CN105122501B - 受保护电极结构 - Google Patents
受保护电极结构 Download PDFInfo
- Publication number
- CN105122501B CN105122501B CN201480015012.XA CN201480015012A CN105122501B CN 105122501 B CN105122501 B CN 105122501B CN 201480015012 A CN201480015012 A CN 201480015012A CN 105122501 B CN105122501 B CN 105122501B
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode structure
- peeling layer
- protective layer
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
公开了电极结构及其生产方法。所公开的电极结构可通过将第一剥离层沉积在第一载体基质上而生产。第一保护层可沉积在第一剥离层的表面上,然后可将第一电活性材料层沉积在第一保护层上。
Description
发明领域
公开的实施方案涉及受保护电极结构及其生产方法。
背景
可再充电和初级电化学电池通常包含保护层以保护电活性表面。取决于具体保护层,保护层隔离下面电活性表面以防与电化学电池内的电解质和/或其它组分相互作用。为提供对下面电极的合适保护,理想的是保护层连续地覆盖下面电极并显示出最小数目的缺陷。尽管存在形成保护层的技术,容许形成会改进电化学电池的性能的保护层的方法是有利的。
概述
提供受保护电极结构及其生产方法。在一些情况下,本申请的主题涉及相关结构和方法、特定问题的可选解决方法和/或该结构的多种不同用途。
在一组实施方案中,提供电极结构。该电极结构包含含有一种或多种以下材料的第一剥离层:聚砜、聚醚砜、聚苯砜、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚异丁烯、聚异丁烯琥珀酸酐、聚异丁烯-聚氧化烯共聚物、聚酰胺6、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯、聚乙烯-聚乙烯醇共聚物、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛、聚乙烯醇缩丁醛、聚脲、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯及其组合。电极结构还包含置于第一剥离层上的第一保护层和置于第一保护层上的第一电活性材料层。
在另一组实施方案中,提供一种方法。该方法涉及提供第一载体基质,和将第一剥离层沉积在第一载体基质上。第一剥离层包含一种或多种以下材料:聚砜、聚醚砜、聚苯砜、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚异丁烯、聚异丁烯琥珀酸酐、聚异丁烯-聚氧化烯共聚物、聚酰胺6、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯、聚乙烯-聚乙烯醇共聚物、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛、聚乙烯醇缩丁醛、聚脲、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯及其组合。方法涉及将第一保护层沉积在第一剥离层的表面上,将第一电活性材料层沉积在第一保护层上,和任选将第一载体基质从第一剥离层上除去,其中第一剥离层的至少一部分保留在第一保护层上。该方法可用于生产如前段中所述的电极结构。
在另一组实施方案中,提供电极结构。该电极结构包含含有一种或多种以下材料的第一剥离层:具有六氟丙烯涂层的聚酰亚胺;渗硅聚酯膜、金属化聚酯膜、聚苯并咪唑、聚苯并唑、乙烯-丙烯酸共聚物、丙烯酸酯聚合物、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚丙烯腈、苯乙烯-丙烯腈、热塑性聚氨酯聚合物、聚砜-聚氧化烯共聚物、二苯甲酮改性聚砜聚合物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物及其组合。电极结构还包含置于第一剥离层上的第一保护层和置于第一保护层上的第一电活性材料层。
在另一组实施方案中,提供一种方法。该方法涉及提供第一载体基质和将第一剥离层沉积在第一载体基质上。第一剥离层包含一种或多种以下材料:具有六氟丙烯涂层的聚酰亚胺;渗硅聚酯膜、金属化聚酯膜、聚苯并咪唑、聚苯并唑、乙烯-丙烯酸共聚物、丙烯酸酯聚合物、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚丙烯腈、苯乙烯-丙烯腈、热塑性聚氨酯聚合物、聚砜-聚氧化烯共聚物、二苯甲酮改性聚砜聚合物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物及其组合。该方法还涉及将第一保护层沉积在第一剥离层的表面上,将第一电活性材料层沉积在第一保护层上,和将第一载体基质和第一剥离层从第一保护层上除去。
在另一组实施方案中,方法包括提供电化学电池。电化学电池包含电极结构,所述电极结构包含含有聚合物的剥离层、置于第一剥离层上的第一保护层、置于第一保护层上的第一电活性材料层,和电解质。该方法涉及将至少一部分聚合物溶于电解质中以将至少一部分剥离层从第一保护层上除去。
在一个实施方案中,方法可包括:提供第一载体基质;将第一剥离层沉积在第一载体基质上,其中第一剥离层与第一载体基质相对的表面的平均峰-谷粗糙度为约0.1μm至约1μm;将第一保护层沉积在第一剥离层的表面上;和将第一电活性材料层沉积在第一保护层上。
在另一实施方案中,方法可包括:提供第一载体基质;将第一剥离层沉积在第一载体基质上,其中第一剥离层包含聚合物凝胶;将第一保护层沉积在第一剥离层的表面上,其中第一剥离层的厚度大于基质的平均峰-谷粗糙度;和将第一电活性材料层沉积在第一保护层上。
在又一实施方案中,电极结构可包含第一载体基质和置于第一载体基质上的第一剥离层。第一保护层可置于第一剥离层上。第一剥离层与第一保护层之间的界面的平均峰-谷粗糙度可以为约0.1μm至约1μm。第一电活性材料层可置于第一保护层上。
在另一实施方案中,电极结构可包含第一剥离层和置于第一剥离层上的基本连续保护层。保护层的平均峰-谷粗糙度可以为约0.1μm至约1μm。另外,保护层的厚度可以为约0.1μm至约2μm。第一电活性材料层可置于保护层上。
在又一实施方案中,电极结构可包含第一剥离层和置于第一剥离层上的第一保护层。第一电活性材料层可置于第一保护层上。第一保护层与第一电活性材料层之间的界面的平均峰-谷粗糙度可以为约0.1μm至约1μm。
应当理解前述概念和下文讨论的其它概念可以以任何合适的组合配置,因为就这方面而言,本公开内容不受限。
本发明的其它优点和新特征在连同附图一起考虑时从以下关于本发明各个非限定性实施方案的详细描述中获悉。如果本说明书和通过引用并入的文件包括相矛盾和/或不一致的公开内容,则本说明书应起支配作用。如果通过引用并入本文中的两个或者更多个文件包括彼此相矛盾和/或不一致的公开内容,则具有稍后的有效日期的文件应起支配作用。
附图简述
附图不意欲按比例绘制。在图中,各图中阐述的各个相同或几乎相同的组件由类似的数字表示。为了清楚,每个图中没有标记每一个组件。在图中:
图1A为根据一组实施方案沉积到下面电活性材料层上的保护层的图示;
图1B为根据一组实施方案沉积到下面电活性材料层上的保护层的另一图示;
图2A为根据一组实施方案沉积到剥离层和载体基质上的电极结构的图示;
图2B为根据一组实施方案具有分层的载体基质的图2A电极结构的图示;
图2C为根据一组实施方案具有分层的载体基质和剥离层的图2A电极结构的图示;
图2D为根据一组实施方案包含集电器的电极结构的图示;
图3为根据一组实施方案在层压以前电极结构的两个部分的图示;
图4为根据一组实施方案在层压期间电极结构的两个部分的图示;
图5为根据一组实施方案在层压以后组合电极结构的图示;
图6为根据一组实施方案在层压以前包含集电器的电极结构的两个部分的图示;
图7为根据一组实施方案在层压期间包含集电器的电极结构的两个部分的图示;
图8为根据一组实施方案在层压以后包含集电器的组合电极结构的图示;
图9为根据一组实施方案生产电极结构的方法的代表性流程图;
图10A显示根据一组实施方案包含聚合物层、氧化锂层和锂金属层的电极结构的剖视图;
图10B显示根据一组实施方案包含聚合物层、氧化锂层和锂金属层的电极结构的剖视图;
图10C显示在直接沉积于锂金属基质上以后具有大量裂纹和缺陷的氧化锂层的顶视图;
图11A显示包含沉积于锂层上的陶瓷层的电极结构的剖视图;
图11B显示根据一组实施方案包含沉积于聚合物层上的氧化锂层的电极结构的剖视图;
图12A显示涂覆在实施例3的VDL表面上的PSU-PEO共聚物的SEM显微照片;和
图12B显示实施例3的电池中PSU-PEO共聚物涂覆阳极性能的硫比容量。
详述
发明人认识到理想的是降低电极结构的一个或多个保护层的厚度以降低电池内电阻并提高电极结构并入其中的最终电化学电池的倍率容量。然而,尽管理想的是降低一个或多个保护层的厚度,理想的还有保持一个或多个保护层的完整性。为提供具有足够完整性的基本连续保护层,保护层厚度通常大于下面基质的平均粗糙度。该概念说明性地显示于图1A-1B中。当保护层6直接沉积于下面基质1上且保护层的厚度小于下面基质的粗糙度时,保护层不是基本连续的,如图1A所述。相反,当保护层厚度大于约下面基质1的粗糙度时,形成基本连续保护层6,如图1B所示。
鉴于上文,为提供较薄的保护层,发明人认识到理想的是降低一个或多个保护层沉积于其上的下面基质的表面粗糙度。在形成电极结构的典型方法中,保护层通常沉积于电活性层上且保护层的厚度至少部分地受电活性材料层的粗糙度影响。然而,由于考虑如材料层厚度、制备方法和其它合适的考虑,通常难以得到在关于下面电活性材料层的特定阈值以下的表面粗糙度。例如,箔或真空沉积层形式的金属锂通常显示出特征是约1μm至约2μm的峰-谷差的较粗糙表面。因而,关于在直接沉积于电活性材料层上时可制备多薄的基本连续保护层存在限制,因为关于可制备如何光滑的下面电活性材料层表面存在限制。
由于关于可制备如何光滑的电活性材料层表面的限制,发明人认识到将保护层沉积在具有比电活性材料层更低的表面粗糙度的分离层上的益处。当沉积于具有较低表面粗糙度的该分离层上时,可得到比在直接沉积于电活性材料层上时可得到的更薄的基本连续保护层。在一组实施方案中以及如下文更详细地描述,分离层为位于载体基质上的剥离层。取决于实施方案,在形成保护层以后,相应的电活性材料层可与保护层结合或者沉积在保护层上以提供所需电极结构。如下文中更详细地描述,其它层(例如其它保护层)也可存在于保护层与电活性材料层之间。
为了清楚,本文所述结构称为电极结构。然而,电极结构可以指电极前体或最终电极。电极前体可包括例如包含不存在于最终电极或最终电化学电池中的一种或多种组分如载体基质的电极,或者在用作最终电极或者用于最终电化学电池中以前不存在一种或多种组分的电极。因此,应当理解,本文所述实施方案应不限于电极前体或最终电极。而是,本文所述实施方案意欲适用于电极前体、未组装最终电极和组装到电化学电池或任何其它合适器件中的最终电极中的任一种。
此外,尽管参考锂金属基体系描述了本文所述电极结构,应当理解本文所述方法和制品可适用于任何合适的电化学体系(包括其它碱金属体系,例如碱金属阳极,包括锂离子阳极,或者甚至非碱金属体系)。另外,尽管可再充电电化学电池意欲从本公开内容中获益,不可再充电(即初级)电化学电池也可从本公开内容中获益。
现在转向图,更详细地描述本公开内容的各个实施方案。
图2A描述包含载体基质2的电极结构的一个实施方案。如图2A中说明性地显示,剥离层4置于载体基质2上,保护层6置于剥离层4上,且电活性材料层8置于保护层6上。剥离层4的表面5位于剥离层与载体基质2相对的面上。表面5还对应于剥离层4与保护层6之间的界面,保护层6沉积于其上。尽管图中所述层直接沉积于彼此上,应当理解在某些实施方案中,其它中间层也可存在于所述层之间。因此,如本文所用,当层被称为“置于另一层上”、“沉积于另一层上”或者“在另一层上”时,它可直接置于、沉积于或者在该层上,或者也可存在中间层。相反,“直接置于另一层上”、“与另一层接触”、“直接沉积于另一层上”或者“直接在另一层上”表示不存在中间层。
在所述实施方案中,载体基质2可以为在沉积和层压期间能够负载电极结构的任何合适材料。在其中保护层不直接沉积于载体基质上的实施方案中,载体基质的表面粗糙度可能不直接影响剥离层4与保护层6之间的界面的表面粗糙度。然而,在至少一个实施方案中,理想的是载体基质2显示出剥离层4沉积于其上的较光滑平面以便能够沉积较薄的剥离层4以提供随后保护层6沉积于其上的光滑表面。
在图2所示的所述实施方案中,剥离层4在电极结构内可用于双重目的。剥离层4可形成保护层6沉积于其上的具有较低粗糙度的表面。另外,剥离层4还可具有在载体基质2和保护层4中的一个上的较高粘合强度以及在载体基质2和保护层4中的另一个上的较中等或差的粘合强度。因此,剥离层可用于在将剥离力施加在载体基质2(和/或电极结构)上时,促进载体基质2与最终电极结构分层。
取决于剥离层在其上显示出较高粘合强度的组分,剥离层2可并入或者不并入最终电极结构内。剥离层是否并入最终电极结构中可通过调整剥离层的化学和/或物理性能而改变。例如,如果剥离层4理想地为最终电极结构的一部分,则可调整剥离层以具有在保护层6上相对于其在载体基质2上的粘合强度更大的粘合强度。因此,当将分层力施加在载体基质(和/或电极结构)上时,载体基质2与电极结构分层且剥离层保持与电极结构一起(参见图2B)。
在其中剥离层并入最终电化学电池中的实施方案中,剥离层可由在电解质中稳定且基本不干涉电极的结构完整性的材料形成。在其中剥离层并入最终电极结构或电化学电池中的某些实施方案中,剥离层可用作电解质(例如聚合物凝胶电解质)以促进离子的传导,或者它可充当隔片。剥离层的其它用途也是可能的。在某些特定实施方案中,剥离层由对锂离子而言为传导性的和/或包含锂离子的聚合物凝胶形成。
另一方面,如果剥离层理想地不是最终电极结构的一部分,则可设计剥离层以具有在载体基质2上相对于其在保护层6上的粘合强度更大的粘合强度。在该实施方案中,当将分层力施加在载体基质上时,载体基质2和剥离层4与电极结构分层(参见图2C)。
剥离层可使用具有所需表面粗糙度和相对于载体基质和保护层的释放性能的任何合适材料形成。待使用的具体材料至少部分地取决于因素,例如所用载体基质的特定类型、与剥离层的另一面接触的材料、剥离层是否并入最终电极结构中以及剥离层在并入电化学电池中以后是否具有其它功能。
在一组实施方案中,剥离层由聚合物材料形成。合适聚合物的具体实例包括但不限于聚氧化物、聚(烷基氧化物)/聚氧化烯(例如聚氧化乙烯、聚氧化丙烯、聚氧化丁烯)、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯醇缩甲醛、乙酸乙烯酯-乙烯醇共聚物、乙烯-乙烯醇共聚物和乙烯醇-甲基丙烯酸甲酯共聚物、聚硅氧烷和氟化聚合物。聚合物可以为例如固体聚合物(例如固体聚合物电解质)、玻璃态聚合物或聚合物凝胶的形式。
聚合物材料的其它实例包括聚砜、聚醚砜、聚苯砜(例如S6010、S3010和S 2010,可由BASF得到)、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚砜-聚氧化烯共聚物、聚异丁烯(例如B10、B15、B30、B80、B150和B200,可由BASF得到)、聚异丁烯琥珀酸酐(PIBSA)、聚异丁烯-聚氧化烯共聚物、聚酰胺6(例如B33,可由BASF得到)(例如2μm聚酰胺层在聚烯烃载体上的挤出或者PA层在聚烯烃载体基质上的溶液浇铸)、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物(例如HP56,可由BASF得到)、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物(例如可由BASF得到)、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯(任选包含表面反应性共聚单体)、聚乙烯-聚乙烯醇共聚物(例如可由BASF得到)、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛(例如挤出)、聚乙烯醇缩丁醛(例如可由BASF得到)、聚脲(例如支化)、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯(例如D155,可由BASF得到)及其组合。在一些实施方案中,这类聚合物可用于剥离层中,且剥离层(或其至少一部分)在载体基质与电极结构分层以后保持为电极结构的一部分。然而,在其它实施方案中,这类聚合物可用于剥离层中,所述剥离层在载体基质分层以后保留在载体基质上。
在本发明一个优选实施方案中,剥离层为聚醚砜-聚氧化烯共聚物。更优选,该聚醚砜-聚氧化烯共聚物通过包含以下组分的反应混合物(RG)缩聚而得到的聚芳基醚砜-聚氧化烯嵌段共聚物(PPC):(A1)至少一种芳族二卤素化合物,(B1)至少一种芳族二羟基化合物,(B2)至少一种具有至少2个羟基的聚氧化烯,(C)至少一种非质子极性溶剂和(D)至少一种金属碳酸盐,其中反应混合物(RG)不包含与水形成共沸物的任何物质。这类共聚物是本领域技术人员已知的并且例如公开于2013年5月02日提交的欧洲专利申请EP 13166190中。在本发明实验部分中进一步例示了那些共聚物。
如用于得到那些类聚合物的缩聚中所用组分(A1)-(D)的合适实例如下:
组分(A1)包含基于反应混合物(RG)中组分(A1)的总重量为至少50重量%的至少一种选自4,4'-二氯二苯砜和4,4'-二氟二苯砜的芳族二卤代砜化合物;
组分(B1)包含基于反应混合物(RG)中组分(B1)的总重量为至少50重量%的选自4,4'-二羟基联苯和4,4'-二羟基联苯砜的芳族二羟基化合物;
组分(B2)包含基于反应混合物(RG)中组分(B2)的总重量为至少50重量%的聚氧化烯,所述聚氧化烯可通过氧化乙烯、1,2-氧化丙烯、1,2-氧化丁烯、2,3-氧化丁烯、1,2-氧化戊烯、2,3-氧化戊烯或者这些单体的混合物聚合而得到;
组分(C),其中反应混合物(RG)可包含N-甲基-2-吡咯烷酮作为组分(C);和
组分(D),其中反应混合物(RG)可包含碳酸钾作为组分(D)。
聚合物材料的其它实例包括:具有六氟丙烯(HFP)涂层的聚酰亚胺(例如)(例如可由Dupont得到);渗硅聚酯膜(例如Mitsubishi聚酯)、金属化聚酯膜(例如可由Mitsubishi或Sion Power得到)、聚苯并咪唑(PBI;例如低分子量PBI—可由Celanese得到)、聚苯并唑(例如可由Foster-Miller,Toyobo得到)、乙烯-丙烯酸共聚物(例如可由BASF得到)、丙烯酸酯聚合物(例如可由BASF得到)、(带电)聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物(例如HP56、可由BASF得到)、聚丙烯腈(PAN)、苯乙烯-丙烯腈(SAN)、热塑性聚氨酯(例如1195A 10,可由BASF得到)、聚砜-聚(氧化烯)共聚物、二苯甲酮改性聚砜(PSU)聚合物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物(例如可由BASF得到)及其组合。在一些实施方案中,这类聚合物可用于剥离层中,且剥离层可在载体基质与电极结构分层以后保留在载体基质中。然而,在其它实施方案中,这类聚合物可用于剥离层中,且剥离层(或其至少一部分)可在与载体基质分层以后保持为电极结构的一部分。
在一些实施方案中,剥离层包含对某些离子(例如碱金属离子)而言为传导性的但也基本上导电的聚合物。这类材料的实例包括掺杂有锂盐的导电聚合物(也称为电子聚合物或导电聚合物)(例如LiSCN、LiBr、LiI、LiClO4、LiAsF6、LiSO3CF3、LiSO3CH3、LiBF4、LiB(Ph)4、LiPF6、LiC(SO2CF3)3和LiN(SO2CF3)2)。导电聚合物是本领域中已知的;这类聚合物的实例包括但不限于聚(乙炔)、聚(吡咯)、聚(噻吩)、聚(苯胺)、聚(芴)、聚萘、聚(对苯硫醚)和聚(对-亚苯基亚乙烯基)。也可将导电添加剂加入聚合物中以形成导电聚合物。
在一些实施方案中,剥离层包含对一类或多类离子而言为传导性的聚合物。在一些情况下,剥离层可以为基本不导电的。离子传导物种(其可以基本上不导电的)的实例包括掺杂有锂盐的不导电材料(例如电绝缘材料)。例如,掺杂有锂盐的丙烯酸酯、聚氧化乙烯、聚硅氧烷、聚氯乙烯和其它绝缘聚合物可以为离子传导的(但基本上不导电)。聚合物的其它实例包括离子传导聚合物、磺化聚合物和烃聚合物。合适的离子传导聚合物可包括已知用于锂电化学电池用固体聚合物电解质和凝胶聚合物电解质中的离子传导聚合物,例如聚氧化乙烯。合适的磺化聚合物可包括例如磺化硅氧烷聚合物、磺化聚苯乙烯-乙烯-丁烯聚合物和磺化苯乙烯聚合物。合适的烃聚合物可包括例如乙烯-丙烯聚合物、聚苯乙烯聚合物等。
在一些实施方案中,剥离层包含可交联聚合物。可交联聚合物的非限定性实例包括:聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡啶、聚乙烯基吡咯烷酮、聚乙酸乙烯酯、丙烯腈丁二烯苯乙烯(ABS)、乙烯-丙烯橡胶(EPDM)、EPR、氯化聚乙烯(CPE)、乙烯双丙烯酰胺(EBA)、丙烯酸酯(例如丙烯酸烷基酯、二醇丙烯酸酯、聚二醇丙烯酸酯、乙烯丙烯酸乙酯(EEA))、氢化腈丁二烯橡胶(HNBR)、天然橡胶、腈丁二烯橡胶(NBR)、某些氟聚合物、硅橡胶、聚异戊二烯、乙烯乙酸乙烯酯(EVA)、氯磺酰橡胶、氟化聚(芳烃醚)(FPAE)、聚醚酮、聚砜、聚醚酰亚胺、二环氧化物、二异氰酸酯、二异硫氰酸酯、甲醛树脂、氨基树脂、聚氨酯、不饱和聚醚、聚乙二醇乙烯醚、聚乙二醇二乙烯醚、其共聚物,以及共同受让人的美国专利No.6,183.901,Ying等人所述用于隔片层用保护涂层的那些。
可交联或交联聚合物的其它实例包括UV/电子束交联的(例如聚砜或聚醚砜)、UV交联的Ultrason-聚氧化烯共聚物、UV/电子束交联的Ultrason-丙烯酰胺混合物、交联聚异丁烯-聚氧化烯共聚物、交联支化聚酰亚胺(BPI)、交联马来酰亚胺-Jeffamine聚合物(MSI凝胶)、交联丙烯酰胺及其组合。
本领域技术人员可基于本领域的已知知识与本文的描述组合选择合适的可交联聚合物,以及合适的交联方法。交联聚合物材料可进一步包含盐,例如锂盐以增加离子传导性。
如果使用可交联聚合物,则聚合物(或聚合物前体)可包含一种或多种交联剂。交联剂为具有用于以在一个或多个聚合物链之间形成交联键的方式与聚合物链上的官能团相互作用的反应性部分的分子。可使用于本文所述剥离层的聚合物材料交联的交联剂的实例包括但不限于:聚酰胺-表氯醇(polycup 172);醛(例如甲醛和脲-甲醛);二醛(例如乙二醛、戊二醛和羟基己二醛);丙烯酸酯(例如乙二醇二丙烯酸酯、二(甘醇)二丙烯酸酯、四(甘醇)二丙烯酸酯、甲基丙烯酸酯、乙二醇二甲基丙烯酸酯、二(甘醇)二甲基丙烯酸酯、三(甘醇)二甲基丙烯酸酯);酰胺(例如N,N’-亚甲基双丙烯酰胺、N,N’-亚甲基双丙烯酰胺、N,N’-(1,2-二羟基亚乙基)双丙烯酰胺、N-(1-羟基-2,2-二甲氧基乙基)丙烯酰胺);硅烷(例如甲基三甲氧基硅烷、甲基三乙氧基硅烷、四甲氧基硅烷(TMOS)、四乙氧基硅烷(TEOS)、四丙氧基硅烷、甲基三(甲基乙基酮肟)硅烷、甲基三(丙酮肟)硅烷、甲基三(甲基异丁基酮肟)硅烷、二甲基二(甲基乙基酮肟)硅烷、三甲基(甲基乙基酮肟)硅烷、乙烯基三(甲基乙基酮肟)硅烷、甲基乙烯基二(甲基乙基酮肟)硅烷、甲基乙烯基二(环己酮肟)硅烷、乙烯基三(甲基异丁基酮肟)硅烷、甲基三乙酰氧基硅烷、四乙酰氧基硅烷和苯基三(甲基乙基酮肟)硅烷);二乙烯基苯;三聚氰胺;碳酸锆铵;二环己基碳二亚胺/二甲基氨基吡啶(DCC/DMAP);2-氯吡啶离子;1-羟基环己基苯基酮;苯乙酮二甲基酮缩醇;苯甲酰甲醚;芳基三氟乙烯基醚;苯并环丁烯;苯酚树脂(例如苯酚与甲醛和较低级醇如甲醇、乙醇、丁醇和异丁醇的缩合物)、环氧化物;三聚氰胺树脂(例如三聚氰胺与甲醛和较低级醇如甲醇、乙醇、丁醇和异丁醇的缩合物);多异氰酸酯;二醛;和本领域技术人员已知的其它交联剂。
在包含交联聚合物材料和交联剂的实施方案中,聚合物材料与交联剂的重量比可由于多种原因而变化,包括但不限于聚合物的官能团含量、其分子量、交联剂的反应性和官能度、所需交联速率、聚合物材料中所需的刚度/硬度程度和可能发生交联反应的温度。聚合物材料与交联剂之间的重量比范围的非限定性实例包括100:1-50:1、20:1-1:1、10:1-2:1和8:1-4:1。
可适用于剥离层中的其它类别的聚合物可包括但不限于聚胺(例如聚(乙烯亚胺)和聚丙烯亚胺(PPI));聚酰胺(例如聚酰胺(Nylon)、聚(-己内酰胺)(尼龙6)、聚(六亚甲基己二酰胺)(尼龙66))、聚酰亚胺(例如聚酰亚胺、聚腈和聚(苯均四酸酰亚胺-1,4-二苯醚)(Kapton));乙烯基聚合物(例如聚丙烯酰胺、聚(2-乙烯基吡啶)、聚(N-乙烯基吡咯烷酮)、聚(甲基氰基丙烯酸酯)、聚(乙基氰基丙烯酸酯)、聚(丁基氰基丙烯酸酯)、聚(异丁基氰基丙烯酸酯)、聚(乙酸乙烯酯)、聚(乙烯醇)、聚(氯乙烯)、聚(氟乙烯)、聚(2-乙烯基吡啶)、乙烯基聚合物、聚氯三氟乙烯和聚(异己基氰基丙烯酸酯);聚缩醛;聚烯烃(例如聚(丁烯-1)、聚(正戊烯-2)、聚丙烯、聚四氟乙烯);聚酯(例如聚碳酸酯、聚对苯二甲酸丁二醇酯、聚羟基丁酸酯);聚醚(聚(氧化乙烯)(PEO)、聚(氧化丙烯)(PPO)、聚(四氢呋喃)(PTMO));亚乙烯基聚合物(例如聚异丁烯、聚(甲基苯乙烯)、聚(甲基丙烯酸甲酯)(PMMA)、聚(偏二氯乙烯)和聚(偏二氟乙烯));聚芳酰胺(例如聚(亚氨基-1,3-亚苯基亚氨基间苯二甲酰)和聚(亚氨基-1,4-亚苯基亚氨基对苯二甲酰));聚杂芳族化合物(例如聚苯并咪唑(PBI)、聚苯并二唑(PBO)和聚苯并二异噻唑(PBT));聚杂环化合物(例如聚吡咯);聚氨酯;苯酚聚合物(例如苯酚-甲醛);聚炔烃(例如聚乙炔);聚二烯烃(例如1,2-聚丁二烯、顺或反-1,4-聚丁二烯);聚硅氧烷(例如聚(二甲基硅氧烷)(PDMS)、聚(二乙基硅氧烷)(PDES)、聚二苯基硅氧烷(PDPS)和聚甲基苯基硅氧烷(PMPS));和无机聚合物(例如聚磷腈、聚膦酸酯、聚硅烷、聚硅氮烷)。
在一些实施方案中,可选择聚合物的分子量以实现特定粘合亲合力并且可在剥离层中变化。例如,剥离层中所用聚合物的分子量可以为约1,000g/mol至约5,000g/mol、约5,000g/mol至约10,000g/mol、约10,000g/mol至约20,000g/mol、约20,000g/mol至约50,000g/mol、约50,000g/mol至约100,000g/mol或者约100,000g/mol至约200,000g/mol。其它分子量范围也是可能的。在一些实施方案中,剥离层中所用聚合物的分子量可以为大于或等于约1,000g/mol、大于或等于约5,000g/mol、大于或等于约10,000g/mol、大于或等于约15,000g/mol、大于或等于约20,000g/mol、大于或等于约25,000g/mol、大于或等于约30,000g/mol、大于或等于约50,000g/mol、大于或等于约100,000g/mol或者大于或等于约150,000g/mol。在某些实施方案中,剥离层中所用聚合物的分子量可以为小于或等于约150,000g/mol、小于或等于约100,000g/mol、小于或等于约50,000g/mol、小于或等于约30,000g/mol、小于或等于约25,000g/mol、小于或等于约20,000g/mol、小于小于或等于约10,000g/mol、约5,000g/mol或者小于或等于约1,000g/mol。其它范围也是可能的。上述范围的组合也是可能的(例如大于或等于约5,000g/mol且小于或等于约50,000g/mol)。
当使用聚合物时,聚合物可以为基本交联、基本未交联或者部分交联的,因为这样本公开内容不受限制。另外,聚合物可以为基本结晶、部分结晶或基本无定形的。不愿受理论束缚,其中聚合物为无定形的实施方案可显示出较光滑的表面,因为聚合物的结晶可导致提高的表面粗糙度。在某些实施方案中,剥离层由蜡形成或者包含蜡。
上文列出以及本文所述的聚合物材料可进一步包含盐,例如锂盐(例如LiSCN、LiBr、LiI、LiClO4、LiAsF6、LiSO3CF3、LiSO3CH3、LiBF4、LiB(Ph)4、LiPF6、LiC(SO2CF3)3和LiN(SO2CF3)2)以增强离子传导性。
在一些实施方案中,本文所述聚合物和/或剥离层包含填料,例如无机填料(例如SiO2或氧化铝)。在某些情况下,可将导电填料加入用于形成剥离层的材料中。导电填料可提高剥离层的材料的导电性能并且可包括例如导电碳,例如炭黑(例如Vulcan XC72R炭黑、Printex Xe-2或Akzo Nobel Ketjen EC-600JD)、石墨纤维、石墨纤丝、石墨粉(例如Fluka#50870)、活性碳纤维、碳织物、非活性碳纳米纤维。导电填料的其它非限定性实例包括金属涂覆玻璃颗粒、金属颗粒、金属纤维、纳米颗粒、纳米管、纳米丝、金属薄片、金属粉、金属纤维、金属网。在一些实施方案中,导电填料可包含导电聚合物。非导电或半导电填料(例如二氧化硅颗粒)也可包含在剥离层中。其它填料也是可能的。
如果存在的话,剥离层中填料的量可以以例如剥离层的5-10%、10-90%或20-80重量%的范围存在(例如如在将适量溶剂从剥离层中除去以后和/或在层适当地固化以后测量)。例如,剥离层可包含剥离层的20-40重量%、20-60重量%、40-80重量%、60-80重量%的导电填料。
在一组实施方案中,剥离层包含表面活性剂。表面活性剂可以为例如阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂或两性离子表面活性剂。阴离子表面活性剂的非限定性实例包括全氟辛酸盐、全氟辛烷磺酸盐、十二烷基硫酸钠、月桂基硫酸铵和其它烷基硫酸盐、月桂醇聚醚硫酸钠、烷基苯磺酸盐、其它皂或脂肪酸盐及其衍生物。阳离子表面活性剂的非限定性实例包括鲸蜡基三甲基溴化铵和其它烷基三甲基铵盐、鲸蜡基吡啶卤化物、聚乙氧基化牛脂胺、苯扎氯铵、苄索氯铵及其衍生物。非离子表面活性剂的非限定性实例包括烷基聚(氧化乙烯)(例如4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇、叔辛基苯氧基聚乙氧基乙醇、聚乙二醇叔辛基苯醚)、烷基苯酚聚(氧化乙烯)、聚(氧化乙烯)和聚(氧化丙烯)的共聚物、烷基聚葡糖苷(例如辛基葡糖苷和癸基麦芽糖苷)、脂肪醇(例如鲸蜡醇和油醇)、椰油酰胺MEA或DEA、聚山梨酸酯(例如Tween 20、Tween 80)、十二烷基二甲基氧化胺及其衍生物。两性离子表面活性剂的非限定性实例包括十二烷基甜菜碱、椰油酰氨基丙基甜菜碱和椰油两性甘氨酸盐及其衍生物。
如果存在的话,剥离层中表面活性剂的量可例如以剥离层的0.01-10重量%的范围存在(例如如在将适量溶剂从剥离层中除去以后和/或在层适当地固化以后测量)。
在某些实施方案中,剥离层包含聚合物和一种或多种溶剂。在一些情况下,聚合物为通过溶剂溶胀的聚合物凝胶。在一个特定实施方案中,剥离层包含在电化学电池中且在电解质溶剂中溶胀。然而,在其它实施方案中,聚合物不可在电解质溶剂中溶胀。可使用各种溶剂,例如本文中更详细描述的电解质溶剂。
与聚合物一起使用的特定溶剂或溶剂组合可取决于例如配制剂中任何其它材料的类型和量、将配制剂应用于电池组分上的方法、溶剂关于电化学电池的其它组分(例如集电器、电活性材料、电解质)的惰性。例如,特定溶剂或溶剂组合可部分地基于其将配制剂中的任何其它材料(例如聚合物、填料等)溶剂化或溶解的能力。在一些情况下,所用一种或多种可润湿(和活化)剥离层的表面以促进粘附,但不透过剥离层。当选择合适的溶剂时,可考虑这类和其它因素的组合。
合适溶剂的非限定性实例可包括含水液体、非水液体及其混合物。在一些实施方案中,可用于剥离层的溶剂包括例如水、甲醇、乙醇、异丙醇、丙醇、丁醇、四氢呋喃、二甲氧基乙烷、丙酮、甲苯、二甲苯、乙腈、环己烷,并且可使用其混合物。非水液体溶剂的其它实例包括但不限于N-甲基乙酰胺、乙腈、乙缩醛、缩酮、酯、碳酸酯、砜、亚硫酸盐、环丁砜、亚砜、脂族醚、环醚、乙二醇二甲醚、聚醚、磷酸酯、硅氧烷、二氧戊环、N-烷基吡咯烷酮、前述的取代形式及其混合物。也可使用前述的氟化衍生物。当然,也可根据需要加入其它合适的溶剂。溶剂的其它实例,例如可任选包含一种或多种盐的电解质溶剂更详细地描述于本文中。
剥离层可通过任何合适的方法沉积。沉积剥离层的方法的实例包括旋转浇铸、刮涂、闪蒸、电子束蒸发、真空热蒸发、激光消融、化学蒸气沉积、热蒸发、等离子体辅助化学真空沉积、激光增强化学蒸气沉积、喷射蒸气沉积和挤出。以交联聚合物层的形式沉积剥离层的方法包括闪蒸方法,例如如美国专利No.4,954,371,Yializis所述。以包含锂盐的交联聚合物层的形式沉积剥离层的方法可包括闪蒸方法,例如如美国专利No.5,681,615,Afftnito等人所述。用于沉积剥离层的技术可取决于沉积材料的类型、层的厚度等。其它技术也是可能的。
在某些实施方案中,剥离层通过首先形成剥离层配制剂,然后通过合适的方法将剥离层配制剂置于表面(例如载体基质的表面)上而制造。在一些情况下,剥离层配制剂为淤浆的形式。淤浆可包含可至少部分地溶解或分散剥离层材料(例如聚合物)的任何合适溶剂。例如,主要由疏水性材料形成的剥离层可包含在淤浆中的有机溶剂,而主要由亲水性材料形成的剥离层可包含在淤浆中的水。在某些实施方案中,除水外,或者代替水,淤浆可包含其它溶剂(例如可形成氢键的其它溶剂),这可产生与剥离层的组分的有利相互作用。例如,可使用醇,例如甲醇、乙醇、丁醇或异丙醇。在一些情况下,剥离层淤浆包含至少10重量%、至少15重量%、至少20重量%、至少20重量%、至少30重量%、至少40重量%或者任何其它合适的重量%的醇。在某些实施方案中,其它溶剂,例如有机酸、酯、乙二醇二甲醚和醚也可单独或者与其它溶剂组合使用。
各种组分的混合可使用本领域中已知的多种方法中的任一种实现,条件是得到组分的所需溶解、分散或悬浮。合适的混合方法包括但不限于机械搅拌、研磨、超声波、球磨、砂磨和冲击磨。
各种组分的混合可在各种温度下进行。例如,可将各种组分如聚合物材料和溶剂在大于或等于25℃、大于或等于50℃、大于或等于70℃,或者大于或等于90℃的温度下混合合适的时间量以得到组分的所需溶解或分散。在一些实施方案中,可将各种组分如聚合物材料和溶剂在小于或等于50℃、小于或等于70℃或者小于或等于90℃的温度下混合合适的时间量以得到组分的所需溶解或分散。根据需要,可进行在该温度和其它温度下混合直至聚合物溶解和/或分散。可任选将该溶液/分散体与剥离层的其它组分(例如导电填料、溶剂、交联剂等)例如在合适的温度下混合以形成剥离层淤浆。
剥离层配制剂可通过任何合适的方法置于表面上。在某些实施方案中,剥离层配制剂通过狭缝式挤压型涂覆或逆转辊涂覆置于表面上。在这些方法各自中,剥离层配制剂可作为淤浆提供给表面如载体基质,然后在将另一层沉积于剥离层上以前,可任选使其经受任何数目的固化、干燥和/或处理步骤。在一些实施方案中,涂层的厚度、机械完整性和/或涂层均匀性可通过改变所用涂覆方法的参数而调整。
可控制涂覆方法的几个方面以产生合适的剥离层。当涂覆非常薄的剥离层时,机械完整性可取决于涂层均匀性。颗粒污染物和来自溶液的不想要沉淀可导致最终剥离层中差的机械性能。为防止这些缺陷,可采取几个步骤。例如,方法可涉及保持待用剥离层涂覆的表面基本不含静电,所述静电可能影响剥离层在该表面上的附着力,并且还可能吸引表面上的不想要的颗粒污染物。静电可通过将静态线丝展开地应用于基质上,或者控制涂布辊的电子状态(例如连接在地面上、漂浮、偏移)而降低或消除。还可使用方法以防止不想要的从涂覆溶液中的沉淀出来,例如通过使用连续混合以防止凝结。其它技术也是本领域技术人员已知的。
在一组实施方案中,狭缝式挤压型涂覆用于在表面上形成剥离层涂层。在狭缝式挤压型涂覆中,流体通过泵输送至模具中,所述模具又将涂覆流体输送至所需基质。模具通常包含三部分:顶部、底部和内部垫片。顶部或底部可包含井或储液器以容纳流体并将其涂布在模具的宽度上。垫片决定顶板与地板之间的间隙的尺寸以及限定涂层宽度。
在这些情况下,涂层的厚度可主要取决于三个因素:将流体输送至模具的速率(泵速度)、基质移动通过模唇的速度(线速度)和模唇中的间隙尺寸(狭缝高度)。厚度还取决于待涂覆溶液的固有性能如粘度和%固体。
涂层的均匀性直接涉及模具中的内部歧管如何好地将流体分布于基质上。为控制涂层均匀性,可采取几个步骤。例如,可调整储液器的形状以均衡模具宽度上的压力。可调整内部垫片的形状以解释由于流体入口位置导致的压力变化。也可调整内部垫片厚度以产生流体入口与模唇之间较高或较低的压降。压降决定流体在模具中的停留时间并可用于影响涂层厚度并防止问题,例如模具中的干掉。
在另一组实施方案中,逆转辊涂覆用于在表面上形成剥离层涂层。在一个实施方案,三辊逆转辊涂布机中,流体由第一辊(计量辊)获取,以可控方式转移至第二辊(施涂辊),然后在它行进通过时由基质擦除第二辊。可使用更多辊,其中使用类似的技术。将涂覆流体通过泵输送至储液器中;布置计量辊使得它在填充盘时部分地没入涂覆流体中。当计量辊旋转时,施涂辊移动(或者反之亦然),使得流体在二者之间转移。
流体的量以及另外剥离层的最终涂层厚度部分地由转移至施涂辊的流体的量决定。流体转移的量可通过改变辊之间的间隙或者通过在方法中的任何点应用刮刀而影响。涂层厚度也以类似于狭缝式挤压型涂覆的方式受线速度影响。涂层均匀性在逆转辊涂覆的情况下可能主要取决于涂覆辊以及如果使用的话刮刀的均匀性。确定剥离层的合适组成、构型(例如交联或基本未交联)和尺寸可由本领域技术人员不经不当的实验而进行。如本文所述,剥离层可尤其基于例如其在电解质中的惰性以及剥离层待并入最终电极中还是电化学电池中而选择。用于形成剥离层的特定材料可取决于例如待与剥离层相邻布置的层的材料组成及其与那些层的粘合亲合力以及厚度和用于沉积各层的方法。可选择剥离层的尺寸使得电化学电池具有低总重量,同时在制造期间提供合适的释放性能或其它性能。
选择用于剥离层的合适材料的一种简单筛检试验可包括形成剥离层,将该层浸入电解质中并观察与对照体系中的相比发生抑制还是其它破坏性行为(例如瓦解)。这同样可适用于附着在剥离层上的其它层(例如保护层、电活性材料层)。另一简单的筛检试验可包括形成包含一个或多个剥离层的电极并在其它电池组分的存在下将电极浸入电池的电解质中,将电池放电/充电,和观察比放电电容与对照体系相比较高还是较低。高放电电容可表示剥离层与电池的其它组件之间没有或者最小的负面反应。
为测试剥离层是否在一个表面上具有合适的附着力,但在另一表面上具有较低附着力以容许剥离层释放,可测量附着力或者从单位表面面积上除去剥离层所需的力(例如以N/m2为单位)。附着力可使用拉伸试验设备或者另一合适的设备测量。这类实验可任选在溶剂(例如电解质)或其它组分(例如填料)的存在下进行以确定溶剂和/或组分对附着力的影响。在一些实施方案中,可进行拉伸强度或剪切强度的机械试验。例如,剥离层可位于第一表面上并可施加对向力直至表面不再连接。(绝对)拉伸强度或剪切强度通过分别测量拉伸或剪切下的最大负荷,除以制品之间的界面面积(例如制品之间重叠的表面积)而测定。标准化拉伸强度或剪切强度可通过将拉伸强度或剪切强度分别除以应用于制品上的剥离层的质量而测定。在一组实施方案中,使用“T-剥离试验”。例如,可使挠性制品如一片带子置于剥离层的表面上,并可通过提起一个边缘并在近似地垂直于该层的方向上拉动该边缘而将该带拉离另一层的表面,使得当带移动时,它连续地限定条以约90度弯曲至它脱离另一层的点。在其它实施方案中,层之间的相对附着力可通过将剥离层置于两个层之间(例如载体基质与集电器之间)并施加力直至表面不在连接而测定。在一些这类实施方案中,粘附在第一表面上但不经剥离层的机械瓦解而从第二表面释放的剥离层可用作用于制造电化学电池的组件的剥离层。附着力促进剂促进两个表面之间的附着力的效力可使用类似的方法测试。其它简单的试验是已知的并可由本领域技术人员进行。
剥离层与与剥离层接触的两个表面之间的粘合强度的%差可通过取得这两个界面上粘合强度之间的差计算。例如,对于位于两个层之间(例如载体基质与保护层之间)的剥离层,可计算剥离层在第一层(例如载体基质)上的粘合强度,并且可计算剥离层在第二层(例如保护层)上的粘合强度。然后可从较大值中减去较小值,并将该差除以较大值以测定两个层各自与剥离层之间的粘合强度的%差。在一些实施方案中,该粘合强度的%差为大于或等于约20%、大于或等于约30%、大于或等于约40%、大于或等于约50%、大于或等于约60%、大于或等于约70%,或者大于或等于约80%。粘合强度的%差可通过本文所述方法,例如通过选择用于各个层的合适材料而调整。
剥离层与电化学电池的组件(包括第二剥离层)之间的附着和/或释放可涉及缔合,例如吸附、吸收、范德瓦尔斯相互作用、氢键键合、共价键合、离子键合、交联、静电相互作用及其组合。这类相互作用的类型和程度也可通过本文所述方法调整。
在其中剥离层并入最终电极结构中的实施方案中,可以为理想的是提供能够充当电化学电池内的隔片的剥离层。在该实施方案中,剥离层对电化学电池的电活性物种而言是传导性的。剥离层的传导率可例如通过干状态下材料的本征传导率提供,或者剥离层可包含能够被电解质溶胀以形成在湿状态下具有传导性的凝胶聚合物的聚合物。尽管具有任何量的离子传导率的材料可用于该实施方案中,在一些实施方案中,剥离层由可在干或湿状态下具有例如大于或等于约10-7S/cm、大于或等于约10-6S/cm、大于或等于约10-6S/cm、大于或等于约10-4S/cm、大于或等于约10-3S/cm、大于或等于约10-2S/cm、大于或等于约10-1S/cm、大于或等于约1S/cm、大于或等于约101S/cm、大于或等于约102S/cm、大于或等于约103S/cm、大于或等于约104S/cm的传导率,或者任何其它合适的传导率的材料构成。相应地,剥离层可在干或湿状态下具有小于或等于约104S/cm、小于或等于约103S/cm、小于或等于约102S/cm、小于或等于约10S/cm、小于或等于约10-1S/cm、小于或等于约10-2S/cm、小于或等于约10-3S/cm的传导率,或者任何其它合适的传导率。以上的组合是可能的(例如大于或等于约10-4S/cm且小于或等于约10-1S/cm的传导率)。其它范围也是可能的。
再次参考图2,为提供沉积保护层的光滑表面,理想的是对应于剥离层与保护层之间的界面的与第一载体基质相对的表面5具有低表面粗糙度。在一组实施方案中,剥离层的表面和在沉积保护层之后形成的相应界面具有小于或等于约2μm、小于或等于约1.5μm、小于或等于约1μm、小于或等于约0.9μm、小于或等于约0.8μm、小于或等于约0.7μm、小于或等于约0.6μm、小于或等于约0.5μm的平均峰-谷粗糙度(Rz),或者任何其它合适的粗糙度。相应地,剥离层的表面和相应界面可具有大于或等于约50nm、大于或等于约0.1μm、大于或等于约0.2μm、大于或等于约0.4μm、大于或等于约0.6μm、大于或等于约0.8μm、大于或等于约1μm的Rz,或者任何其它合适的粗糙度。上述范围的组合是可能的。(例如大于或等于约0.1μm且小于或等于约1μm的Rz)。其它范围也是可能的。
剥离层可以为任何合适的厚度以将保护层与下面基质分离并提供保护层沉积于其上的光滑表面。在一个实施方案中,剥离层的厚度为下面载体基质的平均峰-谷表面粗糙度的大于或等于约1、大于或等于约2、大于或等于约3,或者大于或等于约4倍。在其中剥离层充当最终电极结构中的隔片的实施方案中,可能想要较厚的剥离层。鉴于上文,取决于所用特定载体基质和剥离层的意欲功能,剥离层厚度可以为大于或等于约0.1μm、大于或等于约0.2μm、大于或等于约0.3μm、大于或等于约0.4μm、大于或等于约0.5μm、大于或等于约0.6μm、大于或等于约0.7μm、大于或等于约0.8μm、大于或等于约0.9μm、大于或等于约1μm、大于或等于约2μm、大于或等于约3μm、大于或等于约4μm、大于或等于约5μm、大于或等于约10μm、大于或等于约20μm,或者任何其它合适的厚度。相应地,剥离层厚度可以为小于或等于约100μm、小于或等于约50μm、小于或等于约20μm、小于或等于约10μm、小于或等于约5μm、小于或等于约4μm、小于或等于约3μm、小于或等于约2μm、小于或等于约1μm,或者任何其它合适的厚度。上述范围的组合是可能的(例如剥离层可具有大于或等于约0.1μm且小于或等于约1μm的厚度)。其它范围也是可能的。
除上文外,在其中剥离层并入最终电极结构中的实施方案中,剥离层会贡献于电池内电阻。因此在一些实施方案中,可能理想的是相对于所需保护层的厚度,限制剥离层的厚度以限制电池内电阻的提高。在某些实施方案中,剥离层的厚度可以为保护层厚度的小于或等于约1、小于或等于约0.9、小于或等于约0.8、小于或等于约0.7、小于或等于约0.6、小于或等于约0.5、小于或等于约0.4、小于或等于约0.3或者小于或等于约0.2倍。相应地,剥离层的厚度可以为保护层厚度的大于或等于约0.1、大于或等于约0.2、大于或等于约0.3、大于或等于约0.4,或者大于或等于约0.5倍。以上的组合是可能的(例如剥离层的厚度可以为保护层厚度的大于或等于约0.4且小于或等于约0.6倍)。其它范围也是可能的。
在剥离层并入最终电极结构(例如阳极)或电化学电池中的某些实施方案中,剥离层(例如聚合物层或其它合适材料)可具有对非均相电解质的一种电解质溶剂的亲合力,使得在电化学电池的操作期间,第一电解质溶剂不成比例地存在于阳极处,同时第二电解质溶剂基本不包含在剥离层中(并且可不成比例地存在于阴极处)。
由于第一电解质溶剂更接近阳极而存在,通常选择它以具有一种或多种特征,例如对电活性材料的低反应性(例如在电活性材料为锂的情况下,第一电解质可赋予锂循环能力)、合理的离子(例如锂离子)传导性,以及在Li-S电池的情况下,比第二电解质溶剂相对更低的聚硫化物溶解度(因为聚硫化物可与锂反应)。第二电解质溶剂可不成比例地存在于阴极处,并且例如可基本居于隔片、与阴极相邻的聚合物层和/或阴极的电活性材料层(例如阴极活性材料层)中。在一些情况下,第二电解质溶剂基本不与阳极接触。第二电解质溶剂可具有有利于较好的阴极性能的特征,例如对于Li-S电池,高聚硫化物溶解度、高倍率容量、高硫利用和高锂离子传导性,并且可具有宽液态温度范围。在一些情况下,第二电解质溶剂具有比第一电解质溶剂更高的对锂的反应性。因此,可以为理想的是在电池操作期间导致第二电解质溶剂存在于阴极处(即远离阳极),由此有效地降低阳极处的其浓度和反应性。
如上所述,非均相电解质的第一电解质溶剂可通过居于聚合物层中(例如与保护层或多层保护层相邻地布置)而不成比例地存在于阳极处。因此,可选择剥离层的材料组成使得材料具有与对第二电解质溶剂而言相比对第一电解质溶剂而言相对较高的亲合力。例如,在一些实施方案中,剥离层通过将单体、第一电解质溶剂和任选其它组分(例如交联剂、锂盐等)混合并将该混合物置于阳极上而以凝胶的形式制备。单体可通过各种方法(例如使用自由基引发剂、紫外线辐射、电子束或催化剂(例如酸、碱或过渡金属催化剂))聚合以形成凝胶电解质。聚合可在将混合物置于阳极上以前或以后进行。在组装如上所述电极的其它组件和组装电池以后,可将电池用第二电解质溶剂填充。第二电解质溶剂可不包含在剥离层中(例如由于聚合物与已存在于剥离层中的第一电解质溶剂的高亲合力和/或由于第一与第二电解质溶剂之间的不可溶混性)。
在另一实施方案中,剥离层如本文所述在阳极处形成并在组装电池以前干燥。然后可将电池用包含第一和第二电解质溶剂的非均相电解质填充。如果选择剥离层使得它具有对第一电解质溶剂的较高亲合力(和/或隔片和/或阴极可具有对第二电解质溶剂的较高亲合力),则在将它们引入电池中时,第一和第二电解质溶剂中的至少一部分可分化。在又一实施方案中,第一和第二电解质溶剂的分化可在电池的第一次放电开始以后进行。例如,当产生热,同时操作电池时,剥离层与第一电解质溶剂之间的亲合力可提高(和/或隔片和/或阴极与第二电解质溶剂之间的亲合力可提高)。因此,在电池操作期间可发生较大程度的电解质溶剂分化。另外,在较低温度下,效果是不可逆的,使得第一电解质溶剂被捕集在剥离层内,且第二电解质溶剂被捕集在隔片和/或阴极的孔内。在一些情况下,在用于影响所需聚合物/电解质溶剂相互作用的程度以前可将电池组的组件(例如剥离层)预处理(例如用热)。使电解质溶剂分化的其它方法也是可能的。
在另一实施方案中,剥离层如本文所述沉积于阳极处,且阳极(包括剥离层)暴露于第一电解质溶剂下。该暴露可导致第一电解质溶剂被吸收到剥离层中。电池可通过将阴极与阳极相邻地布置使得剥离层位于阳极与阴极之间而形成。然后可使阴极暴露于第二电解质溶剂下,例如使得至少一部分第二电解质溶剂吸收到阴极中。在其它实施方案中,可在阳极和阴极的组装以前使阴极暴露于第二电解质溶剂下。任选,阴极可包含与第一电解质溶剂相比更加优先吸收第二电解质溶剂的聚合物层。在一些实施方案中,例如通过选择用于形成阳极和/或阴极的合适剥离层和/或材料,第一和第二电解质溶剂中的至少一部分可在电池内分离。例如,较高比例的第一电解质溶剂可居于阳极处,且较高比例的第二电解质溶剂可居于阴极处。
在其中剥离层并入最终电极结构和/或电化学电池中的某些实施方案中,剥离层设计以能够经得起电池循环期间施加在电化学电池或电池组件上的力或压力的施加。压力可以为外部施加(例如在一些实施方案中,单轴)的压力。在一些实施方案中,可选择外部施加的压力大于形成电活性材料层的材料的屈服应力。例如,在其中电活性材料层包含锂的实施方案中,施加在电池上的施加压力可以为大于或等于约5kg/cm2。在一些实施方案中,施加压力可以为大于或等于约5kg/cm2、大于或等于约6kg/cm2、大于或等于约7kg/cm2、大于或等于约8kg/cm2、大于或等于约9kg/cm2,或者任何其它合适的压力。相应地,施加压力可以为小于或等于约20kg/cm2、小于或等于约10kg/cm2、小于或等于约9kg/cm2、小于或等于约8kg/cm2、小于或等于约7kg/cm2、小于或等于约6kg/cm2,或者任何其它合适的压力。以上的组合是可能的(例如大于或等于约5kg/cm2且小于或等于约10kg/cm2的施加压力)。其它范围也是可能的。用于将合适的压力施加在电化学电池上的合适结构更详细地描述于2010年8月24日提交,作为美国公开No.2011/0177398公开,标题为“电化学电池”的美国专利申请序列号:12/862,528中,通过引用将其关于所有目的的内容全部并入本文中。
如图2中说明性地显示,保护层6可位于剥离层的表面5上。不愿受理论束缚,对于较薄的保护层(例如厚度为大约下面剥离层的粗糙度),保护层的平均峰-谷粗糙度可基本类似于保护层与剥离层之间的界面的厚度。因此,当保护层厚度小于保护层的粗糙度时,可能的是缺陷和/或间隙可存在于保护层中,如上文关于图1A-1B所指出的。因此,在至少一个实施方案中,理想的是保护层厚度大于约保护层、剥离层的表面和/或与剥离层的界面的平均峰-谷粗糙度以提供基本连续保护层。在一些实施方案中,保护层厚度可以为保护层、剥离层的表面和/或与剥离层的界面的平均峰-谷粗糙度的大于或等于约1倍、大于或等于约2倍、大于或等于约3倍或者大于或等于约4倍以进一步确保基本连续保护层。在一些实施方案中,保护层厚度可以为保护层、剥离层的表面和/或与剥离层的界面的平均峰-谷粗糙度的小于或等于约10倍、小于或等于约7倍、小于或等于约5倍、小于或等于约3倍或者小于或等于约2倍。上述范围的组合也是可能的(例如保护层、剥离层的表面和/或与剥离层的界面的平均峰-谷粗糙度的大于或等于约1倍且小于或等于约5倍)。其它范围也是可能的。
在一个示例实施方案中,剥离层的表面5、保护层6和/或剥离层4与保护层6之间的界面可显示出约0.1μm至约1μm的平均峰-谷粗糙度。在该实施方案中,保护层厚度可以为例如约0.1μm至约2μm。例如,在一些实施方案中,如果所需保护层厚度为约1μm至约2μm,则剥离层的表面5、保护层6和/或剥离层4与保护层6之间的界面的平均峰-谷粗糙度可以为小于约1μm。
鉴于上文,保护层的厚度可以为小于或等于约5μm、小于或等于约2μm、小于或等于约1.5μm、小于或等于约1.4μm、小于或等于约1.3μm、小于或等于约1.2μm、小于或等于约1.1μm、小于或等于约1μm、小于或等于约0.9μm、小于或等于约0.8μm、小于或等于约0.7μm、小于或等于约0.6μm、小于或等于约0.5μm、小于或等于约0.4μm、小于或等于约0.3μm、小于或等于约0.2μm、小于或等于约0.1μm、小于或等于约50nm、小于或等于约30nm,或者任何其它合适的厚度。相应地,保护层的厚度可以为大于或等于约10nm、大于或等于约30nm、大于或等于约50nm、大于或等于约0.1μm、大于或等于约0.2μm、大于或等于约0.3μm、大于或等于约0.4μm、大于或等于约0.6μm、大于或等于约0.8μm、大于或等于约1μm、大于或等于约1.2μm、大于或等于约1.4μm、大于或等于约1.5μm,或者任何其它合适的厚度。以上的组合是可能的(例如保护层的厚度可以为小于或等于约2μm且大于或等于约0.1μm)。其它范围也是可能的。
保护层可由能够充当对下面电极结构的保护层并且对电活性物种而言为传导性的任何合适材料制成。保护层也可称为“单离子传导性材料层”。取决于特定实施方案,保护层可以为电绝缘或者导电的。在一些实施方案中,保护层为陶瓷、玻璃质-陶瓷或玻璃。关于锂金属基电极结构的目前讨论,用于保护层的合适材料可包括但不限于氮化锂、硅酸锂、硼酸锂、铝酸锂、磷酸锂、氮氧化磷锂、硅硫化锂、锗硫化锂、锂氧化物(例如Li2O、LiO、LiO2、LiRO2,其中R为稀土金属)、氧化镧锂、氧化钛锂、硼硫化锂、铝硫化锂、磷硫化锂及其组合。
保护层可通过任何合适的方法沉积,例如溅射、电子束蒸发、真空热蒸发、激光消融、化学蒸气沉积(CVD)、热蒸发、等离子体增强化学真空沉积(PECVD)、激光增强化学蒸气沉积和喷射蒸气沉积。所用技术可取决于待沉积材料的类型、层的厚度等。
在一些实施方案中,可将包含一些孔隙率的保护层用聚合物或其它材料处理,使得可将保护层的小孔和/或纳米孔用聚合物填充。形成这类结构的技术的实例更详细地描述于2010年8月24日提交,作为美国公开No.2011/0177398公开,标题为“电化学电池”的美国专利申请序列号:12/862,528中,通过引用将其关于所有目的的全部内容并入本文中。
作为选择或者另外,在一些实施方案中,保护层可以为对电活性物种而言为传导性的聚合物层。合适的聚合物包括但不限于导电和电绝缘离子传导聚合物。可能的导电聚合物包括但不限于聚(乙炔)、聚(吡咯)、聚(噻吩)、聚(苯胺)、聚(芴)、聚萘、聚(对苯硫醚)和聚(对-亚苯基亚乙烯基)。可能的电绝缘聚合物包括但不限于丙烯酸酯、聚氧化乙烯、聚硅氧烷和聚氯乙烯。本文关于剥离层描述的聚合物也可用于保护层中。也可将以上聚合物用离子传导盐掺杂以提供或者增强所需离子传导性能。用于锂基电池的合适盐包括例如LiSCN、LiBr、LiI、LiClO4、LiAsF6、LiSO3CF3、LiSO3CH3、LiBF4、LiB(Ph)4、LiPF6、LiC(SO2CF3)3和LiN(SO2CF3)2,但其它盐可用于其它化学。以上材料可使用旋转浇铸、刮涂、闪蒸或者任何其它合适的沉积技术沉积。在一些实施方案中,保护层由本文关于剥离层列出的任选具有改进的分子量、交联密度的合适聚合物材料和/或加入添加剂或其它组分而形成或者包含所述材料。
尽管图中描述了单一保护层,还预期使用多个保护层或者多层保护层的实施方案。可能的多层结构可包括如2010年8约24日提交,作为美国公开No.2011/0177398公开,标题为“电化学电池”的美国专利申请序列号:12/862,528中所述聚合物层和单离子传导层的排列,通过引用将其关于所有目的的全部内容并入本文中。例如,在一些实施方案中,多层保护层可包含交替的单离子传导层和聚合物层。可能多层结构的其它实例和构型还更详细地描述于2006年4月06日提交,作为美国公开No.2007-0221265公开且标题为“可再充电锂/水、锂/空气电池”的美国专利申请No.11/400,781,Affinito等人中,通过引用将其关于所有目的的全部内容并入本文中。
多层保护层可通过降低物种至电活性材料层的直接流动而充当优秀的渗透屏障,因为这些物种倾向于扩散通过层中的缺陷或开放空间。因此,可降低枝晶形成、自放电和循环寿命的损失。多层保护层的另一优点包括结构的机械性能。聚合物层与单离子传导层相邻地布置可降低单离子传导层裂化的倾向,并可提高结构的屏障性能。因此,由于生产过程期间的处理,这些层压物可能对应力而言比不具有中间聚合物层的结构更坚固。另外,多层保护层还可具有提高的对体积变化的耐受性,所述体积变化伴随在电池的放电和充电循环期间锂从电活性材料层的前后迁移。
现在转向电活性材料,参考图2,电活性材料层8可由用于所需应用的任何合适材料制成。因此,尽管本文所述许多实施方案涉及锂作为电活性材料,其它电活性材料也是可能的。在一些实施方案中,电活性材料为金属合金,例如掺杂有Al、Mg、Zn或Si的锂金属。合金的其它实例更详细地描述于2010年8约24日提交,作为美国公开No.2011/0177398公开,标题为“电化学电池”的美国专利申请序列号:12/862,528中,通过引用将其关于所有目的的全部内容并入本文中。在其它实施方案中,合适的电活性材料包括含碳材料(例如对于锂离子电化学电池)。其它材料也是可能的。
电活性材料层可使用物理蒸气沉积、溅射、化学沉积、电化学沉积、热蒸发、喷射蒸气沉积、激光消融或者任何其它合适的方法沉积。在可选实施方案中,电活性材料层通过将电活性材料层粘合在保护层上而沉积在保护层。在该实施方案中,在粘合电活性材料层以前可将临时粘合层沉积在保护层上,或者可将电活性材料层直接粘合在保护层上。在一些实施方案中,临时粘合层可在电极结构在电化学电池中随后循环时与电活性材料形成合金。例如,在一些实施方案中,可使用可与锂成合金的银和/或其它材料。在其中已形成或沉积保护层的实施方案中,可能不需要保持电活性材料层的未暴露表面上的低表面粗糙度。然而,还预期其中控制电活性材料的表面粗糙度的实施方案。
在某些实施方案中,电活性材料层的厚度可以为例如约2-200μm。例如,电活性材料层可具有小于或等于约200μm、小于或等于约100μm、小于或等于约75μm、小于或等于约50μm、小于或等于约25μm、小于或等于约10μm或者小于或等于约5μm的厚度。在一些实施方案中,电活性材料层可具有大于或等于约1μm、大于或等于约5μm、大于或等于约15μm、大于或等于约25μm、大于或等于约50μm、大于或等于约75μm、大于或等于约100μm,或者大于或等于约150μm的厚度。上述范围的组合也是可能的(例如大于或等于约25μm且小于或等于约50μm)。其它范围也是可能的。厚度的选择可取决于电池设计参数,例如所需循环寿命、电池容量和阴极的厚度。
在一些实施方案中,例如如图2A中所述,电活性材料层充当电活性材料和集电器。作为选择,在一些实施方案中,例如用于高倍率电化学电池的电极结构,理想的是包含集电器10,如图2D中所述。在该实施方案中,集电器用于收集来自电活性材料的电荷,并将该电荷传导至引线和外部接触。在一些实施方案中,集电器还可充当支撑电极结构的结构元素。
用于集电器的合适材料包括但不限于:金属(例如铜、镍、铝、钝化金属和其它合适的金属);金属化聚合物;导电聚合物;包含分散在其中的导电颗粒的聚合物;和其它合适的材料。在一些实施方案中,集电器使用物理蒸气沉积、化学蒸气沉积、电化学沉积、溅射、刮涂、闪蒸或者用于所选择材料的任何其它合适沉积技术沉积在电活性材料层上。作为选择,集电器可分开地形成并粘合在电极结构上。
如本文所述,剥离层可位于载体基质上以促进电极的制造。任何合适的材料可用作载体基质。在一些实施方案中,载体基质的材料(和厚度)可至少部分地由于其经得起某些加工条件如高温的能力而选择。基质材料也可至少部分地基于其对剥离层的粘合亲合力选择。在一些情况下,载体基质为聚合物材料。可用于形成所有或一部分载体基质的合适材料的实例包括本文所述适用作剥离层的那些中的某些,任选具有改进的分子量、交联密度,和/或加入添加剂或其它组分。在某些实施方案中,载体基质包含聚酯,例如聚对苯二甲酸乙二醇酯(PET)(例如光学级聚对苯二甲酸乙二醇酯)、聚烯烃、聚丙烯、尼龙、聚氯乙烯和聚乙烯(其可任选金属化)。在一些情况下,载体基质包含金属或陶瓷材料。在一些实施方案中,载体基质包含可任选置于较厚基质材料上的膜。例如,在某些实施方案中,载体基质包含聚合物膜或金属化聚合物膜(使用各种金属如铝和铜)。载体基质还可包含其它组分,例如填料、粘合剂和/或表面活性剂。
另外,载体基质可具有任何合适的厚度。例如,载体基质的厚度可以为大于或等于约5μm、大于或等于约15μm、大于或等于约25μm、大于或等于约50μm、大于或等于约75μm、大于或等于约100μm、大于或等于约200μm、大于或等于约500μm,或者大于或等于约1mm。在一些实施方案中,载体基质可具有小于或等于约10mm、小于或等于约5mm、小于或等于约3mm或者小于或等于约1mm的厚度。上述范围的组合也是可能的(例如大于或等于约100μm且小于或等于约1mm)。其它范围也是可能的。在一些情况下,载体基质具有等于或大于剥离层的厚度的厚度。
在一组实施方案中,载体基质显示出小于或等于剥离层的所需表面粗糙度的表面粗糙度。不愿受理论束缚,较光滑载体基质的使用可理想地赋予较薄剥离层的使用以确保在载体基质沉积表面上基本连续的覆盖。在一些实施方案中,载体基质的表面可具有小于或等于约2μm、小于或等于约1.5μm、小于或等于约1μm、小于或等于约0.9μm、小于或等于约0.8μm、小于或等于约0.7μm、小于或等于约0.6μm、小于或等于约0.5μm、小于或等于约0.4μm、小于或等于约0.3μm、小于或等于约0.2μm、小于或等于约0.1μm的平均峰-谷粗糙度(Rz),或者任何其它合适的粗糙度。相应地,载体基质的表面可具有大于或等于约50nm、大于或等于约0.1μm、大于或等于约0.2μm、大于或等于约0.4μm、大于或等于约0.6μm、大于或等于约0.8μm、大于或等于约1μm的Rz,或者任何其它合适的粗糙度。上述范围的组合是可能的(例如大于或等于约0.1μm且小于或等于约1μm的Rz)。其它范围也是可能的。
在另一组实施方案中,载体基质可显示出大于剥离层的所需表面粗糙度的表面粗糙度。为得到剥离层的所需表面粗糙度,可选择剥离层的厚度为足够厚的以容许剥离层的表面粗糙度与下面载体基质表面粗糙度基本去耦。该去耦可容许剥离层具有小于下面基质的平均峰-谷粗糙度的平均峰-谷粗糙度。在一些实施方案中,剥离层厚度可以为载体基质的Rz的小于或等于约20倍、小于或等于约15倍、小于或等于约10倍、小于或等于约5倍、小于或等于约4倍、小于或等于约3倍或者小于或等于约2倍。相应地,剥离层厚度可以为载体基质的Rz的大于或等于约1倍、大于或等于约2倍、大于或等于约3倍、大于或等于约4倍、大于或等于约5倍或者大于或等于约10倍。以上范围的组合是可能的(例如为载体基质的Rz的大于或等于约2倍且为载体基质的Rz的小于或等于约10倍的剥离层厚度)。其它范围也是可能的。
图3-5描述了将两个分开的电极结构层压形成单一组合电极结构的层压方法。该实施方案的有利之处在于它产生排列在电极结构的相对侧上的两个电活性表面以参与电化学电池的电化学反应,如板和果冻卷排列中出现的。在所述实施方案中,第一部分12和第二部分14包含置于保护层6上的电活性材料层8,保护层6置于剥离层4上,剥离层4置于载体基质2上。第一和第二部分12和14定向使得两个电活性材料层彼此相邻。如图4中所述,然后将压力16施加在第一和第二部分上。在一些实施方案中,压力足以导致锂表面变形和第一与第二部分之间的粘附。在两个部分层压以后,可将载体基质2分层或者从所得组合电极结构上除去以形成图5中所述最终电极结构。如图6-8中所述,在一些实施方案中,第一和第二部分12和14中的至少一个包含集电器10。然后使组合电极结构经受相同的层压方法以形成具有嵌入组合电极结构中心的集电器的电极结构。如本文所述,在其某些实施方案中,其它中间层也可存在于图3-5中所示层之间。
在一些实施方案中,当电极部分在最终电化学电池中时,在两个电极部分的层压期间,和/或在电池的使用期间施加压力。压力可以为外部施加(例如在一些实施方案中,单轴)的压力。在一些实施方案中,可选择外部施加的压力类似于或大于形成电活性材料层的材料的屈服应力。例如,锂具有约5kg/cm2的屈服强度。因此,在其中电活性材料层包含锂的某些实施方案中,施加的压力可以为大于或等于约5kg/cm2。在一些实施方案中,施加压力可以为大于或等于约2.5kg/cm2、大于或等于约5kg/cm2、大于或等于约6kg/cm2、大于或等于约7kg/cm2、大于或等于约8kg/cm2、大于或等于约9kg/cm2,或者任何其它合适的压力。相应地,施加压力可以为小于或等于约20kg/cm2、小于或等于约10kg/cm2、小于或等于约9kg/cm2、小于或等于约8kg/cm2、小于或等于约7kg/cm2、小于或等于约6kg/cm2,或者任何其它合适的压力。以上的组合是可能的(例如大于或等于约5kg/cm2且小于或等于约10kg/cm2的施加压力)。其它范围也是可能的。在其中使用剥离层的实施方案中,剥离层可设计经得起这类施加压力。
还可设计剥离层,使得它的屈服强度大于特定值。在某些实施方案中,剥离层的屈服强度为随剥离层使用的电活性材料的屈服强度的至少约0.8倍,且在一些实施方案中,大于施加在制品上的压力(例如施加的各向异性力的法向分量)。在一些实施方案中,剥离层的屈服强度为电活性材料的屈服强度的大于或等于约1倍、大于或等于约1.2倍、大于或等于约1.5倍、大于或等于约2倍、大于或等于约3倍、大于或等于约4倍、大于或等于约5倍。相应地,剥离层的屈服强度可以为电活性材料的屈服强度的小于或等于约10倍、小于或等于约8倍、小于或等于约6倍、小于或等于约4倍或者小于或等于约2倍。上述范围的组合也是可能的(例如为电活性材料的屈服强度的大于或等于约1.2倍且小于或等于约10倍的屈服强度)。其它范围也是可能的。
在一些实施方案中,剥离层的屈服强度为施加在制品上(例如在制造和/或使用期间)的压力的法向分量的大于或等于约1倍、大于或等于约1.2倍、大于或等于约1.5倍、大于或等于约2倍、大于或等于约3倍、大于或等于约4倍、大于或等于约5倍。相应地,剥离层的屈服强度可以为施加在制品上(例如在制造和/或使用期间)的压力的法向分量的小于或等于约10倍、小于或等于约8倍、小于或等于约6倍、小于或等于约4倍或者小于或等于约2倍。上述范围的组合也是可能的(例如为施加在制品上的压力的法向分量的大于或等于约1.2倍且小于或等于约10倍的屈服强度)。其它范围也是可能的。
在一些实施方案中,施加的压力可与升高的温度组合以进一步促进两个电活性材料层相互的结合。为防止层压期间对电极的可能损害,应选择温度,使得它在层压方法期间不损害电极结构内的任何组件。在一个实施方案中,温度可以为大于或等于约50℃、大于或等于约60℃、大于或等于约70℃、大于或等于约80℃、大于或等于约90℃、大于或等于约100℃、大于或等于约110℃、大于或等于约120℃、大于或等于约130℃,或者任何其它合适范围。相应地,温度可以为小于或等于约150℃、小于或等于约140℃、小于或等于约130℃、小于或等于约120℃、小于或等于约110℃、小于或等于约100℃、小于或等于约90℃、小于或等于约80℃、小于或等于约70℃,或者任何其它合适范围。以上的组合是可能的(例如大于或等于约70℃且小于或等于约130℃)。其它范围也是可能的。
生产电极结构的一个实施方案的代表性流程图显示于图9中。载体基质以100提供。随后,使用任何上述材料和沉积方法将剥离层以102沉积在载体基质的表面上。然后将保护层以104沉积在具有较低平均峰-谷粗糙度的剥离层表面上。如先前所述,将保护层沉积在剥离层的表面上产生基本连续保护层,其具有显示出可基本类似于下面剥离层表面的粗糙度的粗糙度值的表面。任选,一个或多个其它保护层可沉积于基本连续保护层上(未显示)。在形成保护层以后,电活性材料层以106沉积于保护层上。取决于实施方案,任选集电器以108沉积于电活性材料层上。另外,在其中想要两个相对电活性表面的实施方案中,例如对于板式和果冻卷电化学电池构型,所得电极结构可与另一电极结构层压以形成在110处的具有两个相对电活性表面的组合电极结构。在形成所需电极结构以后,载体基质可在112处分层。取决于实施方案,剥离层可与或者不与载体基质分层,或者从电极结构(例如从保护层的表面)上除去。尽管上文描述了具体材料层和排列,应当理解其它可能的步骤,例如将其它材料层沉积于上述层之间也是可能的。
从电极结构(例如从保护层的表面)上除去剥离层的不同方法是可能的。如本文所述,在一些实施方案中,可将剥离层与电极结构分层。在其它实施方案中,可将所有或一部分剥离层溶于溶剂中以促进其从电极结构和/或载体基质上脱除。在一个特定实施方案中,剥离层由可溶于待随电极结构使用的电解质溶剂中的材料形成。在一些这类实施方案中,剥离层可并入电化学电池中,随后可通过使剥离层与待随电池使用的电解质接触而将剥离层除去。
例如,在一个特定实施方案中,方法可涉及提供包含本文所述电极结构的电化学电池或电池前体。电极结构可包含例如至少一个包含聚合物的第一剥离层、至少一个置于第一剥离层上的第一保护层和置于第一保护层上的第一电活性材料层。电化学电池或电池前体可进一步包含电解质(例如液体电解质)。该方法可涉及将至少一部分聚合物溶于电解质中以将至少一部分剥离层从第一保护层上除去。可选择用于形成剥离层的聚合物以便不干涉电化学电池的操作。其它除去剥离层的方法也是可能的。
在某些实施方案中,一种或多种载体基质可在制造电极以后保持与电极结构完整,但在将电极并入电化学电池中以前可分层。例如,可将电极结构包装并运送至生产商,生产商然后可将电极并入电化学电池中。在这类实施方案中,可将电极结构插入气密和/或防水包装中以防止或者抑制电极结构的一种或多种组分劣化和/或污染。使一种或多种载体基质保持附着在电极上可促进电极的处理和运输。例如,载体基质可以为较厚的并且具有较高的刚度或硬度,这可防止或抑制电极以防在处理期间畸变。在这类实施方案中,载体基质可在电化学电池的组装以前、期间或以后由生产商除去。
用于本文所述电化学电池的阴极中的合适阴极活性材料包括但不限于电活性过渡金属硫属元素化物、金属氧化物、电活性导电聚合物和电活性含硫材料及其组合。如本文所用术语“硫属元素化物”涉及包含氧、硫和硒元素中的一种或多种的化合物。合适过渡金属硫属元素化物的实例包括但不限于选自Mn、V、Cr、Ti、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os和Ir的过渡金属的电活性氧化物、硫化物和硒化物。在一个实施方案中,过渡金属硫属元素化物选自镍、锰、钴和钒的电活性氧化物和铁的电活性硫化物。在一个实施方案中,阴极活性层包含电活性导电聚合物。合适电活性导电聚合物的实例包括但不限于选自聚吡咯、聚苯胺、聚苯撑、聚噻吩和聚乙炔的电活性和导电聚合物。
如本文所用“电活性含硫材料”涉及包含任何形式的元素硫的阴极活性材料,其中电化学活性涉及硫-硫共价键的断裂或形成。合适的电活性含硫材料包括但不限于元素硫以及包含硫原子和碳原子的有机材料,其可以为聚合物或非聚合物。合适的有机材料包括进一步包含杂原子的那些、导电聚合物链段、复合物和导电聚合物。
在涉及Li/S体系的一些实施方案中,氧化形式的含硫材料包含聚硫化物结构部分Sm,其选自共价─Sm─结构部分、离子─Sm-结构部分和离子Sm2-结构部分,其中m为等于或大于3的整数。在一个实施方案中,含硫聚合物的聚硫化物结构部分Sm的m为等于或大于6的整数。在另一实施方案中,含硫聚合物的聚硫化物结构部分Sm的m为等于或大于8的整数。在另一实施方案中,含硫材料为含硫聚合物。在另一实施方案中,含硫聚合物具有聚合物主链,且聚硫化物结构部分Sm通过一个或两个其末端硫原子作为侧基共价结合在聚合物主链上。在又一实施方案中,含硫聚合物具有聚合物主链,且聚硫化物结构部分Sm通过聚硫化物结构部分的末端硫原子的共价键合而并入聚合物主链中。
在一个实施方案中,电活性含硫材料包含大于50重量%硫。在另一实施方案中,电活性含硫材料包含大于75重量%硫。在又一实施方案中,电活性含硫材料包含大于90重量%硫。
用于本发明实践中的电活性含硫材料的性质可如本领域中所知宽泛地变化。在一个实施方案中,电活性含硫材料包含元素硫。在另一实施方案中,电活性含硫材料包含元素硫和含硫聚合物的混合物。
在其它实施方案中,本文所述电化学电池包含复合阴极。复合阴极可包含例如(a)电活性含硫阴极材料,其中氧化态的所述电活性含硫阴极材料包含式─Sm─的聚硫化物结构部分,其中m为等于或大于3的整数,如本文所述;和(b)电活性过渡金属硫属元素化物组合物。电活性过渡金属硫属元素化物组合物可包封电活性含硫阴极材料。在一些情况下,它可减缓电活性含硫阴极材料的阴离子还原产物的输送。电活性过渡金属硫属元素化物组合物可包含具有式MjYk(OR)1的电活性过渡金属硫属元素化物,其中M为过渡金属;Y每次出现时为相同或不同的且为氧、硫或硒;R为有机基团且每次出现时为相同或不同的;j为1-12的整数;k为0-72的数;且l为0-72的数。在一些实施方案中,k和l不能都为0。
为减缓阴离子还原产物从电池中的阴极室中扩散出来,可通过一层电活性过渡金属硫属元素化物组合物有效地将含硫阴极材料与电解质或者电池的其它层或部分分离。该层可以为致密或多孔的。
在一个实施方案中,阴极包含电活性含硫阴极材料、电活性过渡金属硫属元素化物和任选粘合剂、电解质和导电添加剂的混合物,其沉积于集电器上。在另一实施方案中,电活性含硫阴极材料的涂层被输送阳离子、减缓阴离子还原产物输送的过渡金属硫属元素化物组合物的薄粘附膜涂层包封或浸渍。在又一实施方案中,阴极包含单独地用输送阳离子、减缓阴离子还原产物输送的过渡金属硫属元素化物组合物的包封层涂覆的颗粒电活性含硫阴极材料。其它构型也是可能的。
在一个实施方案中,复合阴极包含直径通常小于10μm,单独地用输送碱金属阳离子,又减缓阴离子还原产物输送的电活性过渡金属硫属元素化物组合物的颗粒含硫阴极材料。颗粒可具有“芯-壳”构型,例如电活性含硫阴极材料芯和包含电活性过渡金属硫属元素化物的阻滞屏障层的外壳。任选,复合阴极可包含含有各类粘合剂、电解质和导电材料如本文所述那些的填料。
在某些实施方案中,复合阴极为任选包含非电活性金属氧化物如二氧化硅、氧化铝和硅酸盐且进一步用可溶性电活性含硫阴极材料浸渍的颗粒多孔电活性过渡金属硫属元素化物组合物。这在与仅包含电活性含硫阴极材料(例如电活性有机-硫和碳-硫阴极材料)的阴极相比在提高能量密度和容量方面可以是有利的。
在一组实施方案中,复合阴极包含电活性含硫材料(例如碳-硫聚合物或元素硫);V2O5;导电碳;和PEO粘合剂。
复合阴极的其它排列、组分和优点更详细地描述于2006年1月13日提交的标题为“新复合阴极,包含新复合阴极的电化学电池及其制造方法”的美国公开No.:2006/0115579中,通过引用将其全部并入本文中。
阴极可进一步包含一种或多种导电填料以提供增强的电子传导性。导电填料可提高材料的导电性能并且可包括例如导电碳,例如炭黑(例如Vulcan XC72R炭黑、PrintexXE2或Akzo Nobel Ketjen EC-600JD)、石墨纤维、石墨纤丝、石墨粉(例如Fluka#50870)、活性碳纤维、碳织物、非活性碳纳米纤维。导电填料的其它非限定性实例包括金属涂覆玻璃颗粒、金属颗粒、金属纤维、纳米颗粒、纳米管、纳米丝、金属薄片、金属粉、金属纤维、金属网。在一些实施方案中,导电填料可包含导电聚合物。合适电活性导电聚合物的实例包括但不限于选自聚吡咯、聚苯胺、聚苯撑、聚噻吩和聚乙炔的电活性和电子导电聚合物。本领域技术人员已知的其它导电材料也可用作导电填料。如果存在的话,导电填料的量可以以阴极活性层的2-30重量%的范围存在。阴极还可进一步包含其它添加剂,包括但不限于金属氧化物、氧化铝、二氧化硅和过渡金属硫属元素化物。
阴极还可包含粘合剂。粘合剂材料的选择可宽泛地变化,条件是它对阴极中的其它材料而言为惰性的。在一些实施方案中,粘合剂材料可以为聚合物材料。聚合物粘合剂材料的实例包括但不限于聚偏二氟乙烯(PVDF)基聚合物如聚(偏二氟乙烯)(PVDF)、PVF2及其与六氟乙烯、四氟乙烯、氯三氟乙烯的共聚物和三聚物,聚(氟乙烯)、聚四氟乙烯(PTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚丁二烯、氰乙基纤维素、羧甲基纤维素及其与苯乙烯-丁二烯橡胶的混合物、聚丙烯腈、乙烯-丙烯-二烯(EPDM)橡胶、乙烯丙烯二烯三聚物、苯乙烯-丁二烯橡胶(SBR)、聚酰亚胺或乙烯-乙酸乙烯酯共聚物。在一些情况下,粘合剂材料可基本可溶于含水液体载体中,并且可包括但不限于纤维素衍生物,通常甲基纤维素(MC)、羧甲基纤维素(CMC)和羟丙基甲基纤维素(HPMC)、聚乙烯醇(PVA)、聚丙烯酸盐、聚丙烯酰胺(PA)、聚乙烯基吡咯烷酮(PVP)和聚氧化乙烯(PEO)。在一组实施方案中,粘合剂材料为可对电池组分,包括聚硫化物呈化学中性(例如惰性)的聚(乙烯-co-丙烯-co-5-亚甲基-2-降冰片烯)(EPMN)。也可使用UV可固化丙烯酸酯、UV可固化甲基丙烯酸酯和可热固化二乙烯醚。如果存在的话,粘合剂的量可以以阴极活性层的2-30重量%的范围存在。
其它合适的阴极材料也是可能的。例如,用于碱金属离子电池(例如锂离子电池)的阴极也是可能的。
如上所述,除电极和存在于电池内的其它组分外,组装的电化学电池包含电解质。用于电化学电池中的电解质可充当用于储存和输送离子的介质,并且在固体电解质和凝胶电解质的特殊情况下,这些材料还可充当阳极与阴极之间的隔片。可使用能够在阳极与阴极之间储存和输送离子的任何合适液体、固体或凝胶材料。电解质可以为非电子传导性的以防止阳极与阴极之间短路。在一组实施方案中,使用非水基电解质;在另一组实施方案中,使用含水基电解质。
在一些实施方案中,电解质可作为聚合物层如凝胶或固体聚合物层存在。在一些情况下,除能够充当储存和输送离子的介质外,位于阳极与阴极之间的聚合物层可用于掩蔽阳极(例如阳极的基础电极层)以防在所施加的力或压力下任何阴极粗糙度,在该力或压力下保持阳极表面光滑,并通过保持多层压在基础电极层与光滑聚合物层之间而使阳极的任何多层结构(例如陶瓷聚合物多层)稳定化。在一些这类实施方案中,可选择聚合物层是适应的且具有光滑表面。
电解质可包含一种或多种离子电解质盐以提供离子传导性,以及一种或多种液体电解质溶剂、凝胶聚合物材料或聚合物材料。合适的非水电解质可包含有机电解质,其包含一种或多种选自液体电解质、凝胶聚合物电解质和固体聚合物电解质的材料。用于锂电池的非水电解质的实例由Dorniney描述于Lithium Batteries,New Materials,Developments and Perspectives,第4章,第137-165页,Elsevier,Amsterdam(1994)中。凝胶聚合物电解质和固体聚合物电解质的实例由Alamgir等人描述于Lithium Batteries,New Materials,Developments and Perspectives,第3章,第93-136页,Elsevier,Amsterdam(1994)中。
有用的非水液体电解质溶剂的实例包括但不限于非水有机溶剂,例如N-甲基乙酰胺、乙腈、乙缩醛、缩酮、酯、碳酸酯、砜、亚硫酸盐、环丁砜、脂族醚、无环醚、环醚、乙二醇二甲醚、聚醚、磷酸酯、硅氧烷、二氧戊环、N-烷基吡咯烷酮、前述的取代形式及其混合物。可使用的无环醚的实例包括但不限于二乙醚、二丙醚、二丁醚、二甲氧基甲烷、三甲氧基甲烷、二甲氧基乙烷、二乙氧基乙烷、1,2-二甲氧基丙烷和1,3-二甲氧基丙烷。可使用的环醚的实例包括但不限于四氢呋喃、四氢吡喃、2-甲基四氢呋喃、1,4-二烷、1,3-二氧戊环和三烷。可使用的聚醚的实例包括但不限于二甘醇二甲基醚(二甘醇二甲醚)、三甘醇二甲基醚(三甘醇二甲醚)、四甘醇二甲基醚(四甘醇二甲醚)、较高级甘醇二甲醚、乙二醇二乙烯基醚、二甘醇二乙烯基醚、三甘醇二乙烯基醚、二丙二醇二甲醚和丁二醇醚。可使用的砜的实例包括但不限于环丁砜、3-甲基环丁砜和3-环丁烯砜。前述的氟化衍生物也用作液体电解质溶剂。也可使用本文所述溶剂的混合物。
在一些实施方案中,可能对阳极而言有利(例如对锂具有较低的反应性、良好锂离子传导性和/或较低聚硫化物溶解性)的具体液体电解质溶剂包括但不限于1,1-二甲氧基乙烷(1,1-DME)、1,1-二乙氧基乙烷、1,2-二乙氧基乙烷、二乙氧基甲烷、二丁醚、茴香醚或甲氧基苯、藜芦醚或1,2-二甲氧基苯、1,3-二甲氧基苯、叔丁氧基乙氧基乙烷、2,5-二甲氧基四氢呋喃、环戊酮乙二缩酮及其组合。可能对阴极而言有利(例如具有较高聚硫化物溶解性和/或可赋予高倍率容量和/或高硫利用率)的具体液体电解质溶剂包括但不限于二甲氧基乙烷(DME、1,2-二甲氧基乙烷)或乙二醇二甲醚、二甘醇二甲醚、三甘醇二甲醚、四甘醇二甲醚、聚乙二醇二甲醚、环丁砜、1,3-二氧戊环(DOL)、四氢呋喃(THF)、乙腈及其组合。
溶剂的具体混合物包括但不限于1,3-二氧戊环和二甲氧基乙烷、1,3-二氧戊环和二甘醇二甲醚、1,3-二氧戊环和三甘醇二甲醚以及1,3-二氧戊环和环丁砜。混合物中两种溶剂的重量比可以为约5:95-95:5。在一些实施方案中,溶剂混合物包含二氧戊环(例如大于40重量%二氧戊环)。
在一些情况下,含水溶剂可用作锂电池的电解质。含水溶剂可包括水,其可包含其它组分,例如离子盐。在一些实施方案中,电解质可包含物种,例如氢氧化锂,或者使电解质为碱性的其它物种以降低电解质中氢离子的浓度。
液体电解质溶剂也可用作凝胶聚合物电解质的增塑剂。有用凝胶聚合物电解质的实例包括但不限于包含一种或多种聚合物和任选一种或多种增塑剂的那些,所述聚合物选自聚氧化乙烯、聚氧化丙烯、聚丙烯腈、聚硅氧烷、聚酰亚胺、聚磷腈、聚醚、磺化聚酰亚胺、全氟化膜(NAFION树脂)、聚二乙烯基聚乙二醇、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、前述的衍生物、前述的共聚物、前述的交联和网络结构,以及前述的混合物。
有用固体聚合物电解质的实例包括但不限于包含一种或多种聚合物的那些,所述聚合物选自聚醚、聚氧化乙烯、聚氧化丙烯、聚酰亚胺、聚磷腈、聚丙烯腈、聚硅氧烷、前述的衍生物、前述的共聚物、前述的交联和网络结构,以及前述的混合物。
除电解质溶剂、胶凝剂和聚合物外,本领域中所知用于形成电解质的聚合物可进一步包含也如本领域中已知的一种或多种离子电解质盐以提高离子传导性。用于本文所述电解质中的离子电解质盐的实例包括但不限于LiSCN、LiBr、LiI、LiClO4、LiAsF6、LiSO3CF3、LiSO3CH3、LiBF4、LiB(Ph)4、LiPF6、LiC(SO2CF3)3和LiN(SO2CF3)2。可使用的其它电解质盐包括锂聚硫化物(Li2Sx),和有机离子聚硫化物的锂盐(LiSxR)n,其中x为1-20的整数,n为1-3的整数,且R为有机基团,以及美国专利No.5,538,812,Lee等人中公开的那些。可使用溶剂中离子锂盐的浓度范围,例如约0.2m至约2.0m(m为摩尔/kg溶剂)。在一些实施方案中,使用约0.5m至约1.5m的浓度范围。离子锂盐加入溶剂中是任选的,因为当Li/S电池放电时,形成的锂硫化物或聚硫化物通常提供给电解质离子传导性,这可使得离子锂盐是不需要的。此外,如果使用离子N-O添加剂如无机硝酸盐、有机硝酸盐或无机亚硝酸盐,则它可提供给电解质离子传导性,在这种情况下,可能不需要其它离子锂电解质。
如前文所述,非均相电解质可用于包含本文公开的电极结构的电化学电池中。如本文所用,“非均相电解质”为包含至少两种不同的液体溶剂(在本文中称为第一和第二电解质溶剂或者阳极侧和阴极侧电解质溶剂)的电解质。两种不同的液体溶剂可以相互溶混或不溶混的,但在许多方面中,许多电解质体系包含不溶混(或者可在电池内变得不溶混)至一定程度使得它们很大程度上分离且至少一种可与电池的至少一种组分分离的一种或多种溶剂。非均相电解质可以为液体、凝胶或其组合的形式。下面提供非均相电解质的具体实例。
当本文所述某些实施方案涉及具有至少两种可在电化学电池的操作期间分化的电解质溶剂的非均相电解质时,一个目的可以为防止或降低自发溶剂混合,即产生两种不溶混液体的乳液的可能性。在一些实施方案中,这可通过形成例如不成比例地居于电极处的聚合物凝胶电解质、玻璃态聚合物或较高粘度液体将至少一种电解质溶剂“固定”在电极(例如阳极)处而实现。
在一个实施方案中,用于非均相电解质的合适电解质包括向阳极分化且对阳极有利的第一电解质溶剂(例如二氧戊环(DOL))(在本文中称为“阳极侧电解质溶剂”)和向阴极分化并对阴极有利的第二电解质溶剂(例如1,2-二甲氧基乙烷(DME))(且在本文中称为“阴极侧电解质溶剂”)。在一些实施方案中,阳极侧电解质溶剂与阴极侧电解质溶剂相比对锂金属具有相对较低的反应性并且可能对聚硫化物(例如Li2Sx,其中x>2)而言较不可溶解。阴极侧电解质溶剂可对聚硫化物具有相对较高的溶解度,但可能对锂金属更具反应性。通过在电化学电池的操作期间分离电解质溶剂使得阳极侧电解质溶剂不成比例地存在于阳极处且阴极侧电解质溶剂不成比例地处于阴极处,电化学电池可获益于两种电解质溶剂的理想特征(例如阳极侧电解质溶剂的较低锂反应性和阴极侧电解质溶剂的较高聚硫化物溶解性)。具体而言,阳极消耗可降低,阴极处不溶性聚硫化物(“板岩”,较低级聚硫化物,例如Li2Sx,其中x<3,例如Li2S2和Li2S)的形成可降低,因此,电化学电池可具有较长的循环寿命。此外,本文所述电池可具有高比能(例如大于400Wh/kg)、改进的安全性和/或可在宽范围的温度(例如-70℃至+75℃)下操作。一种物种或溶剂相对于另一种不成比例地存在于电池中的特定位置意指第一物种或溶剂以至少2:1摩尔或重量比或者甚至5:1、10:1、50:1或100:1或更大比存在于该位置上(例如在电池电极的表面上)。
在一些实施方案中,电化学电池可进一步包含置于阴极与阳极之间的隔片。隔片可以为固体非导电或绝缘材料,其将阳极和阴极彼此分离或绝缘,防止短路,且容许离子在阳极与阴极之间输送。
可将隔片的孔用电解质部分或实质性地填充。隔片可作为在电池制造期间与阳极和阴极交错的多孔无支撑膜提供。作为选择,可将多孔隔片层直接应用于一个电极的表面上,例如如PCT公开No.WO 99/33125,Carlson等人,和美国专利No.5,194,341,Bagley等人中所述。
多种隔片材料是本领域中已知的。合适固体多孔隔片材料的实例包括但不限于聚烯烃,例如聚乙烯和聚丙烯、玻璃纤维填料纸和陶瓷材料。适用于本发明中的隔片和隔片材料的其它实例为包含微孔干凝胶层如微孔拟勃姆石层的那些,其可作为无支撑膜或者通过直接涂覆应用而提供于一个电极上,如共同受让人Carlson等人的美国专利申请序列号08/995,089和09/215,112中。除其电解质功能外,固体电解质和凝胶电解质还可充当隔片。
在一些实施方案中,向电化学电池内的电活性表面上施加法向力可降低和/或防止活性材料由于不想要的副反应如苔藓状锂生长、枝晶形成和其它可应用的副反应而贫化。相应地,向电活性表面上施加法向力可降低和/或消除关于电化学电池内包含大量阳极活性材料和/或电解质的需要。通过降低和/或消除关于供应电池充电-放电期间活性材料损失的需要,可使用较少量的阳极活性材料制造电池和器件。可使用任何数目的不同构型,包括例如下文所述实施方案施加于电池的外部或者电池的内部组件上。
在一个实施方案中,压缩元件可围绕至少一部分电池或一堆电池。方案中,压缩元件可包含带(例如橡胶带、螺丝扣带等)。在一个具体实施方案中,带可通过例如粘合剂、钉、夹具、松紧螺套或任何其它合适的方法固定在电池或一堆电池上。在其它实施方案中,可使用压缩板或其它结构。尽管描述了关于可能的压缩元件以在电化学电池内的电活性表面提供法向力的几个可能实施方案,应当理解可使用任何数目的不同构型,本公开内容不限于本文所述具体压缩元件。
压缩元件的使用不限于扁平电池几何。在一些情况下,压缩元件可用于将力施加在圆柱形电化学电池或棱柱形电化学电池(例如三角柱、直角棱柱等)上。
任何上述压缩元件可用作圆柱形电池、棱柱形电池或其它这类电池中的压缩元件。例如,在一些实施方案中,一卷或多卷相同或不同卷绕材料可位于电池的外表面上。在一些实施方案中,卷绕材料包含较高的强度。卷绕材料还可包含较高的弹性模量。在一些情况下,收缩卷绕管如聚酯膜和织物。在一些情况下,压缩元件包含适当地定尺寸以在其在电池外表面上松弛以后提供所需外部压力的弹性材料。
在一些实施方案中,电池可包含在电池的内部体积内的膨胀元件(例如膨胀芯棒)。可构造并配置膨胀元件以提供从电化学电池的内部体积向外辐射的力。在一些实施方案中,可构造和配置膨胀元件和压缩元件,使得电化学电池边界内各个点处的力(例如压力)偏离电化学电池边界内的平均力(例如压力)小于约30%、小于约20%、小于约10%或者小于约5%。在一些实施方案中,力的这一分布可例如通过选择压缩和膨胀元件使得每单位面积基本相同的内部和外部力施加在电池上而实现。
在一些实施方案中,胜于施加内部力限定压力,可将外部力施加与补充卷绕机制组合以实现可接受范围内的辐射压力分布。在一些实施方案中,压力分布元件(例如端盖、间隔物等)和用于将力施加在电池或电池堆上的元件(例如带、芯棒等)的总体积可以为较低的。通过使用低体积,该装配的能量密度可保持为较高的。在一些情况下,压力分布元件和用于将力施加在电池或电池堆上的元件的体积之和包含电池或电池堆的体积的小于约10%、小于约5%、小于约2%、小于约1%、小于约0.5%、小于约0.1%、约0.1%至约10%、约0.1%至约5%、约0.1%至约2%或约0.1%至约1%。
尽管本文描述和阐述了本发明的几个实施方案,本领域技术人员容易预期用于执行功能和/或得到结果和/或本文所述一个或多个优点的多种其它方法和/或结构,且认为这类变化和/或改进在本发明的范围内。更通常而言,本领域技术人员容易理解本文所述所有参数、尺寸、材料和构型意指为示例的且实际参数、尺寸、材料和/或构型取决于使用本发明教导的具体应用。本领域技术人员认识到或者能够使用不多于例行实验确定本文所述本发明具体实施方案的许多等效物。因此,应当理解前述实施方案仅作为实例显示,且在所附权利要求书及其等效物的范围内,本发明可不同于所具体描述和主张而实践。本发明涉及本发明所述各单独的特征、体系、制品、材料、试剂盒和/或方法。另外,如果这类特征、体系、制品、材料、试剂盒和/或方法不相互矛盾的话,则两个或更多个这类特征、体系、制品、材料、试剂盒和/或方法的任何组合包括在本发明范围内。
实施例
实施例1
将光学级聚对苯二甲酸乙二醇酯(PET)载体基质用聚砜聚合物在二甘醇二甲醚中的6重量%溶液涂覆。将涂层在40℃下干燥并产生2μm厚聚砜聚合物层。聚砜聚合物层具有300nm以下的平均峰-谷粗糙度(RZ)。在测量表面粗糙度以后,将聚砜聚合物层的表面用具有所需厚度的氧化锂保护层涂覆。氧化锂涂层使用化学蒸气沉积技术在真空中使用CO2气体和金属锂蒸气沉积。随后将21μm厚金属锂层在真空中沉积于氧化锂保护层的表面上。PET载体基质与聚砜聚合物层分层,产生包含金属锂电活性层205、氧化锂层210和聚砜聚合物层215的电极结构(图10A和10B)。图10A和10B中显示的两个实例分别具有约2.57μm和0.548μm厚度的氧化锂层210。应当理解也可提供大于或小于上述例示厚度的其它厚度。
使用SEM成像分析图10A和10B中所示电极结构的横截面以评估各个层之间的附着力。SEM分析证明两个电极结构中金属锂层与氧化锂保护层之间存在良好的附着力,同时在成像截面中不存在任何明显的缺陷。
电极结构由类似于以上成像的那些的电极生产。该电极结构包含通过在PET载体基质分层以前将铜溅射在金属锂层表面上而提供的铜集电器。铜集电器具有0.2μm的厚度。在PET载体基质分层以后产生的电极结构包含铜集电器、金属锂电活性层、氧化锂层和聚砜聚合物层。
将类似于上述那些,具有和不具有铜集电器的电极结构组装到具有硫阴极和Celgard2325隔片的分开小袋电池中。将电池用液体电解质填充,浸泡2天并以C/10速率放电和以C/8速率充电。组装的电池显示出约1050mA/g至约1160mA/g的硫比容量。
对比例1
在对比例中,将PET载体基质用0.2μm厚铜层金属化。随后,在与关于实施例1中的金属锂层类似的条件下将一层金属锂层在真空下涂覆到金属化铜表面上。金属锂层厚度为约20μm且Rz表面粗糙度为约2000nm。然后将金属锂表面用0.5μm厚氧化锂层涂覆。用SEM成像分析所得电极结构以评估金属锂与沉积氧化锂层之间是否存在良好的附着力。如SEM分析证明,由于下面锂的高表面粗糙度,沉积氧化锂层210不产生连续保护层(且包含大量裂纹和缺陷)(图10C)。
对比例2
在另一对比例中,将2um厚氧化锂涂层210沉积在下面21.7um厚基础金属锂层205上。基础金属锂层205通常具有约Rz=2-3um的表面粗糙度,其由图11A中所述截面中显示的观察粗糙度支持。氧化锂涂层210显示出具有类似下面锂金属205的粗糙度的表面粗糙度。另外,如图所述,如果氧化锂涂层210的厚度小于下面锂金属205的粗糙度,则存在氧化锂层不是连续的高概率。另外且不愿受理论束缚,即使氧化锂层以共形方式沉积于图11A所述粗糙锂表面上,沉积氧化锂层210会在施加压力时由于下面软锂峰的变形而破裂,这又会剪切氧化物涂层。
实施例2
与上文相反,如图11B所示,将735nm氧化锂层210真空沉积在凝胶层215上。在氧化锂层210沉积以前,发现凝胶层的测量峰-谷粗糙度(Rz)为104nm。暴露的氧化锂表面上的所得Rz具有126nm的测量峰-谷值,这处于与关于凝胶表面测量的相同等级且比关于图11A中所述直接沉积于下面锂上的氧化锂层观察到的小得多。另外,该图还清楚地显示由于大于下面凝胶层215的Rz的目标氧化物厚度的沉积,连续氧化锂层沉积在凝胶层上。
实施例3
实施例3a):PSU-PEO共聚物的合成
在装配有温度计、气体入口管和迪安斯达克分水器的4升玻璃反应器中,在氮气气氛下将430.62g DCDPS、332.15g Bis A、270g的具有6020g/mol的数均分子量Mn的PEG聚乙二醇和222.86g的具有9.4μm的体积平均粒度的碳酸钾悬浮于641ml NMP中。
将混合物在1小时内加热至190℃。在下文中,反应时间应当理解为反应混合物保持在190℃下的时间。
通过蒸馏连续地除去反应中形成的水。通过加入另外的NMP将反应器内部的溶剂含量保持在恒定水平。
在8小时的反应时间以后,通过加入温度为23℃的1609ml NMP而停止反应。使氮气以20升/小时的速率鼓泡通过混合物1小时,并使混合物冷却至室温。通过蒸馏除去反应中形成的氯化钾。
V.N.=66.4ml/g;Tg=47℃;28.8重量%PEG
缩写:
DCDPS 4,4'-二氯联苯砜
Bis A 双酚A
PEG 聚乙二醇
NMP N-甲基吡咯烷酮
共聚物的溶液粘度(粘度值;V.N.)根据DIN EN ISO 1628-1在25℃下作为共聚物在NMP中的1重量%溶液测量。
通过使共聚物的水溶液在室温下沉淀(喷雾反应器的高度0.5m,通量:2.5升/小时)而将共聚物与其溶液分离。然后将所得珠粒在85℃下用水萃取20小时(水流量160升/小时)。然后将珠粒干燥至小于0.1重量%的水含量。
嵌段共聚物中的聚氧化烯含量在CDCI3中使用1H-NMR测定。将聚亚烷基的H原子的共振信号的信号强度与在聚亚芳基醚嵌段中所含芳族基团的H原子的共振信号的信号强度对比。该对比得到聚氧化乙烯与聚亚芳基醚的比,其可用于计算共聚物中聚氧化烯的重量计含量。
产物的玻璃化转化温度通过DSC分析测定。所有DSC测量使用TA Instruments的DSC 2000以20k/min的加热速率进行。将约5mg材料放入铝容器中并密封。在第一程中,将试样加热至250℃,快速冷却至-100℃,然后在第二程中,加热至250℃。给出的Tg值在第二程中测定。
实施例3b):PSU-PEO共聚物的物理参数
聚合物,PSU-PEO共聚物的热分解使用TA instrument,TGA 2050热重分析仪在空气中进行。所用加热速率为在空气中5℃/min,并在铂盘中进行。共聚物的热分解温度(Td)为约373℃。
如通过VEECO-ContourGT光学轮廓仪测量,取决于所用基质和工艺条件,涂覆在基质上的聚合物的表面粗糙度(Rz)为160nm至250nm,且Ra为10nm至20nm。表面粗糙度为制造受保护锂阳极中的重要标准。
实施例3c):PSU-PEO共聚物的电池性能
当预期剥离凝胶附着在该构型中的保护锂阳极上并预期在电池中时,可相对于对照测试共聚物在Li-S扁平电池中的性能。将3μm的PSU-PEO共聚物凝胶涂覆在背面具有0.2μm铜集电器的23μm真空沉积锂(VDL)基质上(图12A)。该叠层为电池的阳极。将所用阴极用55%硫/40%Vulcan Carbon/5%PVOH配制剂在7μm铝上双面涂覆,其中阴极厚度为约155μm。Celgard 2325用作隔片,且在1:1DOL:DME混合物中的16%LiTFSI、4%硝酸锂和1%硝酸胍用作电解质。具有涂覆PSU-PEO共聚物的试样电池经40个循环具有800mAh/g S或更高的硫比容量,如从图12B中可以看出。VDL上不具有聚合物涂层的对照电池经40个循环具有950mAh/g S的容量。
缩写:
DOL 1,3-二氧戊环
DME 1,2-二甲氧基乙烷
LiTFSI 双(三氟甲烷磺酰)氨基化锂
实施例4
该实施例显示PSU-PEO共聚物可从PET载体基质上脱离。该实施例还显示PSU-PEO共聚物/LiO2/Li电极结构可从PET基质上脱离而不损害电极结构。将3μm的溶于1,3-二氧戊环中的实施例3A的PSU-PEO共聚物的层在New Era连续网式涂布机中涂覆于PET载体基质上。涂覆材料为具有<300nm的Rz的光滑层。PSU-PEO共聚物以0.04lbs的剥离力作为连续光滑膜从基质上脱离。剥离力使用Mark-10,Series BG,Motorized Test Stand ESM301测量。
将3μm的溶于1,3-二氧戊环中的实施例3A的PSU-PEO共聚物的层在New Era连续网式涂布机中涂覆于PET载体基质上。在PSU-PEO共聚物上,真空沉积LiO2的薄700nm涂层,其后真空沉积12μm锂金属。该PSU-3PEO共聚物/LiO2/Li阳极叠层可从PET基质上脱离。基本上没有观察到对脱离阳极结构的损害。
实施例5
该实施例显示PSU聚合物层可从PET载体基质上脱离。该实施例还显示PSU聚合物/LiO2/Li电极结构可从PET基质上脱离而不损害电极结构。
将2μm的溶于二甘醇二甲醚中的PSU的层在New Era连续网式涂布机中涂覆于PET载体基质上。涂覆材料为具有<200nm的Rz的光滑层。PSU聚合物涂层以0.035lbs的剥离力从载体PET基质上脱离。剥离力使用Mark-10,Series BG,Motorized Test Stand ESM301测量。
将2μm的溶于二甘醇二甲醚中的PSU的层在New Era连续网式涂布机中涂覆于PET载体基质上。在PSU层上,真空沉积LiO2的薄1μm涂层,其后真空沉积25μm锂金属。该PSU/LiO2/Li阳极叠层可以以0.019lbs的剥离力从PET基质上脱离。基本上没有观察到对脱离阳极结构的损害。
尽管连同各个实施方案和实施例描述了本教导,本教导不意欲限于该实施方案或实施例。相反,本教导包括如本领域技术人员所理解的各种可选方案、改进和等价物。因此,上述描述和图仅作为实例。
Claims (63)
1.用于电化学电池的电极结构,其包含:
-包含一种或多种以下材料的第一剥离层:聚砜、聚醚砜、聚苯砜、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚异丁烯、聚异丁烯琥珀酸酐、聚异丁烯-聚氧化烯共聚物、聚酰胺6、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯、聚乙烯-聚乙烯醇共聚物、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛、聚乙烯醇缩丁醛、聚脲、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯及其组合;
-置于第一剥离层上的第一保护层;和
-置于第一保护层上的第一电活性材料层,
其中第一剥离层的平均峰-谷粗糙度为0.1μm至1μm,和/或第一保护层的平均峰-谷粗糙度为0.1μm至1μm,且
其中第一剥离层可溶于电化学电池使用的电解质中。
2.根据权利要求1的电极结构,其进一步包含置于第一电活性材料层上的集电器。
3.根据权利要求1的电极结构,其中第一剥离层为凝胶聚合物层。
4.根据权利要求1-3中任一项的电极结构,其中第一保护层为连续的。
5.根据权利要求1-3中任一项的电极结构,其中第一保护层与第一电活性材料层之间的界面的平均峰-谷粗糙度为0.1μm至1μm。
6.根据权利要求1-3中任一项的电极结构,其中第一保护层的厚度大于第一剥离层的平均峰-谷粗糙度。
7.根据权利要求1-3中任一项的电极结构,其中第一保护层的厚度比第一剥离层的平均峰-谷粗糙度大至少2倍。
8.根据权利要求1-3中任一项的电极结构,其中第一保护层的厚度为0.1μm至5μm。
9.根据权利要求1-3中任一项的电极结构,其中第一剥离层包含无定形的材料。
10.根据权利要求1-3中任一项的电极结构,其中第一剥离层与第一保护层之间的粘合强度大于第一剥离层与第一载体基质之间的粘合强度。
11.根据权利要求1-3中任一项的电极结构,其中第一剥离层充当隔片。
12.根据权利要求1的电极结构,其进一步包含置于第一剥离层上的第一载体基质。
13.根据权利要求1的电极结构,其进一步包含置于第二剥离层上的第二载体基质,其中第二剥离层置于第二保护层上,且其中第二保护层置于第二电活性材料层上。
14.根据权利要求1-3中任一项的电极结构,其中集电器置于第一电活性材料层与第二电活性材料层之间。
15.根据权利要求1-3中任一项的电极结构,其中中间层置于第一载体基质与第一剥离层之间、第一剥离层与第一保护层之间以及第一保护层与第一电活性材料层之间中至少一个。
16.根据权利要求1-3中任一项的电极结构,其中剥离层对锂离子而言是传导的和/或剥离层包含锂盐。
17.根据权利要求12或13的电极结构,其中i)载体基质为聚合物膜或金属化聚合物膜,或者ii)载体基质为陶瓷或金属。
18.根据权利要求1-3中任一项的电极结构,其中第一剥离层的平均峰-谷粗糙度小于第一载体基质的平均峰-谷粗糙度。
19.根据权利要求1-3中任一项的电极结构,其中第一剥离层包含至少一种通过包含以下组分的反应混合物(RG)缩聚而得到的聚芳基醚砜-聚氧化烯嵌段共聚物(PPC):
(A1)至少一种芳族二卤素化合物,
(B1)至少一种芳族二羟基化合物,
(B2)至少一种具有至少2个羟基的聚氧化烯,
(C)至少一种非质子极性溶剂,和
(D)至少一种金属碳酸盐,
其中反应混合物(RG)不包含与水形成共沸物的任何物质。
20.生产根据权利要求1-19中任一项的电极结构的方法,其包括:
-提供第一载体基质;
-将第一剥离层沉积在第一载体基质上,其中第一剥离层包含一种或多种以下材料:聚砜、聚醚砜、聚苯砜、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚异丁烯、聚异丁烯琥珀酸酐、聚异丁烯-聚氧化烯共聚物、聚酰胺6、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯、聚乙烯-聚乙烯醇共聚物、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛、聚乙烯醇缩丁醛、聚脲、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯及其组合;
-将第一保护层沉积在第一剥离层的表面上;
-将第一电活性材料层沉积在第一保护层上;和
-任选将第一载体基质从第一剥离层上除去,其中第一剥离层的至少一部分保留在第一保护层上。
21.根据权利要求20的方法,其包括步骤:将第一载体基质从第一剥离层上除去,其中第一剥离层的至少一部分保留在第一保护层上。
22.根据权利要求20的方法,其进一步包括将集电器沉积在第一电活性材料层上。
23.根据权利要求20-22中任一项的方法,其进一步包括将电极结构的分离部分层压在第一电活性材料层上。
24.根据权利要求23的方法,其中层压涉及施加5kg/cm2至10kg/cm2的压力。
25.根据权利要求20-22中任一项的方法,其中电极结构的分离部分包含置于第二保护层上的第二电活性材料层,第二保护层置于第二剥离层上,第二剥离层置于第二载体基质上。
26.电化学电池,其包含至少一个根据权利要求1-19中任一项的电极结构。
27.根据权利要求26的电化学电池,其中第一电活性材料层包含锂金属,且其中电化学电池包含含有硫的阴极。
28.根据权利要求26的电化学电池,其中第一电活性材料层包含锂金属。
29.根据权利要求26的电化学电池,其中电化学电池包含含有金属氧化物的阴极。
30.根据权利要求26-29中任一项的电化学电池,其中电化学电池为锂离子电池。
31.一种形成用于电化学电池的电极结构的方法,其包括:
-提供第一载体基质;
-将第一剥离层沉积在第一载体基质上,其中第一剥离层包含一种或多种以下材料:聚砜、聚醚砜、聚苯砜、聚醚砜-聚氧化烯共聚物、聚苯砜-聚氧化烯共聚物、聚异丁烯、聚异丁烯琥珀酸酐、聚异丁烯-聚氧化烯共聚物、聚酰胺6、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物、马来酰亚胺-乙烯基醚共聚物、聚丙烯酰胺、氟化聚丙烯酸酯、聚乙烯-聚乙烯醇共聚物、聚乙烯-聚乙酸乙烯酯共聚物、聚乙烯醇和聚乙酸乙烯酯共聚物、聚甲醛、聚乙烯醇缩丁醛、聚脲、基于丙烯醛衍生物(CH2=CR-C(O)R)的光解聚的聚合物、聚砜-聚氧化烯共聚物、聚偏二氟乙烯及其组合;
-将第一保护层沉积在第一剥离层的表面上;
-将第一电活性材料层沉积在第一保护层上;和
-将第一载体基质从第一剥离层上除去,其中第一剥离层的至少一部分保留在第一保护层上,
其中第一剥离层可溶于电化学电池使用的电解质中。
32.用于电化学电池的电极结构,其包含:
-包含一种或多种以下材料的第一剥离层:具有六氟丙烯涂层的聚酰亚胺;
渗硅聚酯膜、金属化聚酯膜、聚苯并咪唑、聚苯并唑、乙烯-丙烯酸共聚物、丙烯酸酯基聚合物、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚丙烯腈、苯乙烯-丙烯腈、热塑性聚氨酯聚合物、聚砜-聚氧化烯共聚物、
二苯甲酮改性聚砜聚合物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物及其组合;
-置于第一剥离层上的第一保护层;和
-置于第一保护层上的第一电活性材料层,
其中第一剥离层可溶于电化学电池使用的电解质中。
33.一种形成用于电化学电池的电极结构的方法,其包括:
-提供第一载体基质;
-将第一剥离层沉积在第一载体基质上,其中第一剥离层包含一种或多种以下材料:具有六氟丙烯涂层的聚酰亚胺;渗硅聚酯膜、金属化聚酯膜、聚苯并咪唑、聚苯并唑、乙烯-丙烯酸共聚物、丙烯酸酯基聚合物、聚乙烯吡咯烷酮-聚乙烯基咪唑共聚物、聚丙烯腈、苯乙烯-丙烯腈、热塑性聚氨酯聚合物、聚砜-聚氧化烯共聚物、二苯甲酮改性聚砜聚合物、聚乙烯吡咯烷酮-聚乙酸乙烯酯共聚物及其组合;
-将第一保护层沉积在第一剥离层的表面上;
-将第一电活性材料层沉积在第一保护层上;和
-将第一载体基质和第一剥离层从第一保护层上除去,
其中第一剥离层可溶于电化学电池使用的电解质中。
34.一种制造电化学电池的方法,其包括:
-提供包含电极结构的电化学电池,所述电极结构包含:
-包含聚合物的第一剥离层;
-置于第一剥离层上的第一保护层;和
-置于第一保护层上的第一电活性材料层;和
-电解质;和
-将至少一部分聚合物溶于电解质中以将至少一部分剥离层从第一保护层上除去。
35.根据权利要求31、33或34的方法,其进一步包括将集电器沉积在第一电活性材料层上。
36.根据权利要求31、33或34的方法,其进一步包括将电极结构的分离部分层压在第一电活性材料层上。
37.根据权利要求36的方法,其中层压涉及施加5kg/cm2至10kg/cm2的压力。
38.根据权利要求36的方法,其中电极结构的分离部分包含置于第二保护层上的第二电活性材料层,第二保护层置于第二剥离层上,第二剥离层置于第二载体基质上。
39.根据权利要求31、32、33或34的电极结构或方法,其进一步包含置于第一电活性材料层上的集电器。
40.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层为凝胶聚合物层。
41.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层为连续的。
42.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层的平均峰-谷粗糙度为0.1μm至1μm。
43.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层的平均峰-谷粗糙度为0.1μm至1μm。
44.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层与第一电活性材料层之间的界面的平均峰-谷粗糙度为0.1μm至1μm。
45.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层的厚度大于第一剥离层的平均峰-谷粗糙度。
46.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层的厚度比第一剥离层的平均峰-谷粗糙度大至少2倍。
47.根据权利要求31、32、33或34的电极结构或方法,其中第一保护层的厚度为0.1μm至5μm。
48.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层包含无定形的材料。
49.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层与第一保护层之间的粘合强度大于第一剥离层与第一载体基质之间的粘合强度。
50.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层充当隔片。
51.根据权利要求31、32、33或34的电极结构或方法,其进一步包含置于第二剥离层上的第二载体基质,其中第二剥离层置于第二保护层上,且其中第二保护层置于第二电活性材料层上。
52.根据权利要求31、32、33或34的电极结构或方法,其中集电器置于第一电活性材料层与第二电活性材料层之间。
53.根据权利要求31、32、33或34的电极结构或方法,其中中间层置于第一载体基质与第一剥离层之间、第一剥离层与第一保护层之间以及第一保护层与第一电活性材料层之间中至少一个。
54.根据权利要求31、32、33或34的电极结构或方法,其中剥离层对锂离子而言是传导的。
55.根据权利要求31、32、33或34的电极结构或方法,其中剥离层包含锂盐。
56.包含前述权利要求中任一项的电极结构的电化学电池,其中第一电活性材料层包含锂金属,且其中电化学电池包含含有硫的阴极。
57.根据权利要求31、32、33或34的电极结构或方法,其中载体基质为聚合物膜或金属化聚合物膜。
58.根据权利要求31、32、33或34的电极结构或方法,其中载体基质为陶瓷或金属。
59.包含前述权利要求中任一项的电极结构的电化学电池,其中第一电活性材料层包含锂金属。
60.包含前述权利要求中任一项的电极结构的电化学电池,其中电化学电池包含含有金属氧化物的阴极。
61.根据权利要求31、32、33或34的电极结构或方法,其中第一剥离层的平均峰-谷粗糙度小于基质的平均峰-谷粗糙度。
62.包含前述权利要求中任一项的电极结构的电化学电池,其中电化学电池为锂离子电池。
63.根据权利要求20、31、33或34的方法,进一步包括将至少一部分剥离层溶于电解质中以将至少一部分剥离层从第一保护层上除去。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361788031P | 2013-03-15 | 2013-03-15 | |
US61/788,031 | 2013-03-15 | ||
PCT/EP2014/054994 WO2014140198A1 (en) | 2013-03-15 | 2014-03-13 | Protected electrode structures |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105122501A CN105122501A (zh) | 2015-12-02 |
CN105122501B true CN105122501B (zh) | 2019-02-19 |
Family
ID=50272648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480015012.XA Active CN105122501B (zh) | 2013-03-15 | 2014-03-13 | 受保护电极结构 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10862105B2 (zh) |
EP (1) | EP2973779A1 (zh) |
JP (1) | JP2016511517A (zh) |
KR (1) | KR20150132427A (zh) |
CN (1) | CN105122501B (zh) |
WO (1) | WO2014140198A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647345A (zh) * | 2020-04-21 | 2020-09-11 | 万向一二三股份公司 | 一种锂离子电池负极聚合物保护涂层及其制备方法、应用 |
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102576855B (zh) | 2009-08-24 | 2015-11-25 | 赛昂能源有限公司 | 用于电化学电池的剥离系统 |
JP2013538424A (ja) | 2010-08-24 | 2013-10-10 | ビーエイエスエフ・ソシエタス・エウロパエア | 電気化学セルでの使用のための電解質材料 |
KR102008554B1 (ko) | 2012-11-02 | 2019-08-07 | 바스프 에스이 | 전기화학 전지의 보호층 및 다른 구성요소로 사용하기 위한 중합체 |
US9577289B2 (en) | 2012-12-17 | 2017-02-21 | Sion Power Corporation | Lithium-ion electrochemical cell, components thereof, and methods of making and using same |
KR102026508B1 (ko) | 2013-03-15 | 2019-09-27 | 시온 파워 코퍼레이션 | 보호된 전극 구조물 및 방법 |
CN105122501B (zh) | 2013-03-15 | 2019-02-19 | 锡安能量公司 | 受保护电极结构 |
EP2992033B1 (de) | 2013-05-02 | 2017-03-08 | Basf Se | Polyarylethersulfoncopolymere |
KR20160027104A (ko) | 2013-06-28 | 2016-03-09 | 바스프 에스이 | 용매 함량이 감소된 폴리아릴 에테르 설폰 폴리머(p) |
CN105636677B (zh) | 2013-10-15 | 2019-03-12 | 巴斯夫欧洲公司 | 改进过滤膜的化学稳定性 |
WO2015090607A1 (en) | 2013-12-19 | 2015-06-25 | Basf Se | Polymer for use as protective layers and other components in electrochemical cells |
US10490796B2 (en) | 2014-02-19 | 2019-11-26 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
CN106062995B (zh) | 2014-02-19 | 2020-02-04 | 巴斯夫欧洲公司 | 使用包含抑制电解质的离子导体的复合物的电极保护 |
JP6254328B2 (ja) | 2014-03-27 | 2017-12-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 新しいゲル電解質および電極 |
EP3149798B1 (en) | 2014-05-30 | 2018-04-11 | Basf Se | Polymer for use as protective layers and other components in electrochemical cells |
WO2016064949A1 (en) | 2014-10-23 | 2016-04-28 | Sion Power Corporation | Ion-conductive composite for electrochemical cells |
WO2016062756A1 (en) * | 2014-10-24 | 2016-04-28 | Basf Se | Electrode precursor structure comprising functional release layer |
US9891379B2 (en) * | 2014-11-14 | 2018-02-13 | Corning Incorporated | Optical fiber coating compositions with acrylic polymers |
WO2016187186A1 (en) | 2015-05-19 | 2016-11-24 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
CN107848247B (zh) | 2015-05-20 | 2021-06-01 | 锡安能量公司 | 电极的保护层 |
WO2016184750A1 (en) | 2015-05-21 | 2016-11-24 | Basf Se | Glass-ceramic electrolytes for lithium-sulfur batteries |
KR101983013B1 (ko) * | 2015-09-25 | 2019-05-28 | 동우 화인켐 주식회사 | 필름 터치 센서 및 그 제조 방법 |
KR20180071377A (ko) | 2015-11-13 | 2018-06-27 | 시온 파워 코퍼레이션 | 전기화학 전지용 첨가제 |
KR20180077287A (ko) | 2015-11-24 | 2018-07-06 | 시온 파워 코퍼레이션 | 이온 전도성 화합물 및 관련 용도 |
WO2017106215A1 (en) * | 2015-12-14 | 2017-06-22 | Purdue Research Foundation | Electrochemical cells and batteries |
WO2017180502A1 (en) * | 2016-04-15 | 2017-10-19 | 3M Innovative Properties Company | Preparation of electrical circuits by adhesive transfer |
JP7049269B2 (ja) | 2016-05-20 | 2022-04-06 | シオン・パワー・コーポレーション | 電極用保護層および電気化学電池 |
US10991925B2 (en) | 2016-06-21 | 2021-04-27 | Sion Power Corporation | Coatings for components of electrochemical cells |
TW201825623A (zh) | 2016-08-30 | 2018-07-16 | 美商康寧公司 | 用於片材接合的矽氧烷電漿聚合物 |
TWI821867B (zh) | 2016-08-31 | 2023-11-11 | 美商康寧公司 | 具以可控制式黏結的薄片之製品及製作其之方法 |
KR102003307B1 (ko) | 2016-09-21 | 2019-07-24 | 주식회사 엘지화학 | 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지 |
EP3386008B1 (en) * | 2016-09-30 | 2020-04-08 | LG Chem, Ltd. | Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same |
JP6536524B2 (ja) * | 2016-10-03 | 2019-07-03 | トヨタ自動車株式会社 | セパレータ一体電極板、及びこれを用いた蓄電素子 |
WO2018119392A1 (en) | 2016-12-23 | 2018-06-28 | Sion Power Corporation | Protective layers comprising metals for electrochemical cells |
US11024923B2 (en) | 2017-03-09 | 2021-06-01 | Sion Power Corporation | Electrochemical cells comprising short-circuit resistant electronically insulating regions |
US10720648B2 (en) | 2017-03-17 | 2020-07-21 | Sion Power Corporation | Electrode edge protection in electrochemical cells |
CN110945688A (zh) | 2017-05-19 | 2020-03-31 | 赛昂能源有限公司 | 用于电化学电池的钝化剂 |
US10868306B2 (en) | 2017-05-19 | 2020-12-15 | Sion Power Corporation | Passivating agents for electrochemical cells |
US11251501B2 (en) | 2017-05-24 | 2022-02-15 | Sion Power Corporation | Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses |
EP3635808A4 (en) | 2017-06-09 | 2021-03-03 | Sion Power Corporation | IN-SITU COLLECTOR |
KR102140128B1 (ko) | 2017-06-20 | 2020-07-31 | 주식회사 엘지화학 | 리튬 전극 및 이를 포함하는 리튬 이차전지 |
KR20200034759A (ko) * | 2017-07-20 | 2020-03-31 | 바스프 에스이 | 친수성 공중합체 및 막 |
KR102148507B1 (ko) | 2017-07-26 | 2020-08-26 | 주식회사 엘지화학 | 리튬 전극 및 이의 제조방법 |
KR102659516B1 (ko) | 2017-08-18 | 2024-04-23 | 코닝 인코포레이티드 | 유리 적층체 |
DE102017214770B3 (de) * | 2017-08-23 | 2019-02-14 | VW-VM Forschungsgesellschaft mbH & Co. KG | Verfahren zur Bestimmung eines Zustands oder einer Zustandsänderung einer elektrochemischen Energiespeichervorrichtung und dafür vorbereitete Energiespeichervorrichtung |
EP3457475A1 (en) | 2017-09-15 | 2019-03-20 | Basf Se | Protective layers for lithium electrodes |
CN111279526A (zh) | 2017-09-15 | 2020-06-12 | 赛昂能源有限公司 | 用于电化学电池的保护膜 |
CN111201645B (zh) | 2017-10-16 | 2023-07-25 | 株式会社Lg新能源 | 锂电极和包含所述锂电极的锂二次电池 |
US11081731B2 (en) * | 2017-10-18 | 2021-08-03 | International Business Machines Corporation | High-capacity rechargeable batteries |
TWI654269B (zh) | 2017-12-19 | 2019-03-21 | 財團法人工業技術研究院 | 黏著組合物 |
JP6847893B2 (ja) * | 2018-07-02 | 2021-03-24 | 株式会社東芝 | 電極構造体および二次電池 |
KR20210037700A (ko) | 2018-07-31 | 2021-04-06 | 시온 파워 코퍼레이션 | 멀티플렉스 충전 방전 배터리 관리 시스템 |
US11322804B2 (en) | 2018-12-27 | 2022-05-03 | Sion Power Corporation | Isolatable electrodes and associated articles and methods |
WO2020139802A2 (en) | 2018-12-27 | 2020-07-02 | Sion Power Corporation | Electrochemical devices and related articles, components, configurations, and methods |
US11637353B2 (en) | 2018-12-27 | 2023-04-25 | Sion Power Corporation | Electrodes, heaters, sensors, and associated articles and methods |
KR102415166B1 (ko) | 2019-01-11 | 2022-06-29 | 주식회사 엘지에너지솔루션 | 리튬 전극 및 이를 포함하는 리튬 이차전지 |
US11710828B2 (en) | 2019-05-22 | 2023-07-25 | Sion Power Corporation | Electrochemical devices including porous layers |
US11699780B2 (en) | 2019-05-22 | 2023-07-11 | Sion Power Corporation | Electrically coupled electrodes, and associated articles and methods |
US11515538B2 (en) * | 2019-10-11 | 2022-11-29 | GM Global Technology Operations LLC | In-situ polymerization to protect lithium metal electrodes |
US11056728B2 (en) | 2019-10-31 | 2021-07-06 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
US11424492B2 (en) | 2019-10-31 | 2022-08-23 | Sion Power Corporation | System and method for operating a rechargeable electrochemical cell or battery |
US11984575B2 (en) | 2019-11-19 | 2024-05-14 | Sion Power Corporation | Battery alignment, and associated systems and methods |
US11978917B2 (en) | 2019-11-19 | 2024-05-07 | Sion Power Corporation | Batteries with components including carbon fiber, and associated systems and methods |
KR20220104001A (ko) | 2019-11-19 | 2022-07-25 | 시온 파워 코퍼레이션 | 배터리, 관련 시스템 및 방법 |
US11791511B2 (en) | 2019-11-19 | 2023-10-17 | Sion Power Corporation | Thermally insulating compressible components for battery packs |
KR20220118515A (ko) | 2019-12-20 | 2022-08-25 | 시온 파워 코퍼레이션 | 리튬 금속 전극 |
JP2023510116A (ja) | 2019-12-20 | 2023-03-13 | シオン・パワー・コーポレーション | 充電式電気化学セルまたは電池用の組み込まれた電力バスを提供、組み立て、管理するためのシステムおよび方法 |
KR20210111951A (ko) * | 2020-03-03 | 2021-09-14 | 삼성에스디아이 주식회사 | 전고체이차전지용 양극 및 이를 포함하는 전고체이차전지 |
KR20210111950A (ko) | 2020-03-03 | 2021-09-14 | 삼성에스디아이 주식회사 | 전고체 이차전지용 양극 및 이를 포함하는 전고체이차전지 |
US11923495B2 (en) | 2020-03-13 | 2024-03-05 | Sion Power Corporation | Application of pressure to electrochemical devices including deformable solids, and related systems |
KR20230047403A (ko) | 2020-08-03 | 2023-04-07 | 시온 파워 코퍼레이션 | 전기화학 전지 클램프 및 관련 방법 |
US11826861B1 (en) | 2020-08-12 | 2023-11-28 | Sion Power Corporation | Joining systems, clamping fixtures, and related systems and methods |
CN116114135A (zh) * | 2020-09-01 | 2023-05-12 | 赛昂能源有限公司 | 多路复用的电池管理系统 |
WO2022050955A1 (en) | 2020-09-04 | 2022-03-10 | Sion Power Corporation | Electrically conductive release layer |
US11705554B2 (en) | 2020-10-09 | 2023-07-18 | Sion Power Corporation | Electrochemical cells and/or components thereof comprising nitrogen-containing species, and methods of forming them |
US12107238B2 (en) | 2020-10-14 | 2024-10-01 | Sion Power Corporation | Electrolytes for reduced gassing |
CN112332029B (zh) * | 2020-11-10 | 2022-08-05 | 江苏厚生新能源科技有限公司 | 一种能够捕捉氢氟酸的锂电池隔膜及其制备方法 |
EP4379862A1 (en) * | 2022-01-12 | 2024-06-05 | LG Energy Solution, Ltd. | Lithium metal negative electrode and electrochemical device comprising same |
EP4333139A1 (fr) * | 2022-08-31 | 2024-03-06 | Automotive Cells Company SE | Procédé de fabrication d'un empilement électrochimique pour batterie, comprenant un apport de froid pour décoller un revêtement |
WO2024091623A1 (en) * | 2022-10-28 | 2024-05-02 | Applied Materials, Inc. | Metallic lithium web coating via direct fluorinated pet film carriers and transfer lamination methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1415124A (zh) * | 1999-11-01 | 2003-04-30 | 波利普拉斯电池有限公司 | 层状排列的锂电池 |
CN1655927A (zh) * | 2002-05-27 | 2005-08-17 | 帝人杜邦菲林日本株式会社 | 剥离膜 |
CN101601150A (zh) * | 2006-12-04 | 2009-12-09 | 赛昂能源有限公司 | 电解质的分离 |
CN102576855A (zh) * | 2009-08-24 | 2012-07-11 | 赛昂能源有限公司 | 用于电化学电池的剥离系统 |
Family Cites Families (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2155687A (en) | 1935-12-13 | 1939-04-25 | Cincinnati Bickford Tool Co | Safety manual and power spindle drive |
US3080350A (en) | 1959-07-15 | 1963-03-05 | Kurashiki Rayon Co | Preparation of polyvinyl alcohol |
US3277117A (en) | 1963-12-18 | 1966-10-04 | Standard Oil Co | Method for preparation of anhydro derivatives of trimellitic anhydride |
US4481326A (en) * | 1980-12-15 | 1984-11-06 | Colgate Palmolive Company | Water soluble films of polyvinyl alcohol polyvinyl pyrrolidone |
US4440830A (en) | 1981-04-16 | 1984-04-03 | Wempe Lawrence K | Substrates coated with release composition based on polyvinyl alcohol and composites with pressure sensitive adhesives |
US4739018A (en) | 1983-09-20 | 1988-04-19 | Societe Nationale Elf Aquitaine | Polycarbon sulphide polymers |
FR2570882B1 (fr) | 1984-09-21 | 1986-12-05 | Comp Generale Electricite | Matiere active positive a base d'un polymere conducteur electronique pour generateur electrochimique |
US4954371A (en) | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
US4917974A (en) | 1989-04-14 | 1990-04-17 | The United States Of America As Represented By The Department Of Energy | Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same |
US5162175A (en) | 1989-10-13 | 1992-11-10 | Visco Steven J | Cell for making secondary batteries |
US5324599A (en) | 1991-01-29 | 1994-06-28 | Matsushita Electric Industrial Co., Ltd. | Reversible electrode material |
US5194341A (en) | 1991-12-03 | 1993-03-16 | Bell Communications Research, Inc. | Silica electrolyte element for secondary lithium battery |
US5441831A (en) | 1992-12-17 | 1995-08-15 | Associated Universities, Inc. | Cells having cathodes containing polycarbon disulfide materials |
JPH0717197A (ja) | 1993-06-30 | 1995-01-20 | Dainippon Printing Co Ltd | 帯電防止転写箔 |
US5538812A (en) | 1994-02-04 | 1996-07-23 | Moltech Corporation | Electrolyte materials containing highly dissociated metal ion salts |
US5648187A (en) | 1994-02-16 | 1997-07-15 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US5961672A (en) | 1994-02-16 | 1999-10-05 | Moltech Corporation | Stabilized anode for lithium-polymer batteries |
US5516598A (en) | 1994-07-28 | 1996-05-14 | Polyplus Battery Company, Inc. | Secondary cell using organosulfur/metal charge transfer materials as positive electrode |
US5786092A (en) | 1994-11-21 | 1998-07-28 | W.R. Grace & Co.-Conn. | Peelable laminate |
US6025094A (en) | 1994-11-23 | 2000-02-15 | Polyplus Battery Company, Inc. | Protective coatings for negative electrodes |
US5723230A (en) | 1995-02-27 | 1998-03-03 | Yazaki Corporation | Oligosulfide type electrode material and secondary battery containing such electrode material |
JPH08267943A (ja) | 1995-03-31 | 1996-10-15 | Konica Corp | レーザー記録用熱転写記録材料及びその作成方法 |
DE19513292C1 (de) | 1995-04-07 | 1996-08-22 | Siemens Ag | Brennstoffzelle |
WO1996041388A1 (en) | 1995-06-07 | 1996-12-19 | Moltech Corporation | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same |
US5529860A (en) | 1995-06-07 | 1996-06-25 | Moltech Corporation | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same |
US5601947A (en) | 1995-06-07 | 1997-02-11 | Moltech Corporation | Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same |
US5681615A (en) | 1995-07-27 | 1997-10-28 | Battelle Memorial Institute | Vacuum flash evaporated polymer composites |
US5792575A (en) | 1995-09-11 | 1998-08-11 | Yazaki Corporation | Lithium sulfur secondary battery and elecrode material for a non-aqueous battery |
JP3555097B2 (ja) | 1995-09-28 | 2004-08-18 | 矢崎総業株式会社 | 電極材料及び二次電池 |
JP3525403B2 (ja) | 1995-09-28 | 2004-05-10 | 矢崎総業株式会社 | 電極材料及び二次電池 |
US5682210A (en) | 1995-12-08 | 1997-10-28 | Weirich; John | Eye contact lens video display system |
US6306509B2 (en) | 1996-03-21 | 2001-10-23 | Showa Denko K.K. | Ion conductive laminate and production method and use thereof |
EP0958627B1 (en) | 1996-05-22 | 2002-02-27 | Moltech Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
US6120930A (en) | 1997-07-25 | 2000-09-19 | 3M Innovative Properties Corporation | Rechargeable thin-film electrochemical generator |
US6248469B1 (en) | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
JPH11114481A (ja) | 1997-10-13 | 1999-04-27 | Dainippon Printing Co Ltd | 蛍光体層形成用の転写シート |
US6020412A (en) | 1997-12-04 | 2000-02-01 | Mitsubishi Polyester Film, Llc | Controlled release coating comprising blend of silicone polymer and adhesion promoter |
US6201100B1 (en) | 1997-12-19 | 2001-03-13 | Moltech Corporation | Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same |
US6153337A (en) | 1997-12-19 | 2000-11-28 | Moltech Corporation | Separators for electrochemical cells |
US6402795B1 (en) | 1998-02-18 | 2002-06-11 | Polyplus Battery Company, Inc. | Plating metal negative electrodes under protective coatings |
US6134773A (en) | 1998-02-20 | 2000-10-24 | Lithium Technology Corporation | Method for automatic mass production of electrochemical cells |
US6306215B1 (en) | 1998-03-10 | 2001-10-23 | Valence Technology, Inc. | Apparatus for coating current collectors |
US6214061B1 (en) | 1998-05-01 | 2001-04-10 | Polyplus Battery Company, Inc. | Method for forming encapsulated lithium electrodes having glass protective layers |
JP2000040506A (ja) | 1998-05-20 | 2000-02-08 | Dainippon Printing Co Ltd | 非水電解液二次電池用電極板およびその製造方法 |
US6136468A (en) | 1998-08-25 | 2000-10-24 | Timer Technologies, Llc | Electrochemical cell with deferred assembly |
US6194098B1 (en) | 1998-12-17 | 2001-02-27 | Moltech Corporation | Protective coating for separators for electrochemical cells |
DE19916043A1 (de) | 1999-04-09 | 2000-10-19 | Basf Ag | Verbundkörper geeignet zur Verwendung als Lithiumionenbatterie |
CA2270771A1 (fr) | 1999-04-30 | 2000-10-30 | Hydro-Quebec | Nouveaux materiaux d'electrode presentant une conductivite de surface elevee |
EP1214748A2 (en) | 1999-06-09 | 2002-06-19 | Moltech Corporation | Methods of preparing electrochemical cells |
JP3563646B2 (ja) | 1999-09-14 | 2004-09-08 | 株式会社東芝 | 電気化学デバイス |
US6413284B1 (en) | 1999-11-01 | 2002-07-02 | Polyplus Battery Company | Encapsulated lithium alloy electrodes having barrier layers |
US7081142B1 (en) * | 1999-11-23 | 2006-07-25 | Sion Power Corporation | Methods of preparing electrochemical cells |
US7771870B2 (en) | 2006-03-22 | 2010-08-10 | Sion Power Corporation | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries |
US7247408B2 (en) | 1999-11-23 | 2007-07-24 | Sion Power Corporation | Lithium anodes for electrochemical cells |
AU1796701A (en) | 1999-11-23 | 2001-06-04 | Moltech Corporation | Lithium anodes for electrochemical cells |
JP4517440B2 (ja) | 2000-03-10 | 2010-08-04 | ソニー株式会社 | リチウムイオン固体電解質二次電池 |
TW499766B (en) | 2000-03-29 | 2002-08-21 | Elite Ionergy Co Ltd | Battery manufacturing method |
US6488721B1 (en) * | 2000-06-09 | 2002-12-03 | Moltech Corporation | Methods of preparing electrochemical cells |
US6544688B1 (en) | 2000-09-20 | 2003-04-08 | Moltech Corporation | Cathode current collector for electrochemical cells |
ITMI20010383A1 (it) | 2001-02-26 | 2002-08-26 | Ausimont Spa | Membrane idrofiliche porose |
EP1296391A4 (en) | 2001-03-22 | 2006-06-28 | Matsushita Electric Ind Co Ltd | POSITIVE ELECTRODE ACTIVE MATERIAL AND NON-AQUEOUS ELECTROLYTE BATTERY CONTAINING THE MATERIAL |
US20040146786A1 (en) | 2001-05-10 | 2004-07-29 | Takaya Sato | Nonaqueous electolytic solution, composition for polymer gel electrolyte, polymer gel electrolyte, secondary cell, and electric double-layer capacitor |
US20020170169A1 (en) | 2001-05-21 | 2002-11-21 | Gonzalez Jose E. | System and method for multilayer fabrication of lithium polymer batteries and cells using surface treated separators |
JP2002363898A (ja) | 2001-06-07 | 2002-12-18 | Sanrock Kogyo Kk | 剥離層付壁紙とその製造方法 |
US7070632B1 (en) | 2001-07-25 | 2006-07-04 | Polyplus Battery Company | Electrochemical device separator structures with barrier layer on non-swelling membrane |
US6991662B2 (en) * | 2001-09-10 | 2006-01-31 | Polyplus Battery Company | Encapsulated alloy electrodes |
US7645543B2 (en) | 2002-10-15 | 2010-01-12 | Polyplus Battery Company | Active metal/aqueous electrochemical cells and systems |
KR20110131278A (ko) | 2002-10-15 | 2011-12-06 | 폴리플러스 배터리 컴퍼니 | 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물 |
US20080057386A1 (en) | 2002-10-15 | 2008-03-06 | Polyplus Battery Company | Ionically conductive membranes for protection of active metal anodes and battery cells |
KR100467705B1 (ko) | 2002-11-02 | 2005-01-24 | 삼성에스디아이 주식회사 | 무기 보호막을 갖는 세퍼레이타 및 이를 채용한 리튬 전지 |
TW200410439A (en) | 2002-11-22 | 2004-06-16 | Kureha Chemical Ind Co Ltd | Binder composition for electrode of nonaqueous electrolyte battery, and use thereof |
US20040197629A1 (en) | 2003-01-20 | 2004-10-07 | Yasuo Arishima | Electric power generating element for fuel cell and fuel cell using the same |
TWI237834B (en) | 2003-03-31 | 2005-08-11 | Tdk Corp | A method for manufacturing a multi-layered ceramic electronic component |
KR100508945B1 (ko) | 2003-04-17 | 2005-08-17 | 삼성에스디아이 주식회사 | 리튬 전지용 음극, 그의 제조 방법 및 그를 포함하는 리튬전지 |
US20040253510A1 (en) | 2003-06-04 | 2004-12-16 | Polyplus Battery Company | Aliovalent protective layers for active metal anodes |
CN100557733C (zh) | 2003-06-20 | 2009-11-04 | Tdk株式会社 | 印刷电路板的层叠方法和层叠陶瓷电子部件的制造方法 |
KR100497231B1 (ko) | 2003-07-08 | 2005-06-23 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬 이차 전지 |
KR100496306B1 (ko) | 2003-08-19 | 2005-06-17 | 삼성에스디아이 주식회사 | 리튬 금속 애노드의 제조방법 |
JP4170870B2 (ja) | 2003-09-24 | 2008-10-22 | 大日本印刷株式会社 | 保護層転写シート及び熱転写画像記録体 |
KR100542213B1 (ko) | 2003-10-31 | 2006-01-10 | 삼성에스디아이 주식회사 | 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지 |
JP4764232B2 (ja) | 2003-12-04 | 2011-08-31 | 三井金属鉱業株式会社 | 非水電解液二次電池用負極及び非水電解液二次電池 |
JP3987851B2 (ja) | 2003-12-04 | 2007-10-10 | 三井金属鉱業株式会社 | 二次電池用負極及びそれを備えた二次電池 |
CN100514715C (zh) | 2003-12-04 | 2009-07-15 | 三井金属矿业株式会社 | 二次电池用电极及其制造方法以及二次电池 |
US20060147801A1 (en) | 2005-01-05 | 2006-07-06 | Kiyotaka Yasuda | Electrode for secondary battery, process of producing the electrode, and secondary battery |
WO2005055345A1 (ja) | 2003-12-04 | 2005-06-16 | Mitsui Mining & Smelting Co., Ltd. | 二次電池用電極及びその製造方法並びに二次電池 |
RU2336603C2 (ru) | 2003-12-04 | 2008-10-20 | Мицуи Майнинг Энд Смелтинг Ко., Лтд. | Электрод для использования во вторичной батарее, способ его изготовления и вторичная батарея |
EP1693400B1 (en) | 2003-12-08 | 2012-01-18 | University of Yamanashi | Polyimide resin, method for producing polyimide resin, and electrolyte membrane, catalyst layer, membrane/electrode assembly and device each containing polyimide resin |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
JP4709491B2 (ja) | 2004-01-16 | 2011-06-22 | 三菱重工業株式会社 | 塗工方法及び塗工装置 |
US8617745B2 (en) | 2004-02-06 | 2013-12-31 | A123 Systems Llc | Lithium secondary cell with high charge and discharge rate capability and low impedance growth |
US7282295B2 (en) | 2004-02-06 | 2007-10-16 | Polyplus Battery Company | Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture |
JP3764470B1 (ja) | 2004-09-09 | 2006-04-05 | 三井金属鉱業株式会社 | 非水電解液二次電池用負極 |
US7838154B2 (en) | 2004-09-09 | 2010-11-23 | Mitsui Mining & Smelting Co., Ltd. | Negative electrode for nonaqueous secondary battery |
JP4906735B2 (ja) | 2004-11-18 | 2012-03-28 | ダウ コーニング コーポレーション | 分岐シロキサンの調製方法 |
US20060147802A1 (en) | 2005-01-05 | 2006-07-06 | Kiyotaka Yasuda | Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery |
JP2006236685A (ja) | 2005-02-23 | 2006-09-07 | Sony Corp | 負極,電池およびそれらの製造方法 |
DE102005013790B4 (de) | 2005-03-24 | 2007-03-29 | Polymaterials Ag | Polymerelektrolyt, Verwendung des Polymerelektrolyten und elektrochemische Vorrichtung, die den Polymerelektrolyten umfasst |
US7688075B2 (en) | 2005-04-20 | 2010-03-30 | Sion Power Corporation | Lithium sulfur rechargeable battery fuel gauge systems and methods |
US8426069B2 (en) | 2005-05-10 | 2013-04-23 | Panasonic Corporation | Battery having a belt-like separator |
US20080020923A1 (en) | 2005-09-13 | 2008-01-24 | Debe Mark K | Multilayered nanostructured films |
US8652705B2 (en) | 2005-09-26 | 2014-02-18 | W.L. Gore & Associates, Inc. | Solid polymer electrolyte and process for making same |
US8182943B2 (en) | 2005-12-19 | 2012-05-22 | Polyplus Battery Company | Composite solid electrolyte for protection of active metal anodes |
WO2007124011A2 (en) | 2006-04-21 | 2007-11-01 | Bdf Ip Holdings Ltd. | Methods of making components for electrochemical cells |
DE102007005156A1 (de) | 2007-01-29 | 2008-08-14 | Evonik Degussa Gmbh | Keramische Membrane mit verbesserter Haftung auf plasmabehandeltem polymerem Supportmaterial, sowie deren Herstellung und Verwendung |
US8084102B2 (en) | 2007-02-06 | 2011-12-27 | Sion Power Corporation | Methods for co-flash evaporation of polymerizable monomers and non-polymerizable carrier solvent/salt mixtures/solutions |
US20080318128A1 (en) | 2007-06-22 | 2008-12-25 | Sion Power Corporation | Lithium alloy/sulfur batteries |
US20090035646A1 (en) | 2007-07-31 | 2009-02-05 | Sion Power Corporation | Swelling inhibition in batteries |
US20090061321A1 (en) | 2007-08-31 | 2009-03-05 | Fmc Corporation, Lithium Division | Stabilized lithium metal powder for li-ion application, composition and process |
WO2009032313A1 (en) * | 2007-09-05 | 2009-03-12 | Ceramatec, Inc. | Lithium-sulfur battery with a substantially non- porous membrane and enhanced cathode utilization |
US20110006738A1 (en) | 2007-09-21 | 2011-01-13 | Sion Power Corporation | Electrolyte additives for lithium batteries and related methods |
US20120070746A1 (en) | 2007-09-21 | 2012-03-22 | Sion Power Corporation | Low electrolyte electrochemical cells |
JP5062526B2 (ja) | 2007-09-27 | 2012-10-31 | 三洋電機株式会社 | 非水電解質電池用セパレータ及び非水電解質電池 |
JP2011501383A (ja) | 2007-10-26 | 2011-01-06 | サイオン パワー コーポレイション | バッテリ電極用プライマー |
EP2240973B1 (en) | 2008-01-08 | 2018-03-28 | Sion Power Corporation | Porous electrodes and associated methods |
JP5059643B2 (ja) * | 2008-02-04 | 2012-10-24 | ソニー株式会社 | 非水電解質電池 |
US8264205B2 (en) | 2008-02-08 | 2012-09-11 | Sion Power Corporation | Circuit for charge and/or discharge protection in an energy-storage device |
CA2717767C (en) | 2008-03-05 | 2016-08-30 | Eaglepicher Technologies, Llc | Lithium-sulfur battery and cathode therefor |
JP5156504B2 (ja) | 2008-06-25 | 2013-03-06 | 日本ゴア株式会社 | 複合膜及びそれを用いた水分量調整モジュール |
CN102089901B (zh) | 2008-07-16 | 2015-07-01 | 东丽株式会社 | 蓄电装置用隔膜 |
EP2669975A1 (en) | 2008-08-05 | 2013-12-04 | Sion Power Corporation | Application of force in electrochemical cells |
JP4952680B2 (ja) | 2008-08-05 | 2012-06-13 | ソニー株式会社 | リチウムイオン二次電池およびリチウムイオン二次電池用負極 |
DE102008061746A1 (de) | 2008-12-12 | 2010-06-24 | Treofan Germany Gmbh & Co. Kg | Einschichtige mikroporöse Folie für Batterien mit Abschaltfunktion |
EP2409349A4 (en) | 2009-03-19 | 2013-05-01 | Sion Power Corp | CATHODE FOR LITHIUM BATTERY |
US8087309B2 (en) | 2009-05-22 | 2012-01-03 | Sion Power Corporation | Hermetic sample holder and method for performing microanalysis under controlled atmosphere environment |
CN101997145B (zh) * | 2009-08-25 | 2013-06-05 | 苏州宝时得电动工具有限公司 | 锂硫电池 |
US20110070494A1 (en) | 2009-08-28 | 2011-03-24 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
US20110206992A1 (en) | 2009-08-28 | 2011-08-25 | Sion Power Corporation | Porous structures for energy storage devices |
JP2013508927A (ja) | 2009-10-27 | 2013-03-07 | ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング | リチウム硫黄バッテリ |
US8139343B2 (en) | 2010-03-08 | 2012-03-20 | Wisys Technology Foundation | Electrical energy storage device containing an electroactive separator |
KR20130080803A (ko) | 2010-05-27 | 2013-07-15 | 바스프 에스이 | 재료, 이의 제조 방법 및 그의 성분 |
US8436125B2 (en) | 2010-05-27 | 2013-05-07 | Basf Se | Materials, methods for production thereof and components thereof |
DE102010030197A1 (de) | 2010-06-17 | 2011-12-22 | Sb Limotive Company Ltd. | Lithium-Ionen-Zelle |
JP2013538424A (ja) | 2010-08-24 | 2013-10-10 | ビーエイエスエフ・ソシエタス・エウロパエア | 電気化学セルでの使用のための電解質材料 |
US20120048729A1 (en) | 2010-08-24 | 2012-03-01 | Sion Power Corporation | Electrically non-conductive materials for electrochemical cells |
KR101358761B1 (ko) | 2011-05-03 | 2014-02-07 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 |
JP2014517467A (ja) | 2011-05-19 | 2014-07-17 | ビーエーエスエフ ソシエタス・ヨーロピア | ポリイミドを含む電気化学セル |
CN102244223A (zh) | 2011-05-26 | 2011-11-16 | 东莞新能源科技有限公司 | 电化学装置及其无机/有机复合多孔性薄膜 |
WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
JP5994354B2 (ja) * | 2011-09-05 | 2016-09-21 | ソニー株式会社 | セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム |
KR101905233B1 (ko) | 2011-10-13 | 2018-10-05 | 시온 파워 코퍼레이션 | 전극 구조물 및 그의 제조 방법 |
EP2780393A1 (de) | 2011-11-16 | 2014-09-24 | Basf Se | Polymeres material, seine herstellung und verwendung |
US20130118980A1 (en) | 2011-11-16 | 2013-05-16 | Anna Mueller-Cristadoro | Polymeric material, production and use thereof |
US9077041B2 (en) | 2012-02-14 | 2015-07-07 | Sion Power Corporation | Electrode structure for electrochemical cell |
WO2013134655A1 (en) | 2012-03-09 | 2013-09-12 | Sion Power Corporation | Porous support structures, electrodes containing same, and associated methods |
EP2893579A1 (en) | 2012-09-03 | 2015-07-15 | Basf Se | Electrochemical cells comprising reaction products of polyimides |
WO2014071160A1 (en) | 2012-11-02 | 2014-05-08 | Sion Power Corporation | Electrode active surface pretreatment |
KR102008554B1 (ko) | 2012-11-02 | 2019-08-07 | 바스프 에스이 | 전기화학 전지의 보호층 및 다른 구성요소로 사용하기 위한 중합체 |
WO2014110131A1 (en) | 2013-01-08 | 2014-07-17 | Sion Power Corporation | Conductivity control in electrochemical cells |
US20140272595A1 (en) | 2013-03-15 | 2014-09-18 | Basf Se | Compositions for use as protective layers and other components in electrochemical cells |
KR102026508B1 (ko) | 2013-03-15 | 2019-09-27 | 시온 파워 코퍼레이션 | 보호된 전극 구조물 및 방법 |
US20140272594A1 (en) | 2013-03-15 | 2014-09-18 | Sion Power Corporation | Protective structures for electrodes |
CN105122501B (zh) | 2013-03-15 | 2019-02-19 | 锡安能量公司 | 受保护电极结构 |
KR101736013B1 (ko) | 2013-07-03 | 2017-05-24 | 시온 파워 코퍼레이션 | 재충전형 리튬 배터리를 비롯한 전기화학 전지에서의 전극 보호를 위한 세라믹/중합체 매트릭스 |
CN105474448B (zh) | 2013-08-08 | 2019-03-22 | 锡安能量公司 | 电化学电池中的自修复电极保护 |
US20150162586A1 (en) | 2013-12-05 | 2015-06-11 | Sion Power Corporation | New separator |
WO2015090607A1 (en) | 2013-12-19 | 2015-06-25 | Basf Se | Polymer for use as protective layers and other components in electrochemical cells |
US10490796B2 (en) | 2014-02-19 | 2019-11-26 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
CN106062995B (zh) | 2014-02-19 | 2020-02-04 | 巴斯夫欧洲公司 | 使用包含抑制电解质的离子导体的复合物的电极保护 |
JP6254328B2 (ja) | 2014-03-27 | 2017-12-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 新しいゲル電解質および電極 |
EP3149798B1 (en) | 2014-05-30 | 2018-04-11 | Basf Se | Polymer for use as protective layers and other components in electrochemical cells |
EP3192112A4 (en) | 2014-09-09 | 2018-04-11 | Sion Power Corporation | Protective layers in lithium-ion electrochemical cells and associated electrodes and methods |
WO2016064949A1 (en) | 2014-10-23 | 2016-04-28 | Sion Power Corporation | Ion-conductive composite for electrochemical cells |
US20160118638A1 (en) | 2014-10-24 | 2016-04-28 | Sion Power Corporation | Compositions for use as protective layers and other components in electrochemical cells |
-
2014
- 2014-03-13 CN CN201480015012.XA patent/CN105122501B/zh active Active
- 2014-03-13 KR KR1020157029296A patent/KR20150132427A/ko not_active Application Discontinuation
- 2014-03-13 US US14/209,396 patent/US10862105B2/en active Active
- 2014-03-13 WO PCT/EP2014/054994 patent/WO2014140198A1/en active Application Filing
- 2014-03-13 JP JP2015562158A patent/JP2016511517A/ja active Pending
- 2014-03-13 EP EP14709699.4A patent/EP2973779A1/en not_active Withdrawn
-
2020
- 2020-11-06 US US17/091,232 patent/US11894545B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1415124A (zh) * | 1999-11-01 | 2003-04-30 | 波利普拉斯电池有限公司 | 层状排列的锂电池 |
CN1655927A (zh) * | 2002-05-27 | 2005-08-17 | 帝人杜邦菲林日本株式会社 | 剥离膜 |
CN101601150A (zh) * | 2006-12-04 | 2009-12-09 | 赛昂能源有限公司 | 电解质的分离 |
CN102576855A (zh) * | 2009-08-24 | 2012-07-11 | 赛昂能源有限公司 | 用于电化学电池的剥离系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647345A (zh) * | 2020-04-21 | 2020-09-11 | 万向一二三股份公司 | 一种锂离子电池负极聚合物保护涂层及其制备方法、应用 |
Also Published As
Publication number | Publication date |
---|---|
US11894545B2 (en) | 2024-02-06 |
EP2973779A1 (en) | 2016-01-20 |
US20140272565A1 (en) | 2014-09-18 |
WO2014140198A1 (en) | 2014-09-18 |
KR20150132427A (ko) | 2015-11-25 |
US20210135192A1 (en) | 2021-05-06 |
US10862105B2 (en) | 2020-12-08 |
CN105122501A (zh) | 2015-12-02 |
JP2016511517A (ja) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105122501B (zh) | 受保护电极结构 | |
CN105051944B (zh) | 受保护电极结构和方法 | |
US11302911B2 (en) | Particulates of polymer electrolyte-protected anode active material particles for lithium-ion batteries | |
CN105190969B (zh) | 用于电极的保护结构 | |
CN101884125B (zh) | 用于电池电极的底涂料 | |
KR20170129641A (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
KR20160121551A (ko) | 극한의 배터리 조건을 견디는 아라미드 나노섬유 유래의 덴드라이트 억제성 이온 전도체 | |
KR20150104093A (ko) | 무기-유기 하이브리드 폴리머의 바인더를 포함하는 고체/겔 전해질 전지 및 이의 제조 방법 | |
US20200335792A1 (en) | Particulates of conducting polymer network-protected anode active material particles for lithium-ion batteries | |
US20130273435A1 (en) | Layer system for electrochemical cells | |
EP2837050A1 (en) | Layer system for electrochemical cells | |
US11637291B2 (en) | Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method | |
KR101625707B1 (ko) | 전기화학소자용 고체 전해질 및 이를 구비한 전기화학소자 | |
US20240290983A1 (en) | Negative electrode, and lithium battery including same | |
KR101990616B1 (ko) | 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지 | |
KR102093967B1 (ko) | 폴리설파이드 흡착막, 이를 포함하는 분리막, 리튬-황 전지 및 이의 제조방법 | |
KR102034720B1 (ko) | 세라믹 입자, 이를 포함하는 고분자막 및 리튬전지, 및 상기 세라믹 입자의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20161207 Address after: Arizona, USA Applicant after: Sion Power Corp Address before: Ludwigshafen, Germany Applicant before: BASF SE Applicant before: Sion Power Corp |
|
GR01 | Patent grant | ||
GR01 | Patent grant |