CN105067331A - 精简广义位移索力监测载荷问题索识别方法 - Google Patents
精简广义位移索力监测载荷问题索识别方法 Download PDFInfo
- Publication number
- CN105067331A CN105067331A CN201510439510.3A CN201510439510A CN105067331A CN 105067331 A CN105067331 A CN 105067331A CN 201510439510 A CN201510439510 A CN 201510439510A CN 105067331 A CN105067331 A CN 105067331A
- Authority
- CN
- China
- Prior art keywords
- vector
- cable
- load
- cable structure
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 165
- 238000012544 monitoring process Methods 0.000 title claims abstract description 54
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 50
- 239000013598 vector Substances 0.000 claims abstract description 402
- 230000008859 change Effects 0.000 claims abstract description 193
- 238000004364 calculation method Methods 0.000 claims abstract description 130
- 230000003862 health status Effects 0.000 claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 27
- 238000011156 evaluation Methods 0.000 claims description 78
- 238000009826 distribution Methods 0.000 claims description 71
- 238000005259 measurement Methods 0.000 claims description 68
- 230000036541 health Effects 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 18
- 238000009659 non-destructive testing Methods 0.000 claims description 17
- 230000009471 action Effects 0.000 claims description 14
- 230000005802 health problem Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 12
- 238000013461 design Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000000547 structure data Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims 9
- 239000012925 reference material Substances 0.000 claims 3
- 238000002360 preparation method Methods 0.000 claims 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims 1
- 241001269238 Data Species 0.000 claims 1
- 240000002853 Nelumbo nucifera Species 0.000 claims 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims 1
- 238000004873 anchoring Methods 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000001066 destructive effect Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 claims 1
- 238000007796 conventional method Methods 0.000 description 6
- 206010016256 fatigue Diseases 0.000 description 5
- 238000010297 mechanical methods and process Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000005226 mechanical processes and functions Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
精简广义位移索力监测载荷问题索识别方法基于索力监测,通过监测支座广义位移来决定是否需要更新索结构的力学计算基准模型,得到计入支座广义位移的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量数值变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量数值变化矩阵和待求的被评估对象当前名义损伤向量间存在的近似线性关系算出被评估对象当前名义损伤向量的非劣解,据此可以识别出核心被评估对象的健康状态。
Description
技术领域
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见,本方法将该类结构表述为“索结构”,并将索结构的所有承载索、承载缆,及所有仅承受轴向拉伸或轴向压缩载荷的杆件(又称为二力杆件),为方便起见统一称为“索系统”,本方法中用“支承索”这一名词指称承载索、承载缆及仅承受轴向拉伸或轴向压缩载荷的杆件,有时简称为“索”,所以在后面使用“索”这个字的时候,对桁架结构实际就是指二力杆件。支承索的受损和松弛对索结构安全是一项重大威胁,本方法将受损索和松弛索统称为有健康问题的支承索,简称为问题索。在结构服役过程中,对支承索或索系统的健康状态的正确识别关系到整个索结构的安全。在索结构服役过程中,索结构支座可能发生广义位移,索结构承受的载荷也可能发生变化,同时索结构的健康状态也可能在发生变化,在这种复杂条件下,本方法基于索力监测(本方法将被监测的索力称为“被监测量”)来识别问题索,属工程结构健康监测领域。
背景技术
剔除载荷变化、索结构支座广义位移对索结构健康状态识别结果的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题,本方法公开了解决这个问题的一种有效的、廉价的方法。
发明内容
技术问题:本方法公开了一种方法,在造价更低的条件下,在支座有广义位移时,在结构承受的载荷变化时,能够剔除支座广义位移和载荷变化对索结构健康状态识别结果的影响,从而准确地识别出支承索的健康状态。
技术方案:本方法由三部分组成。
在本方法中,用“支座空间坐标”指称支座关于笛卡尔直角坐标系的X、Y、Z轴的坐标,也可以说成是支座关于X、Y、Z轴的空间坐标,支座关于某一个轴的空间坐标的具体数值称为支座关于该轴的空间坐标分量,本方法中也用支座的一个空间坐标分量表达支座关于某一个轴的空间坐标的具体数值;用“支座角坐标”指称支座关于X、Y、Z轴的角坐标,支座关于某一个轴的角坐标的具体数值称为支座关于该轴的角坐标分量,本方法中也用支座的一个角坐标分量表达支座关于某一个轴的角坐标的具体数值;用“支座广义坐标”指称支座角坐标和支座空间坐标全体,本方法中也用支座的一个广义坐标分量表达支座关于一个轴的空间坐标或角坐标的具体数值;支座关于X、Y、Z轴的坐标的改变称为支座线位移,也可以说支座空间坐标的改变称为支座线位移,本方法中也用支座的一个线位移分量表达支座关于某一个轴的线位移的具体数值;支座关于X、Y、Z轴的角坐标的改变称为支座角位移,本方法中也用支座的一个角位移分量表达支座关于某一个轴的角位移的具体数值;支座广义位移指称支座线位移和支座角位移全体,本方法中也用支座的一个广义位移分量表达支座关于某一个轴的线位移或角位移的具体数值;支座线位移也可称为平移位移,支座沉降是支座线位移或平移位移在重力方向的分量。
本方法的第一部分:建立结构健康监测系统所需的知识库和参量的方法。具体如下:
1.物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷。面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种。体积载荷是连续分布于物体内部各点的载荷,如物体的自重和惯性力。
集中载荷分为集中力和集中力偶两种,在坐标系中,例如在笛卡尔直角坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量称为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化。
分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征(例如均布、正弦函数等分布特征)和幅值来表达(例如两个分布载荷都是均布,但其幅值不同,可以均布压力为例来说明幅值的概念:同一个结构承受两个不同的均布压力,两个分布载荷都是均布载荷,但一个分布载荷的幅值是10MPa,另一个分布载荷的幅值是50MPa)。如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而分布载荷的作用区域和分布集度的分布特征是不变的。在坐标系中,一个分布载荷可以分解成若干个分量,如果这分布载荷的若干个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这若干个分布载荷的分量看成同样数量的独立的分布载荷,此时一个载荷就代表一个分布载荷的分量,也可以将其中分布集度的幅值变化比率相同的分量合成为一个分布载荷或称为一个载荷。
体积载荷是连续分布于物体内部各点的载荷,如物体的自重和惯性力,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征(例如均布、线性函数等分布特征)和幅值来表达(例如两个体积载荷都是均布,但其幅值不同,可以自重为例来说明幅值的概念:同一个结构的两个部分的材料不同,故密度不同,所以虽然这两个部分所受的体积载荷都是均布的,但一个部分所受的体积载荷的幅值可能是10kN/m3,另一个部分所受的体积载荷的幅值是50kN/m3)。如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷。在坐标系中,一个体积载荷可以分解成若干个分量(例如在笛卡尔直角坐标系中,体积载荷可以分解成关于坐标系的三个轴的分量,也就是说,在笛卡尔直角坐标系中体积载荷可以分解成三个分量),如果这体积载荷的若干个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这若干个体积载荷的分量看成同样数量的独立的载荷,也可以将其中分布集度的幅值变化比率相同的体积载荷分量合成为一个体积载荷或称为一个载荷。
当载荷具体化为集中载荷时,在本方法中,“载荷单位变化”实际上是指“集中载荷的单位变化”,类似的,“载荷变化”具体指“集中载荷的大小的变化”,“载荷变化量”具体指“集中载荷的大小的变化量”,“载荷变化程度”具体指“集中载荷的大小的变化程度”,“载荷的实际变化量”是指“集中载荷的大小的实际变化量”,“发生变化的载荷”是指“大小发生变化的集中载荷”,简单地说,此时“某某载荷的某某变化”是指“某某集中载荷的大小的某某变化”。
当载荷具体化为分布载荷时,在本方法中,“载荷单位变化”实际上是指“分布载荷的分布集度的幅值的单位变化”,而分布载荷的分布特征是不变的,类似的,“载荷变化”具体指“分布载荷的分布集度的幅值的变化”,而分布载荷的分布特征是不变的,“载荷变化量”具体指“分布载荷的分布集度的幅值的变化量”,“载荷变化程度”具体指“分布载荷的分布集度的幅值的变化程度”,“载荷的实际变化量”具体指“分布载荷的分布集度的幅值的实际变化量”,“发生变化的载荷”是指“分布集度的幅值发生变化的分布载荷”,简单地说,此时“某某载荷的某某变化”是指“某某分布载荷的分布集度的幅值的某某变化”,而所有分布载荷的作用区域和分布集度的分布特征是不变的。
当载荷具体化为体积载荷时,在本方法中,“载荷单位变化”实际上是指“体积载荷的分布集度的幅值的单位变化”,类似的,“载荷变化”是指“体积载荷的分布集度的幅值的变化”,“载荷变化量”是指“体积载荷的分布集度的幅值的变化量”,“载荷变化程度”是指“体积载荷的分布集度的幅值的变化程度”,“载荷的实际变化量”是指“体积载荷的分布集度的幅值的实际变化量”,“发生变化的载荷”是指“分布集度的幅值发生变化的体积载荷”,简单地说,“某某载荷的某某变化”是指“某某体积载荷的分布集度的幅值的某某变化”,而所有体积载荷的作用区域和分布集度的分布特征是不变的。
首先确认索结构承受的可能发生变化的载荷的数量。根据索结构所承受的载荷的特点,确认其中“所有可能发生变化的载荷”,或者将所有的载荷视为“所有可能发生变化的载荷”,设共有JZW个可能发生变化的载荷,即共有JZW个次要被评估对象。
设索结构的支承索的数量和JZW个“所有可能发生变化的载荷”的数量之和为N,即共有N个被评估对象。给被评估对象连续编号,该编号在后续步骤中将用于生成向量和矩阵。
设索系统中共有M1根支承索,即共有M1个核心被评估对象,结构索力数据包括这M1根支承索的索力,显然M1小于被评估对象的数量N。本方法在监测全部M1根支承索索力的基础上,增加M2个其他被监测量。
增加的M2个其他被监测量仍然是索力,叙述如下:
在结构健康监测系统开始工作前,先在索结构上人为增加M2(M2不小于4)根索,称为传感索,新增加的M2根传感索的刚度同索结构的任意一根支承索的刚度相比,应当小很多,例如小20倍,新增加的M2根传感索的索力应当较小,例如其横截面正应力应当小于其疲劳极限,这些要求可以保证新增加的M2根传感索不会发生疲劳损伤,新增加的M2根传感索的两端应当充分锚固,保证不会出现松弛,新增加的M2根传感索应当得到充分的防腐蚀保护,保证新增加的M2根传感索不会发生损伤和松弛,在结构健康监测过程中将监测这新增加的M2根传感索的索力。
还可以采用多增加传感索的方式来保证健康监测的可靠性,例如使M2不小于8,在结构健康监测过程中只挑选其中的完好的传感索的索力数据(和支承索的索力数据一起称为实际可以使用的被监测量,记录其数量为K,K不得小于4+M1)和对应的索结构被监测量单位变化矩阵ΔC进行健康状态评估。在结构健康监测过程中将监测这新增加的M2根传感索的索力。新增加的M2根传感索应当安装在结构上、人员易于到达的部位,便于人员对其进行无损检测。
在本方法中新增加的M2根传感索作为索结构的一部分,后文再提到索结构时,索结构包括增加M2根传感索前的索结构和新增加的M2根传感索,也就是说后文提到索结构时指包括新增加的M2根传感索的索结构。因此后文提到按照“本方法的索结构的温度测量计算方法”测量计算得到“索结构稳态温度数据”时,其中的索结构包括新增加的M2根传感索,得到的“索结构稳态温度数据”包括新增加的M2根传感索的稳态温度数据,获得新增加的M2根传感索的稳态温度数据的方法同于索结构的M1根支承索的稳态温度数据的获得方法,在后文不再一一交代;测量得到新增加的M2根传感索的索力的方法同于索结构的M1根支承索的索力的测量方法,在后文不再一一交代;对索结构的支承索进行任何测量时,同时对新增加的M2根传感索进行同样的测量,在后文不再一一交代;新增加的M2根传感索除了不发生损伤和松弛外,新增加的M2根索的信息量与索结构的支承索的信息量相同,在后文不再一一交代。在后文建立索结构的各种力学模型时,将新增加的M2根传感索视同索结构的M1根支承索对待,除了提到支承索的损伤和松弛的场合,在其他场合提到支承索时包括新增加的M2根索。
综合上述被监测量,整个索结构共有M(M=M1+M2)根索的M个被监测量,M大于核心被评估对象的数量,M小于被评估对象的数量。
为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”。给M个被监测量连续编号,该编号在后续步骤中将用于生成向量和矩阵。本方法用用变量j表示这一编号,j=1,2,3,…,M。
2.建立索结构的初始力学计算基准模型Ao(例如有限元基准模型)和当前初始力学计算基准模型At o(例如有限元基准模型)的方法,建立与Ao对应的被监测量初始数值向量Co的方法,建立与At o对应的被监测量当前初始数值向量Ct o的方法。在本方法中Ao、Co、At o和Ct o是不断更新的。建立和更新Ao、Co、At o和Ct o的方法如下。被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同。
利用索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的物理和力学性能参数,利用力学方法(例如有限元法)建立初始力学计算基准模型Ao。对应于Ao的索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo。建立初始力学计算基准模型Ao时,利用支承索的无损检测数据等能够表达支承索的健康状态的数据以及“所有可能发生变化的载荷”的变化量数据建立被评估对象初始损伤向量do(如式(1)所示),用do表示索结构(用初始力学计算基准模型Ao表示)的被评估对象的初始健康状态。如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do的中与支承索相关的各元素数值取0。向量do中与载荷的变化量相关的各元素数值取0。
do=[do1do2···dok···doN]T(1)
式(1)中dok(k=1,2,3,…….,N)表示初始力学计算基准模型Ao中的第k个被评估对象的初始状态,上标T表示向量的转置(后同)。
利用前面使用常规方法直接测量计算得到的索结构的所有被监测量的初始数值,组成被监测量初始数值向量Co(见式(2))。要求在获得Ao的同时获得Co,被监测量初始数值向量Co表示对应于Ao的“被监测量”的具体数值。因在前述条件下,基于索结构的计算基准模型计算所得的被监测量可靠地接近于初始被监测量的实测数据,在后面的叙述中,将用同一符号来表示该计算值和实测值。
Co=[Co1Co2···Coj···CoM]T(2)
式(2)中Coj(j=1,2,3,…….,M)是索结构中第j个被监测量的初始量,该分量依据编号规则对应于特定的第j个被监测量。
不论用何种方法获得初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用Ao计算所得的模拟情况下的索力计算数据、应变计算数据、索结构形状计算数据和位移计算数据、索结构角度数据、索结构空间坐标数据等,可靠地接近所模拟情况真实发生时的实测数据。模型Ao中被评估对象的健康状态用被评估对象初始损伤向量do表示,模型Ao中支座广义坐标用向量Uo表示。由于基于Ao计算得到所有被监测量的计算数值非常接近所有被监测量的初始数值(实测得到),所以也可以用在Ao的基础上、进行力学计算得到的、Ao的每一个被监测量的计算数值组成被监测量初始数值向量Co。Uo、do是Ao的参数,也可以说Co由Ao的力学计算结果组成。
对应于索结构的当前初始力学计算基准模型At o的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Ut o,索结构处于At o状态时,本方法用被监测量当前初始数值向量Ct o表示所有被监测量的具体数值。
建立和更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o,具体方法见后。
索结构中所有被监测量的当前值组成被监测量当前数值向量C(定义见式(3))。
C=[C1C2···Cj···CM]T(3)
式(3)中Cj(j=1,2,3,…….,M)是索结构中第j个被监测量的当前值,该分量Cj依据编号规则与Coj对应于同一“被监测量”。在索结构服役过程中不断实测得到索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C。
3.建立和更新索结构单位损伤被监测量数值变化矩阵ΔC的方法。
索结构单位损伤被监测量数值变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o的同时,更新索结构单位损伤被监测量数值变化矩阵ΔC。具体方法如下:
在索结构的当前初始力学计算基准模型At o的基础上进行若干次计算,计算次数数值上等于所有被评估对象的数量。每一次计算假设只有一个被评估对象在初始损伤(用向量do的对应元素表示)的基础上再增加单位损伤或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索有单位损伤(例如取5%、10%、20%或30%等损伤为单位损伤),如果该被评估对象是一个载荷,就假设该载荷在向量do表示的该载荷已有变化量的基础上再增加载荷单位变化(如果该载荷是分布载荷,且该分布载荷是线分布载荷,载荷单位变化可以取1kN/m、2kN/m、3kN/m或1kNm/m、2kNm/m、3kNm/m等为单位变化;如果该载荷是分布载荷,且该分布载荷是是面分布载荷,载荷单位变化可以取1MPa、2MPa、3MPa或1kNm/m2、2kNm/m2、3kNm/m2等为单位变化;如果该载荷是集中载荷,且该集中载荷是力偶,载荷单位变化可以取1kNm、2kNm、3kNm等为单位变化;如果该载荷是集中载荷,且该集中载荷是集中力,载荷单位变化可以取1kN、2kN、3kN等为单位变化;如果该载荷是体积载荷,载荷单位变化可以取1kN/m3、2kN/m3、3kN/m3等为单位变化),用Duk记录这一单位损伤或载荷单位变化,其中k表示发生单位损伤或载荷单位变化的被评估对象的编号。用“被评估对象单位变化向量Du”(如式(4)所示)记录所有的单位损伤或载荷单位变化。每一次计算中出现单位损伤或载荷单位变化的被评估对象不同于其它次计算中出现单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法(例如有限元法)计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量(当假设第k个被评估对象有单位损伤或载荷单位变化时,可用式(5)表示被监测量计算当前向量Ct k);每一次计算得到被监测量计算当前向量Ct k减去被监测量当前初始数值向量Ct o后再除以该次计算所假设的单位损伤或载荷单位变化数值Duk,所得向量就是此条件下(以有单位损伤或载荷单位变化的被评估对象的编号为标记)的被监测量单位变化向量(当第k个被评估对象有单位损伤或载荷单位变化时,用δCk表示被监测量单位变化向量,定义见式(6)),被监测量单位变化向量的每一元素表示由于计算时假定有单位损伤或载荷单位变化的那个被评估对象的单位损伤或载荷单位变化而引起的该元素所对应的被监测量的单位改变量;有N个被评估对象就有N个被监测量单位变化向量,由于有M个被监测量,所以每个被监测量单位变化向量有M个元素,由这N个被监测量单位变化向量依次组成有M×N个元素的被监测量单位变化矩阵ΔC,ΔC的定义如式(6)所示。
Du=[Du1Du2···Duk···DuN]T(4)
式(4)中被评估对象单位变化向量Du的元素Duk(k=1,2,3,…….,N)表示第k个被评估对象的单位损伤或载荷单位变化数值。
式(5)中元素Ctj k(k=1,2,3,…….,N;j=1,2,3,…….,M)表示由于第k个被评估对象有单位损伤或载荷单位变化时,依据编号规则所对应的第j个被监测量的当前计算量。
式(7)中ΔCj,k(k=1,2,3,…….,N;j=1,2,3,…….,M)表示仅由于第k个被评估对象有单位损伤或载荷单位变化而引起的、依据编号规则所对应的第j个被监测量的计算当前数值的单位变化(代数值),被监测量单位变化向量δCk实际上是矩阵ΔC中的一列。
4.被监测量当前数值向量C(计算或实测)同被监测量当前初始数值向量Ct o、单位损伤被监测量数值变化矩阵ΔC、被评估对象单位变化向量Du和被评估对象当前名义损伤向量d间的近似线性关系,如式(8)或式(9)所示。被评估对象当前名义损伤向量d的定义参见式(10)。
d=[d1d2···dk···dN]T(10)
式(10)中dk(k=1,2,3,…….,N)是索结构中第k个被评估对象的当前健康状态,如果该被评估对象是索系统中的一根索(或拉杆),那么dk表示其当前损伤,dk为0时表示无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力,如果该被评估对象是一个载荷,那么dk表示其变化量。
可用式(11)定义的线性关系误差向量e表示式(8)或式(9)所示线性关系的误差。
式(11)中abs()是取绝对值函数,对括号内求得的向量的每一个元素取绝对值。
本方法的第二部分:基于知识库(含参量)和实测被监测量的结构健康状态评估方法。
由于式(8)或式(9)所表示的线性关系存在一定误差,因此不能简单根据式(8)或式(9)和实测被监测量当前数值向量C来直接求解得到被评估对象当前名义损伤向量d。如果这样做了,得到的被评估对象当前名义损伤向量d中的元素甚至会出现较大的负值,也就是负损伤,这明显是不合理的。因此获得被评估对象当前名义损伤向量d的可接受的解(即带有合理误差,但可以比较准确的从索系统中确定受损索的位置及其损伤程度)成为一个合理的解决方法,可用式(12)来表达这一方法。
式(12)中abs()是取绝对值函数,向量g描述偏离理想线性关系(式(8)或式(9))的合理偏差,由式(13)定义。
g=[g1g2···gj···gM]T(13)
式(13)中gj(j=1,2,3,…….,M)描述了偏离式(8)或式(9)所示的理想线性关系的最大允许偏差。向量g可根据式(11)定义的误差向量e试算选定。
在被监测量当前初始数值向量Ct o、单位损伤被监测量数值变化矩阵ΔC、实测被监测量当前数值向量C已知时,可以利用合适的算法(例如多目标优化算法)求解式(12),获得被评估对象当前名义损伤向量d的可接受的解。
定义被评估对象当前实际损伤向量da(见式(14)),可由da确定被评估对象的健康状态。
式(14)中da k(k=1,2,3,…….,N)表示剔除了索结构支座广义位移和载荷变化对健康状态识别结果的影响后的、第k个被评估对象的当前实际健康状态,其定义见式(15)。向量da的元素的编号规则与式(1)中向量do的元素的编号规则相同。
(15)
式(15)中dok(k=1,2,3,…….,N)是向量do的第k个元素,dk是向量d的第k个元素。
下面叙述得到了被评估对象当前实际损伤向量da后,如何识别受损索和松弛索。
由前可知索结构中共有M1根支承索,索结构索力数据由M1根支承索的索力来描述。可用“初始索力向量Fo”表示索结构中所有支承索的初始索力(定义见式(16))。
式(16)中Fo(h=1,2,3,…….,M1)是索结构中第h根支承索的初始索力,该元素依据编号规则对应于指定支承索的索力。向量Fo是常量。在建立索结构的初始力学计算基准模型Ao的同一时刻,使用常规方法直接测量计算得到所有支承索的索力数据,所有这些索力数据组成初始索力向量Fo。在建立索结构的初始力学计算基准模型Ao时实际上使用了向量Fo。
将被评估对象当前实际损伤向量da中与支承索相关的M1个元素取出,组成支承索当前实际损伤向量dca,支承索当前实际损伤向量dca的元素的编号规则与初始索力向量Fo的元素的编号规则相同。支承索当前实际损伤向量dca的第h个元素表示索结构中第h根支承索的当前实际损伤量,h=1,2,3,…….,M1;当前实际损伤向量dca中数值不为0的元素对应于有健康问题的支承索,对这些有健康问题的支承索进行无损检测,经无损检测查明该支承索没有损伤后,那么该元素数值(用dca h表示)表示该支承索与dca h损伤值力学等效的松弛,由此就确定了松弛索,具体松弛量的计算方法在下面说明。
本方法中用“当前索力向量F”表示实测得到的索结构中所有支承索的当前索力(定义见式(17))。
式(17)中Fh(h=1,2,3,…….,M1)是索结构中第h根支承索的当前索力。在实测得到被监测量当前数值向量C的同一时刻,实测得到索结构中所有支承索的索力数据,所有这些索力数据组成当前索力向量F。向量F的元素与向量Fo的元素的编号规则相同。
本方法中,在支承索初始状态下(即索结构处于用初始力学计算基准模型Ao表达的状态时),支承索处于自由状态(自由状态指索力为0,后同)时,支承索的长度称为初始自由长度,用“初始自由长度向量lo”表示索结构中所有支承索的初始自由长度(定义见式(18))。
式(18)中loh(h=1,2,3,…….,M1)是索结构中第h根支承索的初始自由长度。向量lo是常量,在开始时确定后,就不再变化。
类似的,在支承索初始状态下(即索结构处于用初始力学计算基准模型Ao表达的状态时),且支承索处于自由状态时,支承索的横截面面积称为初始自由横截面面积,用“初始自由横截面面积向量Ao”表示索结构中所有支承索的初始自由横截面面积(定义见式(19)),支承索的单位长度的重量称为初始自由单位长度的重量,用“初始自由单位长度的重量向量ωo”表示索结构中所有支承索的初始自由单位长度的重量(定义见式(20))。
式(19)中Aoh(h=1,2,3,…….,M1)是索结构中第h根支承索的初始自由横截面面积。向量Ao是常量,在开始时确定后,就不再变化。
式(20)中ωoh(h=1,2,3,…….,M1)是索结构中第h根支承索的初始自由自由单位长度的重量。向量ωo是常量,在开始时确定后,就不再变化。
向量dca的元素、向量F的元素、向量lo的元素、向量Ao的元素、向量ωo的元素与向量Fo的元素的编号规则相同,这些向量的相同编号的元素表示同一个支承索的不同信息。
本方法中,在实测得到被监测量当前数值向量C的同一时刻,索结构中所有支承索的当前自由长度用“当前自由长度向量l”表示(定义见式(21),此时支承索可能是完好的,也可能是受损的,也可能是松弛的)。
式(21)中lh(h=1,2,3,…….,M1)是索结构中第h根支承索的当前自由长度。
本方法中,用“自由长度改变向量Δl”(或称支承索当前松弛程度向量)表示索结构中所有支承索的自由长度的改变量(定义见式(22)和式(23))。
式(22)中Δlh(h=1,2,3,…….,M1)是当前索结构中第h根支承索的自由长度的改变量,其定义见式(23),Δlh不为0的索为松弛索,Δlh的数值为索的松弛量,并表示索系统第h根支承索的当前松弛程度,也是调整索力时该索的索长调整量。
Δlh=lh-loh(23)
在本方法中通过将松弛索同受损索进行力学等效来进行松弛索的松弛程度识别,力学等效条件是:
一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数及材料的力学特性参数相同;
二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同。
满足上述两个力学等效条件时,这样的两根支承索在结构中的力学功能就是完全相同的,即如果用等效的受损索代替松弛索后,索结构不会发生任何变化,反之亦然。
得到了支承索当前实际损伤向量dca后,dca的第h个元素dca h(h=1,2,3,…….,M1)表示第h根支承索的实际损伤值,虽然将dca h称为第h根索的实际损伤值或第h根索的实际损伤程度,但由于第h根支承索可能是受损也可能是松弛,所以dca的第h个元素dca h表示的第h根支承索的实际损伤值实际上是第h根支承索的实际等效损伤值,当第h根支承索实际上是受损时,dca h就表示的第h根支承索的实际损伤值,当第h根支承索实际上是松弛时,da h就表示的第h根支承索的与松弛等效的实际损伤值,为叙述方便,在本方法中称da h为0时表示第h根支承索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示第h根支承索丧失相应比例的承载能力,通过支承索当前实际损伤向量dca后就可以识别出健康状态出现问题的支承索,但这些健康状态出现问题的支承索中有些是受损了,有些是松弛了,如果第h个支承索实际上是发生松弛了(其当前松弛程度用Δlh定义),那么松弛的第h个支承索的当前松弛程度Δlh(Δlh的定义见式(23))同等效的受损索的当前实际损伤程度dca h之间的关系由前述两项力学等效条件确定。Δlh同dca h之间的具体关系可以采用多种方法实现,例如可以直接根据前述等效条件确定(参见式(24)),也可采用基于Ernst等效弹性模量代替式(24)中的E进行修正后确定(参见式(25)),也可以采用基于有限元法的试算法等其它方法来确定。
式(24)和式(25)中Eoh是向量Eo的第h个元素,是在建立索结构的初始力学计算基准模型Ao的同一时刻,第h根支承索的弹性模量,Aoh是在建立索结构的初始力学计算基准模型Ao的同一时刻,第h根支承索的横截面面积,ωoh是在建立索结构的初始力学计算基准模型Ao的同一时刻,第h根支承索的单位长度的重量,Fh是在实测得到被监测量当前数值向量C的同一时刻,第h根支承索的当前索力,dca h是第h根支承索的当前实际损伤程度,lxh是在实测得到被监测量当前数值向量C的同一时刻,第h根支承索的两个支承端点的水平距离,lxh是当前支承索两支承端点水平距离向量lx的一个元素,当前支承索两支承端点水平距离向量lx的元素的编号规则与初始自由长度向量lo的元素的编号规则相同,Eh可以根据查或实测第h根支承索的材料特性数据得到,Ah和ωh可以根据Aoh、ωoh、Fh和To通过常规物理和力学计算得到。式(25)中[]内的项是该支承索的Ernst等效弹性模量,由式(24)或式(25)可以就可以确定支承索当前松弛程度向量Δl。式(25)是对式(24)的修正。
至此本方法以一种有效的、廉价的方法实现了核心被评估对象的健康状态的准确识别。对次要被评估对象的健康状态的识别结果可能偏离准确值较多,在本方法中仅要求正确识别核心被评估对象的健康状态。
本方法的第三部分:健康监测系统的软件和硬件部分。
硬件部分包括监测系统(包括被监测量监测系统、索结构支座广义坐标监测系统、支承索索力监测系统、支承索的支承端点的空间坐标监测系统)、信号采集器和计算机等。要求每一个被监测量、索结构的每一个支座广义坐标、每一根支承索的索力、每一根支承索的支承端点的空间坐标都必须被监测系统实时监测到。
软件应当能够完成本方法中所需要的、可以用计算机实现的监测、记录、控制、存储、计算、通知、报警等功能。
本方法具体包括:
a.当索结构承受的载荷虽有变化,但索结构正在承受的载荷没有超出索结构初始许用载荷时,本方法适用;索结构初始许用载荷指索结构在竣工时的许用载荷,能够通过常规力学计算获得;本方法统一称被评估的支承索和载荷为“被评估对象”,设被评估的支承索的数量和载荷的数量之和为N,即“被评估对象”的数量为N;本方法用名称“核心被评估对象”专指“被评估对象”中的被评估的支承索,本方法用名称“次要被评估对象”专指“被评估对象”中的被评估的载荷;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;设索系统中共有M1根支承索,显然核心被评估对象的数量就是M1,索结构索力数据包括这M1根支承索的索力,本方法在监测全部M1根支承索索力的基础上,在索结构上人为增加M2根索,称为传感索,在索结构健康监测过程中将监测这新增加的M2根传感索的索力;综合上述被监测量,整个索结构共有M根索的M个索力被监测,即有M个被监测量,其中M为M1与M2之和;M必须大于核心被评估对象的数量,M小于被评估对象的数量;新增加的M2根传感索的刚度同索结构的任意一根支承索的刚度相比,应当小得多;新增加的M2根传感索的各传感索的索力应当比索结构的任意一根支承索的索力小得多,这样可以保证即使这新增加的M2根传感索出现了损伤或松弛,对索结构其他构件的应力、应变、变形的影响微乎其微;新增加的M2根传感索的横截面上正应力应当小于其疲劳极限,这些要求可以保证新增加的M2根传感索不会发生疲劳损伤;新增加的M2根传感索的两端应当充分锚固,保证不会出现松弛;新增加的M2根传感索应当得到充分的防腐蚀保护,保证新增加的M2根传感索不会发生损伤和松弛;为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”;给M个被监测量连续编号,本方法用用变量j表示这一编号,j=1,2,3,…,M,该编号在后续步骤中将用于生成向量和矩阵;在本方法中新增加的M2根传感索作为索结构的一部分,后文再提到索结构时,索结构包括增加M2根传感索前的索结构和新增加的M2根传感索,也就是说后文提到索结构时指包括新增加的M2根传感索的索结构;测量得到新增加的M2根传感索的索力的方法同于索结构的M1根支承索的索力的测量方法,在后文不再一一交代;对索结构的支承索进行任何测量时,同时对新增加的M2根传感索进行同样的测量,在后文不再一一交代;新增加的M2根传感索除了不发生损伤和松弛外,对新增加的M2根传感索的信息量的要求和获得方法与索结构的支承索的信息量的要求和获得方法相同,在后文不再一一交代;在后文建立索结构的各种力学模型时,将新增加的M2根传感索视同索结构的支承索对待;在后文中,除了提到支承索的损伤和松弛的场合外,当提到支承索时所说的支承索包括索结构的支承索和新增加的M2根传感索;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;
b.实测或查资料得到索结构所使用的各种材料的物理和力学性能参数;
c.在实测或查资料得到索结构所使用的各种材料的物理和力学性能参数的同时,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据是包括索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座广义坐标数据、初始索结构角度数据、初始索结构空间坐标数据在内的实测数据,在得到初始索结构的实测数据的同时,测量计算得到包括支承索的无损检测数据在内的能够表达支承索的健康状态的数据,此时的能够表达支承索的健康状态的数据称为支承索初始健康状态数据;所有被监测量的初始数值组成被监测量初始数值向量Co,被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同;利用支承索初始健康状态数据以及索结构载荷测量数据建立被评估对象初始损伤向量do,向量do表示用初始力学计算基准模型Ao表示的索结构的被评估对象的初始健康状态;被评估对象初始损伤向量do的元素个数等于N,do的元素与被评估对象是一一对应关系,向量do的元素的编号规则与被评估对象的编号规则相同;如果do的某一个元素对应的被评估对象是索系统中的一根支承索,那么do的该元素的数值代表对应支承索的初始损伤程度,若该元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0;如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do中与支承索相关的各元素数值取0;初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo;在实测或查资料得到索结构所使用的各种材料的物理和力学性能参数的同时,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据包括索结构设计数据、竣工数据在内的数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索初始健康状态数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构所使用的各种材料的物理和力学性能参数、初始索结构支座广义坐标向量Uo和前面步骤得到的所有的索结构数据,建立索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的被评估对象健康状态用被评估对象初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,索结构的当前初始力学计算基准模型At o就等于索结构的初始力学计算基准模型Ao,被监测量当前初始数值向量Ct o就等于被监测量初始数值向量Co;对应于索结构的当前初始力学计算基准模型At o的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Ut o,第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo;At o的被评估对象的初始健康状态与Ao的被评估对象的健康状态相同,也用被评估对象初始损伤向量do表示,在后面的循环过程中At o的被评估对象的初始健康状态始终用被评估对象初始损伤向量do表示;Uo和do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成;Ut o和do是At o的参数,Ct o由At o的力学计算结果组成;
e.从这里进入由第e步到第m步的循环;在结构服役过程中,不断实测得到索结构支座广义坐标当前数据,所有索结构支座广义坐标当前数据组成当前索结构实测支座广义坐标向量Ut,向量Ut的定义方式与向量Uo的定义方式相同;在实测得到当前索结构实测支座广义坐标向量Ut的同时,对新增加的M2根传感索进行无损检测,从中鉴别出出现损伤或松弛的传感索,依据被监测量编号规则,从本方法之前出现的按照被监测量编号规则编号的各向量中去除与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后出现的各向量和矩阵中也不再出现与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后提到传感索时不再包括这里被鉴别出出现损伤或松弛的传感索,在本方法之后提到被监测量时不再包括这里被鉴别出出现损伤或松弛的传感索的索力;从索结构上鉴别出几根出现损伤或松弛的传感索,就将M2和M减小同样的数量;
f.根据当前索结构实测支座广义坐标向量Ut,按照步骤f1至f3更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o;
f1.比较Ut与Ut o,如果Ut等于Ut o,则At o、Ut o和Ct o保持不变,否则需要按下列步骤对At o、Ut o和Ct o进行更新;
f2.计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的支座广义位移,用支座广义位移向量V表示支座广义位移,V等于Ut减去Uo,支座广义位移向量V中的元素与支座广义位移分量之间是一一对应关系,支座广义位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的广义位移;
f3.对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,对Ao中索结构支座施加支座广义位移约束后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,这样就得到了正确地对应于At o的Ut o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o;At o的支承索的初始健康状态始终用被评估对象初始损伤向量do表示;
g.在当前初始力学计算基准模型At o的基础上按照步骤g1至g4进行若干次力学计算,通过计算获得索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du;
g1.索结构单位损伤被监测量数值变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o之后,必须接着更新索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du;
g2.在索结构的当前初始力学计算基准模型At o的基础上进行若干次力学计算,计算次数数值上等于所有被评估对象的数量N,有N个评估对象就有N次计算;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或载荷的基础上再增加单位损伤或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索在向量do表示的该支承索已有损伤的基础上再增加单位损伤,如果该被评估对象是一个载荷,就假设该载荷在向量do表示的该载荷已有变化量的基础上再增加载荷单位变化,用Duk记录这一增加的单位损伤或载荷单位变化,其中k表示增加单位损伤或载荷单位变化的被评估对象的编号,Duk是被评估对象单位变化向量Du的一个元素,被评估对象单位变化向量Du的元素的编号规则与向量do的元素的编号规则相同;每一次计算中增加单位损伤或载荷单位变化的被评估对象不同于其它次计算中增加单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;
g3.每一次计算得到的被监测量计算当前向量减去被监测量当前初始数值向量Ct o得到一个向量,再将该向量的每一个元素都除以该次计算所假设的单位损伤或载荷单位变化数值,得到一个被监测量单位变化向量,有N个被评估对象就有N个被监测量单位变化向量;
g4.由这N个被监测量单位变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构单位损伤被监测量数值变化矩阵ΔC;索结构单位损伤被监测量数值变化矩阵ΔC的每一列对应于一个被监测量单位变化向量;索结构单位损伤被监测量数值变化矩阵ΔC的每一行对应于同一个被监测量在不同被评估对象增加单位损伤或载荷单位变化时的不同的单位变化幅度;索结构单位损伤被监测量数值变化矩阵ΔC的列的编号规则与向量do的元素的编号规则相同,索结构单位损伤被监测量数值变化矩阵ΔC的行的编号规则与M个被监测量的编号规则相同;
h.在实测得到当前索结构实测支座广义坐标向量Ut的同时,实测得到索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量当前初始数值向量Ct o与被监测量初始数值向量Co的定义方式相同,三个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;在实测得到被监测量当前数值向量C的同一时刻,实测得到索结构中所有M1根支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到被监测量当前数值向量C的同一时刻,实测计算得到所有M1根支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;
i.定义被评估对象当前名义损伤向量d,被评估对象当前名义损伤向量d的元素个数等于被评估对象的数量,被评估对象当前名义损伤向量d的元素和被评估对象之间是一一对应关系,被评估对象当前名义损伤向量d的元素数值代表对应被评估对象的名义损伤程度或名义载荷变化量;向量d的元素的编号规则与向量do的元素的编号规则相同;
j.依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、索结构单位损伤被监测量数值变化矩阵ΔC和待求的被评估对象当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出被评估对象当前名义损伤向量d;
k.定义被评估对象当前实际损伤向量da,被评估对象当前实际损伤向量da的元素个数等于被评估对象的数量,被评估对象当前实际损伤向量da的元素和被评估对象之间是一一对应关系,被评估对象当前实际损伤向量da的元素数值代表对应被评估对象的实际损伤程度或实际载荷变化量;向量da的元素的编号规则与向量do的元素的编号规则相同;
l.利用式2表达的被评估对象当前实际损伤向量da的第k个元素da k同被评估对象初始损伤向量do的第k个元素dok和被评估对象当前名义损伤向量d的第k个元素dk间的关系,计算得到被评估对象当前实际损伤向量da的所有元素;
式2
式2中k=1,2,3,…….,N,da k表示第k个被评估对象的当前实际健康状态,da k为0时表示第k个被评估对象无健康问题,da k数值不为0时表示第k个被评估对象是有健康问题的被评估对象,如果该被评估对象是索系统中的一根支承索,那么da k表示其当前健康问题的严重程度,有健康问题的支承索可能是松弛索、也可能是受损索,da k数值反应了该支承索的松弛或损伤的程度;从这些有健康问题的支承索中鉴别出受损索,剩下的就是松弛索,被评估对象当前实际损伤向量da中与松弛索对应于的元素数值表达的是与松弛索松弛程度力学等效的当前实际等效损伤程度;如果该被评估对象是一个载荷,那么da k表示该载荷的实际变化量;鉴别出松弛索后,利用被评估对象当前实际损伤向量da表达的这些松弛索的、与其松弛程度力学等效的当前实际等效损伤程度,利用在第f步获得的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第b步获得的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量、初始索力向量Fo,利用在第b步获得的索结构所使用的各种材料的物理和力学性能参数,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,力学等效条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个力学等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;本方法将受损索和松弛索统称为有健康问题的支承索,简称为问题索,所以根据被评估对象当前实际损伤向量da能够确定核心被评估对象的健康状态;
m.回到第e步,开始由第e步到第m步的下一次循环。
有益效果:结构健康监测系统首先通过使用传感器对结构响应进行长期在线监测,获得监测数据后对其进行在线(或离线)分析得到结构健康状态数据,由于结构的复杂性,结构健康监测系统需要使用大量的传感器等设备进行结构健康监测,因此其造价通常相当高,因此造价问题是制约结构健康监测技术应用的一个主要问题。另一方面,核心被评估对象(例如斜拉索)的健康状态的正确识别是结构健康状态的正确识别的不可或缺的组成部分,甚至是其全部,而次要被评估对象(例如结构承受的载荷)的变化(例如通过斜拉桥的汽车的数量和质量的变化)的正确识别对索结构的健康状态的正确识别的影响是微乎其微的,甚至是不需要的。但是次要被评估对象的数量与核心被评估对象的数量通常是相当的,次要被评估对象的数量还常常大于核心被评估对象的数量,这样被评估对象的数量常常是核心被评估对象的数量的多倍。在次要被评估对象(载荷)发生变化时,为了准确识别核心被评估对象,常规方法要求被监测量(使用传感器等设备测量获得)的数量必须大于等于被评估对象的数量,当发生变化的次要被评估对象的数量比较大时(实际上经常如此),结构健康监测系统所需要的传感器等设备的数量是非常庞大的,因此结构健康监测系统的造价就会变得非常高,甚至高得不可接受。发明人研究发现,在次要被评估对象(例如结构承受的正常载荷,结构的正常载荷是指结构正在承受的载荷不超过按照结构设计书或结构竣工书所限定的结构许用载荷)变化较小时(对于载荷而言就是结构仅仅承受正常载荷,结构承受的载荷是否是正常载荷,能够通过肉眼等方法观察确定,如果发现结构承受的载荷不是正常载荷,那么人为去除、移除非正常载荷后,结构就只承受正常载荷了),它们所引起的结构响应的变化幅度(本说明书称其为“次要响应”)远小于核心被评估对象的变化(例如支承索受损)所引起的结构响应的变化幅度(本说明书称其为“核心响应”),次要响应与核心响应之和是结构响应的总变化(本说明书称其为“总体响应”),显然核心响应在总体响应中占据主导地位,基于此,发明人研究发现在确定被监测量数量时即使选取稍大于核心被评估对象数量、但远小于被评估对象数量的数值(本方法就是这样做的),也就是说即使采用数量相对少很多的传感器等设备,仍然可以准确获得核心被评估对象的健康状态数据,满足结构健康状态监测的核心需求,因此本方法所建议的结构健康监测系统的造价显而易见地比常规方法所要求的结构健康监测系统的造价低很多,也就是说本方法能够以造价低得多的条件实现对索结构的核心被评估对象的健康状态的评估,这种益处是对结构健康监测技术能否被采用是举足轻重的。
具体实施方式
本方法的实施例的下面说明实质上仅仅是示例性的,并且目的绝不在于限制本方法的应用或使用。
第一步:首先确认索结构承受的可能发生变化的载荷的数量。根据索结构所承受的载荷的特点,确认其中“所有可能发生变化的载荷”,或者将所有的载荷视为“所有可能发生变化的载荷”,设共有JZW个可能发生变化的载荷,即共有JZW个次要被评估对象。
设索结构的支承索的数量和JZW个“所有可能发生变化的载荷”的数量之和为N,即共有N个被评估对象。给被评估对象连续编号,该编号在后续步骤中将用于生成向量和矩阵。
设索系统中共有M1根支承索,即共有M1个核心被评估对象,结构索力数据包括这M1根支承索的索力,显然M1小于被评估对象的数量N。本方法在监测全部M1根支承索索力的基础上,增加M2个其他被监测量。
增加的M2个其他被监测量仍然是索力,叙述如下:
在结构健康监测系统开始工作前,先在索结构上人为增加M2(M2不小于4)根索,称为传感索,新增加的M2根传感索的刚度同索结构的任意一根支承索的刚度相比,应当小很多,例如小20倍,新增加的M2根传感索的索力应当较小,例如其横截面正应力应当小于其疲劳极限,这些要求可以保证新增加的M2根传感索不会发生疲劳损伤,新增加的M2根传感索的两端应当充分锚固,保证不会出现松弛,新增加的M2根传感索应当得到充分的防腐蚀保护,保证新增加的M2根传感索不会发生损伤和松弛,在结构健康监测过程中将监测这新增加的M2根传感索的索力。
还可以采用多增加传感索的方式来保证健康监测的可靠性,例如使M2不小于8,在结构健康监测过程中只挑选其中的完好的传感索的索力数据(和支承索的索力数据一起称为实际可以使用的被监测量,记录其数量为K,K不得小于4+M1)和对应的索结构被监测量单位变化矩阵ΔC进行健康状态评估。在结构健康监测过程中将监测这新增加的M2根传感索的索力。新增加的M2根传感索应当安装在结构上、人员易于到达的部位,便于人员对其进行无损检测。
在本方法中新增加的M2根传感索作为索结构的一部分,后文再提到索结构时,索结构包括增加M2根传感索前的索结构和新增加的M2根传感索,也就是说后文提到索结构时指包括新增加的M2根传感索的索结构。因此后文提到按照“本方法的索结构的温度测量计算方法”测量计算得到“索结构稳态温度数据”时,其中的索结构包括新增加的M2根传感索,得到的“索结构稳态温度数据”包括新增加的M2根传感索的稳态温度数据,获得新增加的M2根传感索的稳态温度数据的方法同于索结构的M1根支承索的稳态温度数据的获得方法,在后文不再一一交代;测量得到新增加的M2根传感索的索力的方法同于索结构的M1根支承索的索力的测量方法,在后文不再一一交代;对索结构的支承索进行任何测量时,同时对新增加的M2根传感索进行同样的测量,在后文不再一一交代;新增加的M2根传感索除了不发生损伤和松弛外,新增加的M2根索的信息量与索结构的支承索的信息量相同,在后文不再一一交代。在后文建立索结构的各种力学模型时,将新增加的M2根传感索视同索结构的M1根支承索对待,除了提到支承索的损伤和松弛的场合,在其他场合提到支承索时包括新增加的M2根索。
综合上述被监测量,整个索结构共有M(M=M1+M2)根索的M个被监测量,M不得小于核心被评估对象的数量加4,M小于被评估对象的数量N。
为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”。给M个被监测量连续编号,该编号在后续步骤中将用于生成向量和矩阵。本方法用用变量j表示这一编号,j=1,2,3,…,M。
第二步:建立初始力学计算基准模型Ao。
在索结构竣工之时,或者在建立健康监测系统前,使用常规方法(查资料或实测)得到索结构所使用的各种材料的物理参数(例如密度)和力学性能参数(例如弹性模量、泊松比),同时使用常规方法直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量初始数值向量Co。
在实测计算得到被监测量初始数值向量Co的同一时刻,使用常规方法实测计算得到索结构的实测计算数据。索结构的实测计算数据包括支承索的无损检测数据等能够表达索的健康状态的数据、索结构初始几何数据、索力数据、拉杆拉力数据、初始索结构支座广义坐标数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构模态数据、结构应变数据、结构角度测量数据、结构空间坐标测量数据等实测数据。初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo。索结构的初始几何数据可以是所有索的端点的空间坐标数据加上结构上一系列的点的空间坐标数据,目的在于根据这些坐标数据确定索结构的几何特征。对斜拉桥而言,初始几何数据可以是所有索的端点的空间坐标数据加上桥梁两端上若干点的空间坐标数据,这就是所谓的桥型数据。利用支承索的无损检测数据等能够表达支承索的健康状态的数据以及索结构载荷测量数据建立被评估对象初始损伤向量do(如式(1)所示),用do表示索结构(用初始力学计算基准模型Ao表示)的被评估对象的初始健康状态。如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do的中与支承索相关的各元素数值取0;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0。利用索结构的设计图、竣工图和初始索结构的实测数据、支承索的无损检测数据、索结构所使用的各种材料的物理和力学性能参数和初始索结构支座广义坐标向量Uo,利用力学方法(例如有限元法)建立初始力学计算基准模型Ao。
在实测或查资料得到索结构所使用的各种材料的物理和力学性能参数的同时,利用其中的支承索的弹性模量数据组成支承索初始弹性模量向量Eo;在得到被监测量初始数值向量Co的同一时刻,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据索结构设计数据、竣工数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,依次组成支承索的初始自由长度向量lo、初始自由横截面面积向量Ao和初始自由单位长度的重量向量ωo,支承索初始弹性模量向量Eo、支承索的初始自由长度向量lo、初始自由横截面面积向量Ao和初始自由单位长度的重量向量ωo的元素的编号规则与初始索力向量Fo的元素的编号规则相同。
第三步:第一次建立当前初始力学计算基准模型At o、被监测量当前初始数值向量Ct o和“当前初始索结构支座广义坐标向量Ut o”,具体方法是:在初始时刻,即第一次建立当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,At o就等于Ao,Ct o就等于Co,对应于索结构的当前初始力学计算基准模型At o的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Ut o,第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo。At o的评估对象的健康状态与Ao的评估对象的健康状态(被评估对象初始损伤向量do表示)相同,在循环过程中At o的评估对象的健康状态始终用被评估对象初始损伤向量do表示。Ut o和do是At o的参数,Ct o由At o的力学计算结果组成。
第四步:在索结构服役过程中,不断实测得到索结构的所有被监测量的当前实测数值,组成“被监测量当前数值向量C”,同时实测得到索结构支座广义坐标当前数据,所有数据组成当前索结构实测支座广义坐标向量Ut,向量Ut的定义方式与向量Uo的定义方式相同。
在得到被监测量当前数值向量C的同一时刻,实测得到索结构中所有M1根支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在得到被监测量当前数值向量C的同一时刻,实测计算得到所有M1根支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有M1根支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量lx,当前支承索两支承端点水平距离向量lx的元素的编号规则与初始索力向量Fo的元素的编号规则相同。在实测得到当前索结构实测支座广义坐标向量Ut的同时,对新增加的M2根传感索进行无损检测,例如超声波探伤、目视检查、红外成像检查,从中鉴别出出现损伤或松弛的传感索,依据被监测量编号规则,从本方法之前出现的按照被监测量编号规则编号的各向量中去除与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后出现的各向量和矩阵中也不再出现与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后提到传感索时不再包括这里被鉴别出出现损伤或松弛的传感索,在本方法之后提到被监测量时不再包括这里被鉴别出出现损伤或松弛的传感索的索力;从索结构上鉴别出几根出现损伤或松弛的传感索,就将M2和M减小同样的数量。
第五步:根据当前索结构实测支座广义坐标向量Ut,在必要时更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o。在第四步实测得到当前索结构实测支座广义坐标向量Ut后,比较Ut和Ut o,如果Ut等于Ut o,则不需要对At o、Ut o和Ct o进行更新,否则需要对At o、Ut o和Ct o进行更新,更新方法按技术方案中规定的方法进行。
第六步:在当前初始力学计算基准模型At o的基础上进行若干次力学计算,通过计算获得索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du。具体方法已在技术方案和权利要求书中叙述过。
第七步:建立线性关系误差向量e和向量g。利用前面的数据(被监测量当前初始数值向量Ct o、单位损伤被监测量数值变化矩阵ΔC),在第六步进行每一次计算的同时,即在每一次计算假设被评估对象中只有一个被评估对象的增加单位损伤或载荷单位变化Duk,每一次计算中增加单位损伤或载荷单位变化的被评估对象不同于其它次计算中增加单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法(例如采用有限元法)计算索结构中所有被监测量的当前数值,每一次计算组成一个被监测量计算当前向量C的同时,每一次计算组成一个损伤向量d,本步出现的损伤向量d只在本步使用,损伤向量d的所有元素中只有一个元素的数值取Duk,其它元素的数值取0,损伤向量d的元素的编号规则与向量do的元素的编号规则相同;将C、Ct o、ΔC、Du、d带入式(12),得到一个线性关系误差向量e,每一次计算得到一个线性关系误差向量e;有N个被评估对象就有N次计算,就有N个线性关系误差向量e,将这N个线性关系误差向量e相加后得到一个向量,将此向量的每一个元素除以N后得到的新向量就是最终的线性关系误差向量e。向量g等于最终的误差向量e。
第八步:安装索结构健康监测系统的硬件部分。硬件部分至少包括:被监测量监测系统(例如含索力测量系统、信号调理器等)、索结构支座广义坐标监测系统(含全站仪、角度测量传感器、信号调理器等)、支承索的支承端点的空间坐标监测系统、信号(数据)采集器、计算机和通信报警设备。每一个被监测量、每一根支承索的索力、每一根支承索的支承端点的空间坐标、每一个索结构的支座广义坐标都必须被监测系统监测到,监测系统将监测到的信号传输到信号(数据)采集器;信号经信号采集器传递到计算机;计算机则负责运行索结构的被评估对象的健康监测软件,包括记录信号采集器传递来的信号;当监测到被评估对象健康状态有变化时,计算机控制通信报警设备向监控人员、业主和(或)指定的人员报警。
第九步:将被监测量当前初始数值向量Ct o、单位损伤被监测量数值变化矩阵ΔC、被评估对象单位变化向量Du参数以数据文件的方式保存在运行健康监测系统软件的计算机硬盘上。
第十步:编制并在计算机上安装运行本方法系统软件,该软件将完成本方法任务所需要的监测、记录、控制、存储、计算、通知、报警等功能(即本具体实施方法中所有可以用计算机完成的工作)
第十一步:依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、单位损伤被监测量数值变化矩阵ΔC、被评估对象单位变化向量Du和被评估对象当前名义损伤向量d(由所有索当前名义损伤量组成)间存在的近似线性关系(式(8)),按照多目标优化算法计算被评估对象当前名义损伤向量d的非劣解,也就是带有合理误差、但可以比较准确地从所有索中确定受损索的位置及其名义损伤程度的解。
可以采用多目标优化算法中的目标规划法(GoalAttainmentMethod)求解当前损伤向量d,按照目标规划法,式(8)可以转化成式(26)和式(27)所示的多目标优化问题,式(26)中γ是一个实数,R是实数域,空间区域Ω限制了向量d的每一个元素的取值范围。式(26)的意思是寻找一个最小的实数γ,使得式(27)得到满足。式(27)中G(d)由式(28)定义,式(27)中加权向量W与γ的积表示式(27)中G(d)与向量g之间允许的偏差,g的定义参见式(13),其值已在第五步计算得到。实际计算时向量W可以与向量g相同。目标规划法的具体编程实现已经有通用程序可以直接采用。使用目标规划法就可以求得被评估对象当前名义损伤向量d。
G(d)-Wγ≤g(27)
G(d)=abs(ΔC·d-C+Co)(28)
被评估对象当前名义损伤向量d的元素个数等于被评估对象的数量,被评估对象当前名义损伤向量d的元素和被评估对象之间是一一对应关系,被评估对象当前名义损伤向量d的元素数值代表对应被评估对象的名义损伤程度或名义载荷变化程度;向量d的元素的编号规则与向量do的元素的编号规则相同。
第十二步:定义被评估对象当前实际损伤向量da,被评估对象当前实际损伤向量da的元素个数等于被评估对象的数量,被评估对象当前实际损伤向量da的元素和被评估对象之间是一一对应关系,被评估对象当前实际损伤向量da的元素数值代表对应被评估对象的实际损伤程度或实际载荷变化程度;向量da的元素的编号规则与向量do的元素的编号规则相同。利用式(15)表达的被评估对象当前实际损伤向量da的第k个元素da k同被评估对象初始损伤向量do的第k个元素dok和被评估对象当前名义损伤向量d的第k个元素dk间的关系,计算得到被评估对象当前实际损伤向量da的所有元素。
da k表示第k个被评估对象的当前实际健康状态:如果该被评估对象是索系统中的一根支承索,那么da k表示其当前实际损伤,da k为0时表示其对应的支承索无健康问题,da k数值不为0时表示其对应的支承索是有健康问题的支承索,有健康问题的支承索可能是松弛索、也可能是受损索,其数值反应了松弛或损伤的程度;如果该被评估对象是一个载荷,其定义见式(15),那么da k表示其相对于建立初始力学计算基准模型Ao时结构所承受的对应载荷的变化量。
将被评估对象当前实际损伤向量da中与支承索相关的M1个元素取出,组成支承索当前实际损伤向量dca,支承索当前实际损伤向量dca的元素的编号规则与初始索力向量Fo的元素的编号规则相同。支承索当前实际损伤向量dca的第h个元素表示索结构中第h根支承索的当前实际损伤量,h=1,2,3,…….,M1;支承索当前实际损伤向量dca中数值不为0的元素对应于有健康问题的支承索,采用无损检测方法从这些有健康问题的支承索中区分出受损索和松弛索。受损索在支承索当前实际损伤向量dca中对应的元素的数值就表示其损伤程度,对应元素的数值为100%时表示该支承索彻底丧失承载能力,介于0与100%之间时表示该支承索丧失相应比例的承载能力,至此便识别出了受损索及其损伤程度。
依据式(24)或式(25)可以求得松弛索的松弛程度(即索长调整量)。这样就实现了支承索的松弛识别。至此便全部识别了受损索和松弛索。
至此本方法以一种有效的、廉价的方法实现了核心被评估对象的健康状态的准确识别。对次要被评估对象的健康状态的识别结果可能偏离准确值较多,在本方法中仅要求正确识别核心被评估对象的健康状态。
第十三步:健康监测系统中的计算机定期自动或由人员操作健康监测系统生成索系统健康情况报表。
第十四步:在指定条件下,健康监测系统中的计算机自动操作通信报警设备向监控人员、业主和(或)指定的人员报警。
第十五步:回到第四步,开始由第四步到第十五步的循环。
Claims (1)
1.精简广义位移索力监测载荷问题索识别方法,其特征在于所述方法包括:
a.当索结构承受的载荷虽有变化,但索结构正在承受的载荷没有超出索结构初始许用载荷时,本方法适用;索结构初始许用载荷指索结构在竣工时的许用载荷,能够通过常规力学计算获得;本方法统一称被评估的支承索和载荷为“被评估对象”,设被评估的支承索的数量和载荷的数量之和为N,即“被评估对象”的数量为N;本方法用名称“核心被评估对象”专指“被评估对象”中的被评估的支承索,本方法用名称“次要被评估对象”专指“被评估对象”中的被评估的载荷;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;设索系统中共有M1根支承索,显然核心被评估对象的数量就是M1,索结构索力数据包括这M1根支承索的索力,本方法在监测全部M1根支承索索力的基础上,在索结构上人为增加M2根索,称为传感索,在索结构健康监测过程中将监测这新增加的M2根传感索的索力;综合上述被监测量,整个索结构共有M根索的M个索力被监测,即有M个被监测量,其中M为M1与M2之和;M必须大于核心被评估对象的数量,M小于被评估对象的数量;新增加的M2根传感索的刚度同索结构的任意一根支承索的刚度相比,应当小得多;新增加的M2根传感索的各传感索的索力应当比索结构的任意一根支承索的索力小得多,这样可以保证即使这新增加的M2根传感索出现了损伤或松弛,对索结构其他构件的应力、应变、变形的影响微乎其微;新增加的M2根传感索的横截面上正应力应当小于其疲劳极限,这些要求可以保证新增加的M2根传感索不会发生疲劳损伤;新增加的M2根传感索的两端应当充分锚固,保证不会出现松弛;新增加的M2根传感索应当得到充分的防腐蚀保护,保证新增加的M2根传感索不会发生损伤和松弛;为方便起见,在本方法中将“索结构的被监测的所有参量”简称为“被监测量”;给M个被监测量连续编号,本方法用用变量j表示这一编号,j=1,2,3,…,M,该编号在后续步骤中将用于生成向量和矩阵;在本方法中新增加的M2根传感索作为索结构的一部分,后文再提到索结构时,索结构包括增加M2根传感索前的索结构和新增加的M2根传感索,也就是说后文提到索结构时指包括新增加的M2根传感索的索结构;测量得到新增加的M2根传感索的索力的方法同于索结构的M1根支承索的索力的测量方法,在后文不再一一交代;对索结构的支承索进行任何测量时,同时对新增加的M2根传感索进行同样的测量,在后文不再一一交代;新增加的M2根传感索除了不发生损伤和松弛外,对新增加的M2根传感索的信息量的要求和获得方法与索结构的支承索的信息量的要求和获得方法相同,在后文不再一一交代;在后文建立索结构的各种力学模型时,将新增加的M2根传感索视同索结构的支承索对待;在后文中,除了提到支承索的损伤和松弛的场合外,当提到支承索时所说的支承索包括索结构的支承索和新增加的M2根传感索;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;
b.实测或查资料得到索结构所使用的各种材料的物理和力学性能参数;
c.在实测或查资料得到索结构所使用的各种材料的物理和力学性能参数的同时,直接测量计算得到初始索结构的实测数据,初始索结构的实测数据是包括索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座广义坐标数据、初始索结构角度数据、初始索结构空间坐标数据在内的实测数据,在得到初始索结构的实测数据的同时,测量计算得到包括支承索的无损检测数据在内的能够表达支承索的健康状态的数据,此时的能够表达支承索的健康状态的数据称为支承索初始健康状态数据;所有被监测量的初始数值组成被监测量初始数值向量Co,被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同;利用支承索初始健康状态数据以及索结构载荷测量数据建立被评估对象初始损伤向量do,向量do表示用初始力学计算基准模型Ao表示的索结构的被评估对象的初始健康状态;被评估对象初始损伤向量do的元素个数等于N,do的元素与被评估对象是一一对应关系,向量do的元素的编号规则与被评估对象的编号规则相同;如果do的某一个元素对应的被评估对象是索系统中的一根支承索,那么do的该元素的数值代表对应支承索的初始损伤程度,若该元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0;如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do中与支承索相关的各元素数值取0;初始索结构支座广义坐标数据组成初始索结构支座广义坐标向量Uo;在实测或查资料得到索结构所使用的各种材料的物理和力学性能参数的同时,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据包括索结构设计数据、竣工数据在内的数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;
d.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索初始健康状态数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构所使用的各种材料的物理和力学性能参数、初始索结构支座广义坐标向量Uo和前面步骤得到的所有的索结构数据,建立索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的被评估对象健康状态用被评估对象初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o;第一次建立索结构的当前初始力学计算基准模型At o和被监测量当前初始数值向量Ct o时,索结构的当前初始力学计算基准模型At o就等于索结构的初始力学计算基准模型Ao,被监测量当前初始数值向量Ct o就等于被监测量初始数值向量Co;对应于索结构的当前初始力学计算基准模型At o的索结构支座广义坐标数据组成当前初始索结构支座广义坐标向量Ut o,第一次建立索结构的当前初始力学计算基准模型At o时,Ut o就等于Uo;At o的被评估对象的初始健康状态与Ao的被评估对象的健康状态相同,也用被评估对象初始损伤向量do表示,在后面的循环过程中At o的被评估对象的初始健康状态始终用被评估对象初始损伤向量do表示;Uo和do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成;Ut o和do是At o的参数,Ct o由At o的力学计算结果组成;
e.从这里进入由第e步到第m步的循环;在结构服役过程中,不断实测得到索结构支座广义坐标当前数据,所有索结构支座广义坐标当前数据组成当前索结构实测支座广义坐标向量Ut,向量Ut的定义方式与向量Uo的定义方式相同;在实测得到当前索结构实测支座广义坐标向量Ut的同时,对新增加的M2根传感索进行无损检测,从中鉴别出出现损伤或松弛的传感索,依据被监测量编号规则,从本方法之前出现的按照被监测量编号规则编号的各向量中去除与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后出现的各向量和矩阵中也不再出现与鉴别出的出现损伤或松弛的传感索对应的元素,在本方法之后提到传感索时不再包括这里被鉴别出出现损伤或松弛的传感索,在本方法之后提到被监测量时不再包括这里被鉴别出出现损伤或松弛的传感索的索力;从索结构上鉴别出几根出现损伤或松弛的传感索,就将M2和M减小同样的数量;
f.根据当前索结构实测支座广义坐标向量Ut,按照步骤f1至f3更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o;
f1.比较Ut与Ut o,如果Ut等于Ut o,则At o、Ut o和Ct o保持不变,否则需要按下列步骤对At o、Ut o和Ct o进行更新;
f2.计算Ut与Uo的差,Ut与Uo的差就是索结构支座关于初始位置的支座广义位移,用支座广义位移向量V表示支座广义位移,V等于Ut减去Uo,支座广义位移向量V中的元素与支座广义位移分量之间是一一对应关系,支座广义位移向量V中一个元素的数值对应于一个指定支座的一个指定方向的广义位移;
f3.对Ao中的索结构支座施加支座广义位移约束,支座广义位移约束的数值就取自支座广义位移向量V中对应元素的数值,对Ao中索结构支座施加支座广义位移约束后得到更新的当前初始力学计算基准模型At o,更新At o的同时,Ut o所有元素数值也用Ut所有元素数值对应代替,即更新了Ut o,这样就得到了正确地对应于At o的Ut o;更新Ct o的方法是:当更新At o后,通过力学计算得到At o中所有被监测量的、当前的具体数值,这些具体数值组成Ct o;At o的支承索的初始健康状态始终用被评估对象初始损伤向量do表示;
g.在当前初始力学计算基准模型At o的基础上按照步骤g1至g4进行若干次力学计算,通过计算获得索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du;
g1.索结构单位损伤被监测量数值变化矩阵ΔC是不断更新的,即在更新当前初始力学计算基准模型At o、当前初始索结构支座广义坐标向量Ut o和被监测量当前初始数值向量Ct o之后,必须接着更新索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du;
g2.在索结构的当前初始力学计算基准模型At o的基础上进行若干次力学计算,计算次数数值上等于所有被评估对象的数量N,有N个评估对象就有N次计算;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或载荷的基础上再增加单位损伤或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索在向量do表示的该支承索已有损伤的基础上再增加单位损伤,如果该被评估对象是一个载荷,就假设该载荷在向量do表示的该载荷已有变化量的基础上再增加载荷单位变化,用Duk记录这一增加的单位损伤或载荷单位变化,其中k表示增加单位损伤或载荷单位变化的被评估对象的编号,Duk是被评估对象单位变化向量Du的一个元素,被评估对象单位变化向量Du的元素的编号规则与向量do的元素的编号规则相同;每一次计算中增加单位损伤或载荷单位变化的被评估对象不同于其它次计算中增加单位损伤或载荷单位变化的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;
g3.每一次计算得到的被监测量计算当前向量减去被监测量当前初始数值向量Ct o得到一个向量,再将该向量的每一个元素都除以该次计算所假设的单位损伤或载荷单位变化数值,得到一个被监测量单位变化向量,有N个被评估对象就有N个被监测量单位变化向量;
g4.由这N个被监测量单位变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构单位损伤被监测量数值变化矩阵ΔC;索结构单位损伤被监测量数值变化矩阵ΔC的每一列对应于一个被监测量单位变化向量;索结构单位损伤被监测量数值变化矩阵ΔC的每一行对应于同一个被监测量在不同被评估对象增加单位损伤或载荷单位变化时的不同的单位变化幅度;索结构单位损伤被监测量数值变化矩阵ΔC的列的编号规则与向量do的元素的编号规则相同,索结构单位损伤被监测量数值变化矩阵ΔC的行的编号规则与M个被监测量的编号规则相同;
h.在实测得到当前索结构实测支座广义坐标向量Ut的同时,实测得到索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量当前初始数值向量Ct o与被监测量初始数值向量Co的定义方式相同,三个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;在实测得到被监测量当前数值向量C的同一时刻,实测得到索结构中所有M1根支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到被监测量当前数值向量C的同一时刻,实测计算得到所有M1根支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;
i.定义被评估对象当前名义损伤向量d,被评估对象当前名义损伤向量d的元素个数等于被评估对象的数量,被评估对象当前名义损伤向量d的元素和被评估对象之间是一一对应关系,被评估对象当前名义损伤向量d的元素数值代表对应被评估对象的名义损伤程度或名义载荷变化量;向量d的元素的编号规则与向量do的元素的编号规则相同;
j.依据被监测量当前数值向量C同被监测量当前初始数值向量Ct o、索结构单位损伤被监测量数值变化矩阵ΔC和待求的被评估对象当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出被评估对象当前名义损伤向量d;
k.定义被评估对象当前实际损伤向量da,被评估对象当前实际损伤向量da的元素个数等于被评估对象的数量,被评估对象当前实际损伤向量da的元素和被评估对象之间是一一对应关系,被评估对象当前实际损伤向量da的元素数值代表对应被评估对象的实际损伤程度或实际载荷变化量;向量da的元素的编号规则与向量do的元素的编号规则相同;
l.利用式2表达的被评估对象当前实际损伤向量da的第k个元素da k同被评估对象初始损伤向量do的第k个元素dok和被评估对象当前名义损伤向量d的第k个元素dk间的关系,计算得到被评估对象当前实际损伤向量da的所有元素;
式2
式2中k=1,2,3,…….,N,da k表示第k个被评估对象的当前实际健康状态,da k为0时表示第k个被评估对象无健康问题,da k数值不为0时表示第k个被评估对象是有健康问题的被评估对象,如果该被评估对象是索系统中的一根支承索,那么da k表示其当前健康问题的严重程度,有健康问题的支承索可能是松弛索、也可能是受损索,da k数值反应了该支承索的松弛或损伤的程度;从这些有健康问题的支承索中鉴别出受损索,剩下的就是松弛索,被评估对象当前实际损伤向量da中与松弛索对应于的元素数值表达的是与松弛索松弛程度力学等效的当前实际等效损伤程度;如果该被评估对象是一个载荷,那么da k表示该载荷的实际变化量;鉴别出松弛索后,利用被评估对象当前实际损伤向量da表达的这些松弛索的、与其松弛程度力学等效的当前实际等效损伤程度,利用在第f步获得的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第b步获得的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量、初始索力向量Fo,利用在第b步获得的索结构所使用的各种材料的物理和力学性能参数,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,力学等效条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个力学等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;本方法将受损索和松弛索统称为有健康问题的支承索,简称为问题索,所以根据被评估对象当前实际损伤向量da能够确定核心被评估对象的健康状态;
m.回到第e步,开始由第e步到第m步的下一次循环。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510439510.3A CN105067331A (zh) | 2015-07-23 | 2015-07-23 | 精简广义位移索力监测载荷问题索识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510439510.3A CN105067331A (zh) | 2015-07-23 | 2015-07-23 | 精简广义位移索力监测载荷问题索识别方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105067331A true CN105067331A (zh) | 2015-11-18 |
Family
ID=54496755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510439510.3A Pending CN105067331A (zh) | 2015-07-23 | 2015-07-23 | 精简广义位移索力监测载荷问题索识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105067331A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337144A (ja) * | 2005-06-01 | 2006-12-14 | Kawasaki Heavy Ind Ltd | 橋梁の疲労寿命診断方法及び診断支援装置 |
CN103616247A (zh) * | 2013-12-09 | 2014-03-05 | 东南大学 | 广义位移索力监测问题索集中载荷识别方法 |
CN103852285A (zh) * | 2014-03-10 | 2014-06-11 | 东南大学 | 广义位移索力监测问题索载荷识别方法 |
CN103852327A (zh) * | 2014-03-10 | 2014-06-11 | 东南大学 | 索力监测问题索载荷广义位移识别方法 |
-
2015
- 2015-07-23 CN CN201510439510.3A patent/CN105067331A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337144A (ja) * | 2005-06-01 | 2006-12-14 | Kawasaki Heavy Ind Ltd | 橋梁の疲労寿命診断方法及び診断支援装置 |
CN103616247A (zh) * | 2013-12-09 | 2014-03-05 | 东南大学 | 广义位移索力监测问题索集中载荷识别方法 |
CN103852285A (zh) * | 2014-03-10 | 2014-06-11 | 东南大学 | 广义位移索力监测问题索载荷识别方法 |
CN103852327A (zh) * | 2014-03-10 | 2014-06-11 | 东南大学 | 索力监测问题索载荷广义位移识别方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101819098B (zh) | 基于混合监测的识别受损索和支座位移的递进式方法 | |
CN101793627B (zh) | 基于混合监测的递进式索结构健康监测方法 | |
CN101832875B (zh) | 基于索力监测的递进式索结构健康监测方法 | |
CN101793629B (zh) | 基于应变监测的递进式索结构健康监测方法 | |
CN101819097A (zh) | 基于应变监测的识别受损索和支座位移的递进式方法 | |
CN101793632A (zh) | 一种基于应变监测的索结构健康监测方法 | |
CN101813571B (zh) | 基于角度监测的识别受损索和支座位移的递进式方法 | |
CN105067331A (zh) | 精简广义位移索力监测载荷问题索识别方法 | |
CN105067340A (zh) | 精简广义位移空间坐标监测载荷问题索识别方法 | |
CN105004557A (zh) | 精简广义位移角度监测载荷问题索识别方法 | |
CN105004563A (zh) | 精简广义位移混合监测载荷问题索识别方法 | |
CN105067349A (zh) | 精简广义位移索力监测载荷受损索识别方法 | |
CN105115752A (zh) | 精简广义位移空间坐标监测载荷受损索识别方法 | |
CN105067296A (zh) | 精简广义位移索力监测载荷问题索递进式识别方法 | |
CN105115748A (zh) | 精简广义位移角度监测载荷受损索识别方法 | |
CN105004546A (zh) | 精简广义位移角度监测载荷问题索递进式识别方法 | |
CN105136504A (zh) | 精简广义位移应变监测载荷问题索识别方法 | |
CN105067351A (zh) | 精简广义位移空间坐标监测载荷问题索递进式识别方法 | |
CN105067309A (zh) | 精简索力监测载荷受损索广义位移识别方法 | |
CN105067345A (zh) | 精简索力监测载荷问题索广义位移识别方法 | |
CN104990740A (zh) | 精简广义位移应变监测载荷问题索递进式识别方法 | |
CN105067341A (zh) | 精简广义位移混合监测载荷问题索递进式识别方法 | |
CN105067299A (zh) | 精简广义位移索力监测载荷受损索递进式识别方法 | |
CN105115756A (zh) | 精简角度监测载荷受损索广义位移识别方法 | |
CN105067301A (zh) | 精简应变监测载荷受损索广义位移识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151118 |
|
RJ01 | Rejection of invention patent application after publication |