Nothing Special   »   [go: up one dir, main page]

CN105159094A - Design method of optimal control force of LQG controller of automobile active suspension bracket - Google Patents

Design method of optimal control force of LQG controller of automobile active suspension bracket Download PDF

Info

Publication number
CN105159094A
CN105159094A CN201510645787.1A CN201510645787A CN105159094A CN 105159094 A CN105159094 A CN 105159094A CN 201510645787 A CN201510645787 A CN 201510645787A CN 105159094 A CN105159094 A CN 105159094A
Authority
CN
China
Prior art keywords
msub
mtd
mrow
mtr
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510645787.1A
Other languages
Chinese (zh)
Other versions
CN105159094B (en
Inventor
周长城
于曰伟
赵雷雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201510645787.1A priority Critical patent/CN105159094B/en
Publication of CN105159094A publication Critical patent/CN105159094A/en
Application granted granted Critical
Publication of CN105159094B publication Critical patent/CN105159094B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Tires In General (AREA)

Abstract

The invention, which belongs to the technical field of the active suspension bracket, relates to a design method of an optimal control force of an LQG controller of an automobile active suspension bracket. On the basis of a one-quarter vehicle driving vibration model, a ride weighting coefficient optimization design simulink simulation model is constructed by using MATLAB/simulink; and optimization designing is carried out to obtain a ride weighting coefficient and an LQG optimal control force by using pavement unevenness displacement as input excitation, tyre dynamic displacement and suspension dynamic deflection as constraint conditions, and root-mean-square value minimization of vertical vibration acceleration of a vehicle body as a design target. According to examples and simulation verification, with the method, an accurate and reliable LQG optimal control force of the active suspension bracket can be obtained; and a reliable optimal control force design method can be provided for the design and control of the active suspension bracket system. Therefore, the design level and product quality of the active suspension bracket system can be improved; the vehicle riding comfort and driving safety are enhanced; and the product design and testing expenses can be reduced.

Description

Design method for optimal control force of LQG controller of automobile active suspension
Technical Field
The invention relates to an automobile active suspension, in particular to a design method of an optimal control force of an LQG controller of the automobile active suspension.
Background
The LQG control has strong applicability and is widely applied to active suspension systems, wherein the determination of the optimal control force is the key of the design of the LQG controller of the active suspension of the vehicle. However, according to the data consulted, the current design of the optimal control force of the LQG controller of the active suspension of the automobile at home and abroad is mostly based on the tendency of a designer to the performance of the suspension, the LQG control weighting coefficient is preliminarily determined according to experience, and then the weighting coefficient is gradually adjusted according to the response through a plurality of times of simulation until the satisfactory output response is obtained, so as to design the optimal control force of the LQG controller of the active suspension. Although the LQG control force obtained by the method can enable the vehicle to meet the requirements of the current running condition, the designed control force is not optimal. With the rapid development of the vehicle industry and the continuous improvement of the vehicle running speed, people put forward higher requirements on the vehicle running safety and the riding comfort, and the current method for designing the optimal control force of the LQG controller of the active suspension cannot meet the requirements of the vehicle development and the design of the controller of the active suspension. Therefore, an accurate and reliable design method for the optimal control force of the LQG controller of the automobile active suspension must be established, the requirements of vehicle development and active suspension controller design are met, the design level and the product quality of an automobile active suspension system are improved, and the riding comfort and the safety of the automobile are improved; meanwhile, the product design and test cost is reduced, and the product design period is shortened.
Disclosure of Invention
Aiming at the defects in the prior art, the invention aims to provide an accurate and reliable method for designing the optimal control force of the LQG controller of the active suspension of the automobile, wherein a design flow chart is shown in figure 1; 1/4A model diagram of vibration of vehicle running is shown in FIG. 2.
In order to solve the technical problem, the method for designing the optimal control force of the LQG controller of the automobile active suspension is characterized by comprising the following design steps of:
(1) 1/4 vehicle running vibration differential equation is established:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtControl force U of active suspension to be designeda(ii) a By vertical displacement z of the tyre1Vertical displacement z of the car body2Is a coordinate; taking the road surface unevenness displacement q as input excitation; 1/4, establishing a differential equation of the vehicle running vibration, namely:
<math> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(2) determining a state matrix A and a control matrix B of LQG control:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtVehicle speed v, and filtered white noise road surface spatial cut-off frequency n0cDetermining a state matrix A and a control matrix B controlled by the LQG, wherein the state matrix A and the control matrix B are respectively as follows:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&pi;vn</mi> <mrow> <mn>0</mn> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(3) determining a weighting matrix expression of LQG control:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtSuspension limit travel [ f ]d]And the acceleration of gravity g, determining a weighting coefficient alpha for the smoothness1、α2、α3State variable, controlled variable, and state variable and controlled variable cross product term weighting matrix expression Q (alpha)123)、R(α123)、N(α123) Respectively is as follows:
<math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>q</mi> <mn>3</mn> </msub> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
wherein, q3=1;α1as weighting factors for the relative dynamic loads of the wheels, alpha2Weighting coefficient of relative dynamic deflection of suspension, alpha3Weighting coefficients of the vertical vibration relative acceleration of the vehicle body;
(4) determining active suspension LQG control force UaExpression:
i, step: selecting an initial value of the ride-comfort weighting factor, i.e. alpha1=k1、α2=k2、α3=k3Wherein k is1,k2,k3Are all values greater than zero and less than 1, andk1+k2+k3=1.0;
II, step (2): according to the initial value alpha of the smoothness weighting coefficient selected in the step I1=k1、α2=k2、α3=k3And the weighting matrix expression Q (alpha) determined in step (3)123)、R(α123)、N(α123) And calculating to obtain a weighting matrix Q (k)1,k2,k3)、R(k1,k2,k3)、N(k1,k2,k3);
Step III: according to the state matrix A and the control matrix B determined in the step (2) and the weighting matrix Q (k) determined in the step II1,k2,k3)、R(k1,k2,k3)、N(k1,k2,k3) Calculating a control feedback gain matrix K of the active suspension LQG by using an LQR function in Matlab;
IV, step (2): according to the feedback gain matrix K determined in the step III, the vibration speed of the wheel is calculatedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the control force U of the active suspension LQG by taking the road surface displacement q as a state variableaThe expression, namely:
<math> <mrow> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>K</mi> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
wherein, <math> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </math> is a matrix <math> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> </math> The transposed matrix of (2);
(5) optimization design of the smoothness weighting coefficient:
firstly, constructing a ride comfort weighting coefficient optimization design simulation model
According to 1/4 vehicle running vibration differential equation established in step (1) and control force U obtained in step IV in step (4)aConstructing a smoothness weighting coefficient optimization design Simulink simulation model by using Matlab/Simulink simulation software;
establishing smoothness weighting coefficient optimization design objective function
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step I, and using the smoothness weighting coefficient alpha1、α2、α3Simulating the running vibration of the vehicle by taking the displacement of the road surface unevenness as input excitation for designing variables, and obtaining the mean square root value of the vertical vibration acceleration of the vehicle body by utilizing the simulationOptimal design objective function J for establishing smoothness weighting coefficiento123) Namely:
<math> <mrow> <msub> <mi>J</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&sigma;</mi> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> </msub> <mo>;</mo> </mrow> </math>
establishing smoothness weighting coefficient optimization design constraint condition
According to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Stiffness of the tire KtAcceleration of gravity g, and suspension limit travel fd]By vertical displacement z of the tyre1Vertical displacement z of the car body2The road surface irregularity displacement q, and the smoothness weighting coefficient alpha1、α2、α3Establishing ride comfort weighting factor optimization design constraints, i.e.
<math> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> </mrow> <mo>|</mo> </mrow> <mo>&le;</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>)</mo> <mi>g</mi> </mrow> <msub> <mi>K</mi> <mi>t</mi> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> </mrow> <mo>&le;</mo> <mo>&lsqb;</mo> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
Optimization design of smoothness weighting coefficient
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step (i), and optimally designing constraint conditions according to the smoothness weighting coefficient established in the step (iii) to obtain a smoothness weighting coefficient alpha1、α2、α3For design variables, the displacement of the road surface unevenness is taken as input excitation, and an optimization algorithm is utilized to solve the smoothness weighting coefficient established in the second step to optimize a design objective function Jo123) The corresponding design variable is the optimal optimized design value of the smoothness weighting coefficient, namely alpha1o、α2o、α3o
(6) Optimal control force U of active suspension LQG controlleraoThe design of (2):
i, step: obtaining a smoothness weighting coefficient alpha according to the optimization design in the step (5)1o、α2o、α3oAnd the weighting matrix expression Q (alpha) determined in step (3)123)、R(α123)、N(α123) And calculating to obtain a weighting matrix Q (alpha)1o2o3o)、R(α1o2o3o)、N(α1o2o3o);
ii, step: according to the state matrix A and the control matrix B determined in the step (2) and the weighting matrix Q (alpha) determined in the step i1o2o3o)、R(α1o2o3o)、N(α1o2o3o) Calculating to obtain the optimal control feedback gain matrix K of the active suspension LQG by using the LQR function in Matlabo
And iii, step (ii): according to the optimal feedback gain matrix K determined in the step iioAt the wheel vibration speedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the optimal control force U of the active suspension LQG controller by taking the road surface displacement q as a state variableaoNamely:
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>K</mi> <mi>o</mi> </msub> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
compared with the prior art, the invention has the advantages that:
the LQG control has strong applicability and is widely applied to active suspension systems, wherein the determination of the optimal control force is the key of the design of the LQG controller of the active suspension of the vehicle. However, according to the data consulted, the current design of the optimal control force of the LQG controller of the active suspension of the automobile at home and abroad is mostly based on the tendency of a designer to the performance of the suspension, the LQG control weighting coefficient is preliminarily determined according to experience, and then the weighting coefficient is gradually adjusted according to the response through a plurality of times of simulation until the satisfactory output response is obtained, so as to design the optimal control force of the LQG controller of the active suspension. Although the LQG control force obtained by the method can enable the vehicle to meet the requirements of the current running condition, the designed control force is not optimal. With the rapid development of the vehicle industry and the continuous improvement of the vehicle running speed, people put forward higher requirements on the vehicle running safety and the riding comfort, and the current method for designing the optimal control force of the LQG controller of the active suspension cannot meet the requirements of the vehicle development and the design of the controller of the active suspension.
According to 1/4 vehicle running vibration model and active suspension control force, MATLAB/Simulink is utilized to construct a smoothness weighting coefficient optimization design Simulink simulation model, the road surface unevenness displacement is used as input excitation, the tire dynamic displacement and the suspension dynamic deflection are used as constraint conditions, the minimum mean square root value of the vehicle body vertical vibration acceleration is used as a design target, the smoothness weighting coefficient is obtained through optimization design, and then the active suspension LQG optimal control force is obtained through design. According to the design example and simulation comparison verification, the method can obtain the accurate and reliable optimal control force value of the active suspension LQG, and provides a reliable design method for the design of the optimal control force value of the automobile active suspension LQG. By using the method, the design level and the product quality of the automobile active suspension system can be improved, and the riding comfort and the safety of the automobile are improved; meanwhile, the product design and test cost is reduced, and the product design period is shortened.
Drawings
For a better understanding of the invention, reference is made to the following further description taken in conjunction with the accompanying drawings.
FIG. 1 is a design flow chart of an optimal control force design method for an active suspension LQG controller of an automobile;
FIG. 2 is a model diagram of 1/4 vibration of vehicle;
FIG. 3 is a smoothness weighting factor optimization design Simulink simulation model of an embodiment;
FIG. 4 is a simulation comparison curve of a time domain signal of the vertical vibration acceleration of the vehicle body of the embodiment;
FIG. 5 is a simulated contrast curve of the power spectral density of the vertical vibration acceleration of the vehicle body of the embodiment.
Detailed description of the preferred embodiments
The present invention will be described in further detail below with reference to an example.
Unsprung mass m of single wheel of certain vehicle140kg, sprung mass m2320kg, suspension spring rate K220000N/m, tire stiffness Kt200000N/m, suspension limit travel [ fd]100mm, and the gravity acceleration g 9.8m/s2Spatial cut-off frequency n of filtering white noise road surface0c=0.011m-1The LQG control force of the active suspension to be designed is Ua. The vehicle running speed v required by the design of the vehicle active suspension is 72km/h, and the control force of the vehicle active suspension LQG controller is designed.
The design flow chart of the method for designing the optimal control force of the LQG controller of the active suspension of the automobile provided by the embodiment of the invention is shown in figure 1, the 1/4 vehicle running vibration model chart is shown in figure 2, and the specific steps are as follows:
(1) 1/4 vehicle running vibration differential equation is established:
according to unsprung mass m of a single wheel of the vehicle140kg, sprung mass m2320kg, suspension spring rate K220000N/m, tire stiffness Kt200000N/m, active suspension control force U to be designeda(ii) a By vertical displacement z of the tyre1Vertical displacement z of the car body2Is a coordinate; taking the road surface unevenness displacement q as input excitation; 1/4, establishing a differential equation of the vehicle running vibration, namely:
<math> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> <mo>+</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(2) determining a state matrix A and a control matrix B of LQG control:
according to unsprung mass m of a single wheel of the vehicle140kg, sprung mass m2320kg, suspension spring rate K220000N/m, tire stiffness Kt200000N/m, vehicle running speed v 72km/h, and spatial cut-off frequency N of filtered white noise road surface0c=0.011m-1Determining a state matrix A and a control matrix B controlled by the LQG, wherein the state matrix A and the control matrix B are respectively as follows:
A = 0 0 - 62.5 62.5 0 0 0 500 - 5500 5000 1 0 0 0 0 0 1 0 0 0 0 0 0 0 - 1.4 , B = 0.0031 - 0.025 0 0 0 ;
(3) determining a weighting matrix expression of LQG control:
according to unsprung mass m of a single wheel of the vehicle140kg, sprung mass m2320kg suspension spring steelDegree K220000N/m, tire stiffness Kt200000N/m, suspension limit travel [ fd]100mm and g 9.8m/s2Determining a weighting factor alpha for the smoothness1、α2、α3State variable, controlled variable, and state variable and controlled variable cross product term weighting matrix expression Q (alpha)123)、R(α123)、N(α123) Respectively is as follows:
<math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>3906.3</mn> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>3906.3</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>3906.3</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>3906.3</mn> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>q</mi> <mn>3</mn> </msub> <mn>102400</mn> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.195</mn> <msub> <mi>q</mi> <mn>3</mn> </msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
wherein, q3=1;α1as weighting factors for the relative dynamic loads of the wheels, alpha2Weighting coefficient of relative dynamic deflection of suspension, alpha3Weighting coefficients of the vertical vibration relative acceleration of the vehicle body;
(4) determining active suspension LQG control force UaExpression:
i, step: selecting an initial value of a smoothness weighting coefficient; this example selects k1=0.1,k2=0.2,k30.7, wherein k1+k2+k31.0, i.e. selecting the initial value alpha of the ride-comfort weighting factor1=0.1,α2=0.2,α3=0.7;
II, step (2): according to the initial value alpha of the smoothness weighting coefficient selected in the step I1=0.1、α2=0.2、α30.7, and the weighting matrix expression Q (α) determined in step (3)123)、R(α123)、N(α123) The weighting matrices Q (0.1,0.2,0.7), R (0.1,0.2,0.7), N (0.1,0.2,0.7) are calculated, i.e.:
Q ( 0.1 , 0.2 , 0.7 ) = 0 0 0 0 0 0 0 0 0 0 0 0 4211.1 - 4211.1 0 0 0 - 4211.1 48302.8 - 44091.7 0 0 0 - 44091.7 44091.7 ,
R(0.1,0.2,0.7)=9.766×10-6
N ( 0.1 , 0.2 , 0.7 ) = 0 0 - 0.195 0.195 0 ;
step III: calculating to obtain the active suspension by utilizing the LQR function in Matlab according to the state matrix A and the control matrix B determined in the step (2) and the weighting matrix Q (0.1,0.2,0.7), R (0.1,0.2,0.7) and N (0.1,0.2,0.7) determined in the step (II)
The control feedback gain matrix K of LQG is:
K=[1941.2-925.1-14412.513653.011560.0];
IV, step (2): according to the feedback gain matrix K determined in the step III, the vibration speed of the wheel is calculatedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the control force U of the active suspension LQG by taking the road surface displacement q as a state variableaThe expression, namely:
<math> <mrow> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>1941.2</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mn>925.1</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mn>14412.51</mn> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>3653.0</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>11560.0</mn> <mi>q</mi> <mo>;</mo> </mrow> </math>
wherein, <math> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </math> is a matrix <math> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> </math> The transposed matrix of (2);
(5) optimization design of the smoothness weighting coefficient:
firstly, constructing a ride comfort weighting coefficient optimization design simulation model
According to 1/4 vehicle running vibration differential equation established in step (1) and control force U obtained in step IV in step (4)aConstructing a smoothness weighting coefficient optimization design Simulink simulation model by using Matlab/Simulink simulation software, as shown in FIG. 3;
establishing smoothness weighting coefficient optimization design objective function
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step I, and using the smoothness weighting coefficient alpha1、α2、α3Simulating the running vibration of the vehicle by taking the displacement of the road surface unevenness as input excitation for designing variables, and obtaining the mean square root value of the vertical vibration acceleration of the vehicle body by utilizing the simulationOptimal design objective function J for establishing smoothness weighting coefficiento123) Namely:
<math> <mrow> <msub> <mi>J</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&sigma;</mi> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> </msub> <mo>;</mo> </mrow> </math>
establishing smoothness weighting coefficient optimization design constraint condition
According to unsprung mass m of a single wheel of the vehicle140kg, sprung mass m2320kg, tire stiffness Kt200000N/m, and g 9.8m/s2And suspension limit travel [ fd]100mm, using vertical displacement z of the tyre1Vertical displacement z of the car body2The road surface irregularity displacement q, and the smoothness weighting coefficient alpha1、α2、α3Establishing ride comfort weighting factor optimization design constraints, i.e.
<math> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> </mrow> <mo>|</mo> </mrow> <mo>&le;</mo> <mn>18</mn> <mi>m</mi> <mi>m</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> </mrow> <mo>&le;</mo> <mn>100</mn> <mi>m</mi> <mi>m</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
Optimization design of smoothness weighting coefficient
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step (i), and optimally designing constraint conditions according to the smoothness weighting coefficient established in the step (iii) to obtain a smoothness weighting coefficient alpha1、α2、α3For design variables, the displacement of the road surface unevenness is taken as input excitation, and an optimization algorithm is utilized to solve the smoothness weighting coefficient established in the second step to optimize a design objective function Jo123) To find the optimum design value of the ride comfort weighting coefficient, i.e. alpha1o=0.0108、α2o=0.0506、α3o=0.9386;
(6) Optimal control force U of active suspension LQG controlleraoThe design of (2):
i, step: obtaining a smoothness weighting coefficient alpha according to the optimization design in the step (5)1o=0.0108、α2o=0.0506、α3o0.9386, and the weighting matrix expression Q (α) determined in step (3)123)、R(α123)、N(α123) The weighting matrices Q (0.0108,0.0506,0.9386), R (0.0108,0.0506,0.9386), N (0.0108,0.0506,0.9386) are calculated as:
Q ( 0.0108 , 0.0506 , 0.9386 ) = 0 0 0 0 0 0 0 0 0 0 0 0 3964.2 - 3.9642 0 0 0 - 3.9642 7515.3 - 3551.0 0 0 0 - 3551.0 3551.0 ,
R(0.0108,0.0506,0.9386)=9.766×10-6
N ( 0.0108 , 0.0506 , 0.9386 ) = 0 0 - 0.195 0.195 0 ;
ii, step: calculating and obtaining an optimal control feedback gain matrix K of the active suspension LQG by using the LQR function in Matlab according to the state matrix A and the control matrix B determined in the step (2) and the weighting matrixes Q (0.0108,0.0506,0.9386), R (0.0108,0.0506,0.9386) and N (0.0108,0.0506,0.9386) determined in the step ioNamely:
Ko=[1247.4-270.4-1756318032.3347.5];
and iii, step (ii): according to the optimal feedback gain matrix K determined in the step iioAt the wheel vibration speedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the optimal control force U of the active suspension LQG controller by taking the road surface displacement q as a state variableaoNamely:
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mn>1247.4</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mn>270.4</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mn>17563</mn> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>18032.3</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>347.5</mn> <mi>q</mi> <mo>.</mo> </mrow> </math>
under the same vehicle structure parameters and driving conditions, wherein the driving road condition of the vehicle is a B-level road surface, the driving speed v of the vehicle is 72km/h, model simulation is respectively carried out on the LQG control which determines the optimal control force by using the traditional empirical method and determines the optimal control force by using the optimal design method, wherein the optimal control force determined by using the traditional empirical method is <math> <mrow> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>711.9</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <mn>1241.5</mn> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <mn>19284.5</mn> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2038.5</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>20103.2</mn> <mi>q</mi> <mo>,</mo> </mrow> </math> The comparison curves of the vehicle body vertical vibration acceleration time domain signal and the vehicle body vertical vibration acceleration power spectral density of the two control methods obtained through simulation are respectively shown in fig. 4 and fig. 5, and it can be known that the active suspension LQG controller designed by the optimization design method remarkably reduces the vehicle body vertical vibration acceleration, compared with the traditional empirical design method, the mean square root value of the vehicle body vertical vibration acceleration is reduced by 53.0%, which indicates that the established design method of the optimal control force of the vehicle active suspension LQG controller is correct.

Claims (1)

1. The design method of the optimal control force of the automobile active suspension LQG controller comprises the following specific design steps:
(1) 1/4 vehicle running vibration differential equation is established:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtControl force U of active suspension to be designeda(ii) a By vertical displacement z of the tyre1Vertical displacement z of the car body2Is a coordinate; taking the road surface unevenness displacement q as input excitation; 1/4 method for creating micro-vibration of vehicleThe equation, namely:
<math> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> </mrow> </math>
(2) determining a state matrix A and a control matrix B of LQG control:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtVehicle speed v, and filtered white noise road surface spatial cut-off frequency n0cDetermining a state matrix A and a control matrix B controlled by the LQG, wherein the state matrix A and the control matrix B are respectively as follows:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mi>t</mi> </msub> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&pi;vn</mi> <mrow> <mn>0</mn> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> <mo>/</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(3) determining a weighting matrix expression of LQG control:
according to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Suspension spring rate K2Stiffness of the tire KtSuspension limit travel [ f ]d]And the acceleration of gravity g, determining a weighting coefficient alpha for the smoothness1、α2、α3State variable, controlled variable, and state variable and controlled variable cross product term weighting matrix expression Q (alpha)123)、R(α123)、N(α123) Respectively is as follows:
<math> <mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>K</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>/</mo> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>q</mi> <mn>3</mn> </msub> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msubsup> <mi>m</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
wherein, q3=1;α1as weighting factors for the relative dynamic loads of the wheels, alpha2Weighting coefficient of relative dynamic deflection of suspension, alpha3Weighting coefficients of the vertical vibration relative acceleration of the vehicle body;
(4) determining active suspension LQG control force UaExpression:
i, step: selecting an initial value of the ride-comfort weighting factor, i.e. alpha1=k1、α2=k2、α3=k3Wherein k is1,k2,k3Are all values greater than zero and less than 1, and k1+k2+k3=1.0;
II, step (2): according to the initial value alpha of the smoothness weighting coefficient selected in the step I1=k1、α2=k2、α3=k3And the weighting matrix expression Q (alpha) determined in step (3)123)、R(α123)、N(α123) And calculating to obtain a weighting matrix Q (k)1,k2,k3)、R(k1,k2,k3)、N(k1,k2,k3);
Step III: according to the state matrix A and the control matrix B determined in the step (2) and the weighting matrix Q (k) determined in the step II1,k2,k3)、R(k1,k2,k3)、N(k1,k2,k3) Calculating a control feedback gain matrix K of the active suspension LQG by using an LQR function in Matlab;
IV, step (2): according to the feedback gain matrix K determined in the step III, the vibration speed of the wheel is calculatedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the control force U of the active suspension LQG by taking the road surface displacement q as a state variableaThe expression, namely:
<math> <mrow> <msub> <mi>U</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>K</mi> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
wherein, <math> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </math> is a matrix <math> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> </math> The transposed matrix of (2);
(5) optimization design of the smoothness weighting coefficient:
firstly, constructing a ride comfort weighting coefficient optimization design simulation model
According to 1/4 vehicle running vibration differential equation established in step (1) and control force U obtained in step IV in step (4)aConstructing a smoothness weighting coefficient optimization design Simulink simulation model by using Matlab/Simulink simulation software;
establishing smoothness weighting coefficient optimization design objective function
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step I, and using the smoothness weighting coefficient alpha1、α2、α3For design variables, with road surfacesThe unevenness displacement is used as input excitation to simulate the vehicle running vibration condition, and the mean square root value of the vertical vibration acceleration of the vehicle body obtained by simulation is utilizedOptimal design objective function J for establishing smoothness weighting coefficiento123) Namely:
<math> <mrow> <msub> <mi>J</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&sigma;</mi> <msub> <mover> <mi>z</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mn>2</mn> </msub> </msub> <mo>;</mo> </mrow> </math>
establishing smoothness weighting coefficient optimization design constraint condition
According to unsprung mass m of a single wheel of the vehicle1Sprung mass m2Stiffness of the tire KtAcceleration of gravity g, and suspension limit travel fd]By vertical displacement z of the tyre1Vertical displacement z of the car body2The road surface irregularity displacement q, and the smoothness weighting coefficient alpha1、α2、α3Establishing ride comfort weighting factor optimization design constraints, i.e.
<math> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>q</mi> <mo>|</mo> <mo>&le;</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>)</mo> <mi>g</mi> </mrow> <msub> <mi>K</mi> <mi>t</mi> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>|</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>&le;</mo> <mo>&lsqb;</mo> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&alpha;</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> </mrow> </math>
Optimization design of smoothness weighting coefficient
Optimally designing a Simulink simulation model according to the smoothness weighting coefficient established in the step (i), and optimally designing constraint conditions according to the smoothness weighting coefficient established in the step (iii) to obtain a smoothness weighting coefficient alpha1、α2、α3For design variables, the displacement of the road surface unevenness is taken as input excitation, and an optimization algorithm is utilized to solve the smoothness weighting coefficient established in the second step to optimize a design objective function Jo123) The corresponding design variable is the optimal optimized design value of the smoothness weighting coefficient, namely alpha1o、α2o、α3o
(6) Optimal control force U of active suspension LQG controlleraoThe design of (2):
i, step: obtaining a smoothness weighting coefficient alpha according to the optimization design in the step (5)1o、α2o、α3oAnd the weighting matrix expression Q (alpha) determined in step (3)123)、R(α123)、N(α123) And calculating to obtain a weighting matrix Q (alpha)1o2o3o)、R(α1o2o3o)、N(α1o2o3o);
ii, step: according to the stepsThe state matrix A and the control matrix B determined in step (2), and the weighting matrix Q (alpha) determined in step i1o2o3o)、R(α1o2o3o)、N(α1o2o3o) Calculating to obtain the optimal control feedback gain matrix K of the active suspension LQG by using the LQR function in Matlabo
And iii, step (ii): according to the optimal feedback gain matrix K determined in the step iioAt the wheel vibration speedAnd a displacement z1Vehicle body vibration speedAnd a displacement z2And determining the optimal control force U of the active suspension LQG controller by taking the road surface displacement q as a state variableaoNamely:
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>K</mi> <mi>o</mi> </msub> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>.</mo> </mrow> </math>
CN201510645787.1A 2015-10-08 2015-10-08 The design method of vehicle active suspension LQG controller Optimal Control Forces Expired - Fee Related CN105159094B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510645787.1A CN105159094B (en) 2015-10-08 2015-10-08 The design method of vehicle active suspension LQG controller Optimal Control Forces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510645787.1A CN105159094B (en) 2015-10-08 2015-10-08 The design method of vehicle active suspension LQG controller Optimal Control Forces

Publications (2)

Publication Number Publication Date
CN105159094A true CN105159094A (en) 2015-12-16
CN105159094B CN105159094B (en) 2017-08-04

Family

ID=54799982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510645787.1A Expired - Fee Related CN105159094B (en) 2015-10-08 2015-10-08 The design method of vehicle active suspension LQG controller Optimal Control Forces

Country Status (1)

Country Link
CN (1) CN105159094B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108345218A (en) * 2018-02-27 2018-07-31 江苏大学 Vehicle active suspension PID controller design method based on teaching optimization algorithm
CN109139282A (en) * 2017-06-16 2019-01-04 通用汽车环球科技运作有限责任公司 For improving the model predictive control system and method for computational efficiency
CN109933886A (en) * 2019-03-11 2019-06-25 桂林电子科技大学 A kind of commercial-vehicle cab suspension arrangement optimization method
CN110329030A (en) * 2019-05-10 2019-10-15 爱驰汽车有限公司 Active suspension control method, system, equipment and storage medium
CN110568758A (en) * 2019-09-12 2019-12-13 中汽研(天津)汽车工程研究院有限公司 Parameter self-adaptive transverse motion LQR control method for automatically driving automobile
CN111487863A (en) * 2020-04-14 2020-08-04 东南大学 Active suspension reinforcement learning control method based on deep Q neural network
CN113352832A (en) * 2021-07-06 2021-09-07 南昌大学 Multi-target dynamic optimal active suspension control method based on pavement grade recognition
CN113887070A (en) * 2021-10-21 2022-01-04 浙江吉利控股集团有限公司 Vehicle ride comfort analysis method, device and equipment and storage medium
WO2023108699A1 (en) * 2021-12-17 2023-06-22 江苏大学 Novel lqg control method
CN117521229A (en) * 2023-12-27 2024-02-06 石家庄铁道大学 Pavement displacement response detection method, system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341883A2 (en) * 1988-05-09 1989-11-15 Lord Corporation Hybrid analog digital control method and apparatus for estimation of absolute velocity in active suspension system
US20110153158A1 (en) * 2008-08-06 2011-06-23 Gerardo Acocella Method and apparatus for controlling a semi-active suspension system for motorcycles
CN103646280A (en) * 2013-11-28 2014-03-19 江苏大学 Particle swarm algorithm-based vehicle suspension system parameter optimization method
CN104309437A (en) * 2014-10-23 2015-01-28 山东理工大学 Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341883A2 (en) * 1988-05-09 1989-11-15 Lord Corporation Hybrid analog digital control method and apparatus for estimation of absolute velocity in active suspension system
US20110153158A1 (en) * 2008-08-06 2011-06-23 Gerardo Acocella Method and apparatus for controlling a semi-active suspension system for motorcycles
CN103646280A (en) * 2013-11-28 2014-03-19 江苏大学 Particle swarm algorithm-based vehicle suspension system parameter optimization method
CN104309437A (en) * 2014-10-23 2015-01-28 山东理工大学 Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗鑫源 等: ""基于AHP的车辆主动悬架LQG控制器设计"", 《振动与冲击》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139282B (en) * 2017-06-16 2021-09-07 通用汽车环球科技运作有限责任公司 Model predictive control system and method for improved computational efficiency
CN109139282A (en) * 2017-06-16 2019-01-04 通用汽车环球科技运作有限责任公司 For improving the model predictive control system and method for computational efficiency
CN108345218A (en) * 2018-02-27 2018-07-31 江苏大学 Vehicle active suspension PID controller design method based on teaching optimization algorithm
CN109933886A (en) * 2019-03-11 2019-06-25 桂林电子科技大学 A kind of commercial-vehicle cab suspension arrangement optimization method
CN110329030A (en) * 2019-05-10 2019-10-15 爱驰汽车有限公司 Active suspension control method, system, equipment and storage medium
CN110568758A (en) * 2019-09-12 2019-12-13 中汽研(天津)汽车工程研究院有限公司 Parameter self-adaptive transverse motion LQR control method for automatically driving automobile
CN110568758B (en) * 2019-09-12 2022-07-01 中汽研(天津)汽车工程研究院有限公司 Parameter self-adaptive transverse motion LQR control method for automatically driving automobile
CN111487863B (en) * 2020-04-14 2022-06-17 东南大学 Active suspension reinforcement learning control method based on deep Q neural network
CN111487863A (en) * 2020-04-14 2020-08-04 东南大学 Active suspension reinforcement learning control method based on deep Q neural network
CN113352832A (en) * 2021-07-06 2021-09-07 南昌大学 Multi-target dynamic optimal active suspension control method based on pavement grade recognition
CN113887070A (en) * 2021-10-21 2022-01-04 浙江吉利控股集团有限公司 Vehicle ride comfort analysis method, device and equipment and storage medium
WO2023108699A1 (en) * 2021-12-17 2023-06-22 江苏大学 Novel lqg control method
CN117521229A (en) * 2023-12-27 2024-02-06 石家庄铁道大学 Pavement displacement response detection method, system and storage medium
CN117521229B (en) * 2023-12-27 2024-03-19 石家庄铁道大学 Pavement displacement response detection method, system and storage medium

Also Published As

Publication number Publication date
CN105159094B (en) 2017-08-04

Similar Documents

Publication Publication Date Title
CN105159094B (en) The design method of vehicle active suspension LQG controller Optimal Control Forces
CN107791773B (en) Whole vehicle active suspension system vibration control method based on specified performance function
CN103121475B (en) Design method for optimal damping ratio of suspension system of cab
CN101269618B (en) Control method for damping value of electronic control air spring damping apparatus with three-gear
CN112757860B (en) NMPC-based hub direct-drive air suspension system and cooperative control method
CN103264628B (en) Fault-tolerant self-adaptation control method of automobile active suspension system
Swevers et al. A model-free control structure for the on-line tuning of the semi-active suspension of a passenger car
CN109063372A (en) A kind of wheel hub driving electric car suspension system and damping element parameter design method for optimization of matching
CN103754081B (en) The optimum fuzzy compound controller method of Vehicle Suspension with Non-linear Spring
JP2011529822A (en) Method and apparatus for controlling a semi-active suspension system for a motorcycle
Rojas et al. Comfort and safety enhancement of passenger vehicles with in-wheel motors
CN103072440A (en) Control method for automotive active suspension system
CN111444623B (en) Collaborative optimization method and system for damping nonlinear commercial vehicle suspension dynamics
CN103942392A (en) Automotive chassis technical parameter robust design method based on full life circle
CN103112508B (en) Design method for optimum speed characteristics of trunk cab damper
CN114590090A (en) Direct-drive semi-active suspension control system construction method based on self-adaptive LQR (Low-speed response) wheel hub
CN110341414A (en) A kind of continuously linear capricorn bettle lower suspension adaptive optimal conmtrol system and method
CN106926660A (en) A kind of electromagnetic suspension system and its control method based on wheel rim driven motor vehicle
CN105700350A (en) Fuzzy sampling data control method for automobile suspension system
CN105069260A (en) Optimization design method for secondary vertical suspension optimal damping ratio of high-speed railway vehicle
Xu et al. Neural network predictive control of vehicle suspension
CN114818110A (en) Front suspension flutter optimization method, control method and storage medium
Zhu et al. Optimal damping matching of semi-active air suspension based on vehicle comfort and handling
CN105160103B (en) The system of high speed railway car one and two be vertical suspension damping ratio cooperative optimization method
CN107444056A (en) Nonlinear spring suspension Active Control Method based on passive

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170804

Termination date: 20201008

CF01 Termination of patent right due to non-payment of annual fee