MO-GaN衬底放入氮化镓HVPE生长炉中,在1020℃条件下,以500ml/min速度通入NH3、以20ml/min速度通入HCl,进行氮化镓外延层生长,层厚500μm,在氮化镓外延层底面的碳球层出现纳米级的均匀孔隙而形成了孔隙层。
CN201510675151.1A 2015-10-19 2015-10-19 一种使用碳球在氮化镓内部制作孔隙层的方法 Active CN105304471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510675151.1A CN105304471B (zh) 2015-10-19 2015-10-19 一种使用碳球在氮化镓内部制作孔隙层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510675151.1A CN105304471B (zh) 2015-10-19 2015-10-19 一种使用碳球在氮化镓内部制作孔隙层的方法

Publications (2)

Publication Number Publication Date
CN105304471A true CN105304471A (zh) 2016-02-03
CN105304471B CN105304471B (zh) 2017-10-03

Family

ID=55201569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510675151.1A Active CN105304471B (zh) 2015-10-19 2015-10-19 一种使用碳球在氮化镓内部制作孔隙层的方法

Country Status (1)

Country Link
CN (1) CN105304471B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378237A (zh) * 2001-03-27 2002-11-06 日本电气株式会社 Ⅲ族氮化物制造的半导体衬底及其制造工艺
US20030006211A1 (en) * 2001-07-04 2003-01-09 Fuji Photo Film Co., Ltd. Substrate including wide low-defect region for use in semiconductor element
CN101060102A (zh) * 2006-04-21 2007-10-24 日立电线株式会社 氮化物半导体衬底、其制法及氮化物半导体发光器件用外延衬底
CN101488475A (zh) * 2009-02-20 2009-07-22 中国科学院上海微系统与信息技术研究所 一种厚膜氮化镓与衬底蓝宝石自剥离的实现方法
CN102828239A (zh) * 2012-08-24 2012-12-19 东莞市中镓半导体科技有限公司 一种通过缺陷应力去除技术自分离氮化镓单晶材料制备自支撑衬底的方法
CN103043646A (zh) * 2012-12-21 2013-04-17 浙江大学 一种小尺寸实心碳球的制备方法及制备得到的碳球
CN103114332A (zh) * 2011-11-17 2013-05-22 北京大学 一种通过表面改性自分离制备氮化镓单晶衬底的方法
CN103663450A (zh) * 2013-12-19 2014-03-26 中国科学院过程工程研究所 一种高比表面积碳微球及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378237A (zh) * 2001-03-27 2002-11-06 日本电气株式会社 Ⅲ族氮化物制造的半导体衬底及其制造工艺
US20030006211A1 (en) * 2001-07-04 2003-01-09 Fuji Photo Film Co., Ltd. Substrate including wide low-defect region for use in semiconductor element
CN101060102A (zh) * 2006-04-21 2007-10-24 日立电线株式会社 氮化物半导体衬底、其制法及氮化物半导体发光器件用外延衬底
CN101488475A (zh) * 2009-02-20 2009-07-22 中国科学院上海微系统与信息技术研究所 一种厚膜氮化镓与衬底蓝宝石自剥离的实现方法
CN103114332A (zh) * 2011-11-17 2013-05-22 北京大学 一种通过表面改性自分离制备氮化镓单晶衬底的方法
CN102828239A (zh) * 2012-08-24 2012-12-19 东莞市中镓半导体科技有限公司 一种通过缺陷应力去除技术自分离氮化镓单晶材料制备自支撑衬底的方法
CN103043646A (zh) * 2012-12-21 2013-04-17 浙江大学 一种小尺寸实心碳球的制备方法及制备得到的碳球
CN103663450A (zh) * 2013-12-19 2014-03-26 中国科学院过程工程研究所 一种高比表面积碳微球及其制备方法

Also Published As

Publication number Publication date
CN105304471B (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN102828239B (zh) 一种通过缺陷应力去除技术自分离氮化镓单晶材料制备自支撑衬底的方法
KR101878754B1 (ko) 대면적 갈륨 나이트라이드 기판 제조방법
CN103928583B (zh) 一种GaN单晶自支撑衬底的制备方法
CN103021946A (zh) 一种通过机械去除法制备氮化镓单晶衬底的方法
CN104733286B (zh) 包含嵌入的剥落释放平面的ⅲ族氮化物的受控剥落
JP6753703B2 (ja) 化合物半導体基板、ペリクル膜、および化合物半導体基板の製造方法
CN103779185A (zh) 一种生长GaN厚膜的自剥离方法
JP6450086B2 (ja) 化合物半導体基板の製造方法
TWI721107B (zh) 化合物半導體基板、膠片膜及化合物半導體基板之製造方法
EP2802002B1 (en) Method for the manufacturing of a substrate having a hetero-structure
JP2015018960A (ja) 半導体装置の製造方法
CN102286777B (zh) 氢化物气相外延生长GaN单晶用的H3PO4腐蚀籽晶及其制备方法
CN103956417A (zh) 制备非极性面或半极性面单晶半导体自支撑衬底的方法
TW201528541A (zh) 發光二極體之製造方法
CN105762063B (zh) 一种硅基氮化物外延生长的方法
CN103866380A (zh) 一种使用图形化退火多孔结构进行GaN单晶生长的方法
CN105304471A (zh) 一种使用碳球在氮化镓内部制作孔隙层的方法
JP2011093803A (ja) 窒化ガリウム系化合物半導体単結晶の製造方法
CN104060323A (zh) 通过制备N面锥形结构衬底获得自支撑GaN单晶的方法
CN105762061A (zh) 一种氮化物的外延生长方法
CN101429650A (zh) 一种原位制备自支撑氮化镓衬底的方法
CN104362080A (zh) Si衬底上选择性生长GaN基薄膜材料的方法
CN103943467A (zh) 利用应力梯度分离氮化物自支撑衬底的方法
CN106910807A (zh) 一种用于生长外延片的复合衬底及其制备方法
TW201443255A (zh) 製作氮化鎵之方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant