CN104950445A - Virtual image display device and head-mounted display - Google Patents
Virtual image display device and head-mounted display Download PDFInfo
- Publication number
- CN104950445A CN104950445A CN201510133976.0A CN201510133976A CN104950445A CN 104950445 A CN104950445 A CN 104950445A CN 201510133976 A CN201510133976 A CN 201510133976A CN 104950445 A CN104950445 A CN 104950445A
- Authority
- CN
- China
- Prior art keywords
- light
- light guide
- image
- optical element
- guide section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 253
- 210000001508 eye Anatomy 0.000 claims description 33
- 210000003128 head Anatomy 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims 3
- 239000010410 layer Substances 0.000 description 96
- 238000010586 diagram Methods 0.000 description 35
- 239000000758 substrate Substances 0.000 description 26
- 239000010408 film Substances 0.000 description 24
- 238000002834 transmittance Methods 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 19
- 230000036961 partial effect Effects 0.000 description 17
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 238000005286 illumination Methods 0.000 description 14
- 239000002346 layers by function Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 125000006850 spacer group Chemical group 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0031—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0112—Head-up displays characterised by optical features comprising device for genereting colour display
- G02B2027/0116—Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
- G02B2027/0174—Head mounted characterised by optical features holographic
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0075—Arrangements of multiple light guides
- G02B6/0076—Stacked arrangements of multiple light guides of the same or different cross-sectional area
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
本发明提供构造简单且能放大影像光的虚像显示装置、及具备这样的虚像显示装置且观察者容易辨识的头戴式显示器。虚像显示装置(1)包括:生成基于影像信号调制后的影像光的图像生成部(3);光学元件(5),具有从图像生成部射出的影像光所入射到的入射面(56)、和射出放大了向入射面入射后的影像光的截面积的影像光的射出面(57),光学元件(5)具有:连接入射面和射出面且对从图像生成部射出的影像光进行导向的第一导光部(51)及第二导光部(52);设于第一导光部与第二导光部之间、使从图像生成部射出的影像光的一部分反射并使影像光的一部分透过的第一光分支层(54),从图像生成部射出的影像光相对于第一光分支层倾斜入射。
The present invention provides a virtual image display device with a simple structure and capable of amplifying image light, and a head-mounted display equipped with such a virtual image display device and easily recognized by observers. The virtual image display device (1) includes: an image generator (3) that generates image light modulated based on an image signal; an optical element (5) having an incident surface (56) on which the image light emitted from the image generator is incident; and the exit surface (57) that emits the image light whose cross-sectional area is enlarged after the image light incident on the incident surface, the optical element (5) has: connect the incident surface and the exit surface and guide the image light emitted from the image generating part The first light guide part (51) and the second light guide part (52); are arranged between the first light guide part and the second light guide part, reflect a part of the image light emitted from the image generating part and make the image The first light branching layer (54) through which part of the light passes, and the image light emitted from the image generating unit obliquely enters the first light branching layer.
Description
技术领域technical field
本发明涉及虚像显示装置以及头戴式显示器。The invention relates to a virtual image display device and a head-mounted display.
背景技术Background technique
近几年,例如如头戴式显示器(HMD)那样,作为能够进行虚像的形成以及观察的虚像显示装置,提出了各种利用导光板将来自显示元件的影像光引导至观察者的眼珠的类型的装置。In recent years, for example, as a virtual image display device capable of forming and observing a virtual image such as a head-mounted display (HMD), various types that use a light guide plate to guide image light from a display element to the observer's eyeballs have been proposed. installation.
作为这样的虚像显示装置,例如公知有专利文献1所示的头戴式显示器。As such a virtual image display device, for example, a head-mounted display disclosed in Patent Document 1 is known.
专利文献1所记载的头戴式显示器是通过成为使向瞳孔入射的影像光与人的眼睛的动作一致地动作的结构、从而观察者容易辨识的头戴式显示器。然而,对于这样的头戴式显示器而言,为了使向瞳孔入射的影像光与人的眼睛的动作一致,需要眼珠位置的检测机构、用于改变射出光瞳的位置的结构(目镜、图像光射出单元的位置变更机构、控制部)等,从而有构造复杂化的问题。The head-mounted display described in Patent Document 1 is a head-mounted display that is easily recognized by a viewer by having a structure in which video light incident on pupils operates in unison with the movement of human eyes. However, in such a head-mounted display, in order to match the movement of the human eye with the image light entering the pupil, a mechanism for detecting the position of the eyeball and a structure for changing the position of the exit pupil (eyepiece, image light, etc.) are required. The position change mechanism of the injection unit, the control unit), etc., so there is a problem that the structure is complicated.
专利文献1:日本特开2011-75956Patent Document 1: Japanese Patent Laid-Open No. 2011-75956
发明内容Contents of the invention
本发明的目的在于提供构造简单、能够放大影像光的虚像显示装置、以及具备这样的虚像显示装置、且观察者容易辨识的头戴式显示器。An object of the present invention is to provide a virtual image display device capable of magnifying image light with a simple structure, and a head-mounted display equipped with such a virtual image display device and easily recognized by a viewer.
这样的目的通过下述的本发明实现。Such objects are achieved by the present invention described below.
本发明的虚像显示装置,其特征在于,The virtual image display device of the present invention is characterized in that,
上述虚像显示装置包括:The above-mentioned virtual image display device includes:
图像生成部,其生成基于影像信号调制后的影像光;以及an image generating unit that generates image light modulated based on the image signal; and
光学元件,其具有入射面和射出面,从上述图像生成部射出的上述影像光入射到该入射面,从该射出面射出放大了向上述入射面入射后的上述影像光的截面积的上述影像光,An optical element having an incident surface and an output surface, the image light emitted from the image generation unit enters the incident surface, and the image having a cross-sectional area enlarged by the image light incident on the incident surface is emitted from the output surface. Light,
上述光学元件具有:The optical elements described above have:
第一导光部及第二导光部,上述第一导光部及上述第二导光部连接上述入射面和上述射出面,对从上述图像生成部射出的上述影像光进行导向;以及a first light guide part and a second light guide part, the first light guide part and the second light guide part connect the incident surface and the exit surface, and guide the image light emitted from the image generating part; and
第一光分支层,其设于上述第一导光部与上述第二导光部之间,使从上述图像生成部射出的上述影像光的一部分反射,并使上述影像光的一部分透过,a first light splitting layer, which is provided between the first light guide part and the second light guide part, reflects a part of the image light emitted from the image generating part, and transmits a part of the image light,
从上述图像生成部射出的上述影像光相对于上述第一光分支层倾斜入射。The image light emitted from the image generation unit is obliquely incident on the first light branching layer.
由此,能够提供构造简单、且能够对由图像生成部生成的影像光进行放大的虚像显示装置。Accordingly, it is possible to provide a virtual image display device having a simple structure and capable of amplifying video light generated by the image generating unit.
在本发明的虚像显示装置中,优选构成为,上述光学元件具有上述第一导光部和上述第二导光部沿第一方向呈1维地排列的第一1维阵列。In the virtual image display device of the present invention, it is preferable that the optical element has a first one-dimensional array in which the first light guide part and the second light guide part are arranged one-dimensionally along the first direction.
由此,能够使由图像生成部生成的影像光在光学元件内多重反射,因而能够进一步放大上述影像光。As a result, the image light generated by the image generation unit can be multiple-reflected within the optical element, and thus the image light can be further amplified.
在本发明的虚像显示装置中,优选构成为,上述光学元件具有上述第一导光部和上述第二导光部沿与上述第一方向不同的第二方向呈1维地排列的第二1维阵列,In the virtual image display device of the present invention, it is preferable that the optical element has a second light guide unit and a second light guide unit arranged one-dimensionally in a second direction different from the first direction. dimensional array,
上述第二1维阵列配置为,使得从一方的上述第一1维阵列的射出面射出的上述影像光向上述第二1维阵列的入射面入射。The second one-dimensional array is arranged such that the image light emitted from the output surface of one of the first one-dimensional arrays enters the incident surface of the second one-dimensional array.
由此,能够在第一方向以及第二方向上放大由图像生成部生成的影像光。Thereby, the image light generated by the image generating unit can be amplified in the first direction and the second direction.
在本发明的虚像显示装置中,优选构成为,上述第一1维阵列的射出面与上述第二1维阵列的入射面连接。In the virtual image display device of the present invention, it is preferable that the output surface of the first one-dimensional array is connected to the input surface of the second one-dimensional array.
由此,能够进一步提高光利用效率。Thereby, light utilization efficiency can be further improved.
在本发明的虚像显示装置中,优选构成为,上述光学元件还具有:In the virtual image display device of the present invention, preferably constituted as, the above-mentioned optical element also has:
第三导光部,其连接上述入射面和上述射出面,并对上述影像光进行导向;以及a third light guide part, which connects the above-mentioned incident surface and the above-mentioned exit surface, and guides the above-mentioned image light; and
第二光分支层,其设于上述第一导光部与上述第三导光部之间,使上述影像光的一部分反射,并使上述影像光的一部分透过,a second light branching layer, which is provided between the first light guide part and the third light guide part, reflects a part of the image light and transmits a part of the image light,
上述第一导光部和上述第二导光部沿第一方向排列,上述第一导光部和上述第三导光部沿与上述第一方向不同的第二方向排列。The first light guide part and the second light guide part are arranged in a first direction, and the first light guide part and the third light guide part are arranged in a second direction different from the first direction.
由此,能够在第一方向以及第二方向上放大由图像生成部生成的影像光。Thereby, the image light generated by the image generating unit can be amplified in the first direction and the second direction.
在本发明的虚像显示装置中,优选构成为,上述入射面上的、沿着上述第一导光部和上述第二导光部所排列的方向的上述第一导光部以及上述第二导光部的宽度分别比沿着上述第一导光部和上述第二导光部所排列的方向的上述影像光的宽度小。In the virtual image display device of the present invention, it is preferable that the first light guide part and the second light guide part on the incident surface along the direction in which the first light guide part and the second light guide part are arranged Widths of the light portions are smaller than widths of the image light along a direction in which the first light guides and the second light guides are arranged.
由此,能够使由图像生成部生成的影像光在光学元件内多重反射,从而能够进一步提高从射出面射出的影像光的强度分布的均匀性。Thereby, the image light generated by the image generation unit can be multiple-reflected in the optical element, and the uniformity of the intensity distribution of the image light emitted from the output surface can be further improved.
在本发明的虚像显示装置中,优选构成为,上述入射面和上述射出面相对于上述第一光分支层的倾斜角度的绝对值相同。In the virtual image display device of the present invention, it is preferable that absolute values of inclination angles of the incident surface and the outgoing surface with respect to the first light branching layer are the same.
由此,能够使向入射面入射的影像光的折射的量与从射出面射出的影像光的折射的量相同,从而能够防止色差的产生。Thereby, the amount of refraction of the image light incident on the incident surface can be made the same as the amount of refraction of the image light emitted from the output surface, thereby preventing the occurrence of chromatic aberration.
在本发明的虚像显示装置中,优选构成为,上述虚像显示装置还具备光偏转部,该光偏转部使从上述光学元件的上述射出面射出的上述影像光向观察者的眼睛的方向偏转,In the virtual image display device of the present invention, it is preferable that the virtual image display device further includes a light deflection unit that deflects the image light emitted from the emission surface of the optical element toward the eyes of the observer,
上述光偏转部具有全息元件。The light deflection unit has a hologram element.
由此,能够容易地对朝观察者的眼睛引导的影像光的角度、光束状态进行调整。Accordingly, it is possible to easily adjust the angle and beam state of the image light guided to the observer's eyes.
在本发明的虚像显示装置中,优选构成为,上述虚像显示装置还具有放大导光部,该放大导光部将从上述光学元件射出的上述影像光2维地放大,In the virtual image display device of the present invention, it is preferable that the virtual image display device further includes an enlargement light guide unit for two-dimensionally enlarging the image light emitted from the optical element,
上述放大导光部具备:The above-mentioned amplifying light guide part has:
光入射部,上述影像光入射到该光入射部;a light incident part, the above-mentioned image light is incident on the light incident part;
第一放大导光部,其具有相对于上述影像光向上述光入射部入射的入射方向倾斜设置的第一反射面、以及与上述第一反射面平行设置、使上述影像光的一部分反射并使上述影像光的一部分透过的第二反射面;以及The first amplifying light guide part has a first reflective surface provided obliquely with respect to the incident direction of the image light incident on the light incident part, and is provided in parallel with the first reflective surface to reflect a part of the image light and make the a second reflective surface through which a part of the image light passes; and
第二放大导光部,其对透过上述第二反射面后的上述影像光进行导向。The second enlarged light guide part guides the image light transmitted through the second reflective surface.
由此,能够使从光学元件射出的影像光在第一放大导光部以及第二放大导光部多重反射,从而能够进一步放大上述影像光。Thereby, the image light emitted from the optical element can be multiple-reflected by the first amplifying light guide part and the second amplifying light guide part, and the above-mentioned image light can be further amplified.
在本发明的虚像显示装置中,优选构成为,上述图像生成部具备射出光的光源、以及对从该光源射出的上述光进行扫描的光扫描仪。In the virtual image display device according to the present invention, it is preferable that the image generating unit includes a light source that emits light, and an optical scanner that scans the light emitted from the light source.
由此,能够使鲜明的影像光向光学元件入射。Thereby, clear image light can be made incident on the optical element.
在本发明的虚像显示装置中,优选构成为,上述图像生成部具备光源、以及基于上述影像信号对从该光源射出的光进行调制的空间光调制装置。In the virtual image display device of the present invention, it is preferable that the image generating unit includes a light source and a spatial light modulator for modulating light emitted from the light source based on the video signal.
由此,能够使鲜明的影像光向光学元件入射。Thereby, clear image light can be made incident on the optical element.
在本发明的虚像显示装置中,优选构成为,上述图像生成部具有有机EL面板。In the virtual image display device of the present invention, it is preferable that the image generation unit includes an organic EL panel.
由此,能够使鲜明的影像光向放大光学部入射,并且能够实现图像生成部的小型化。Thereby, clear image light can be made incident on the magnifying optical unit, and the size of the image generating unit can be reduced.
本发明的头戴式显示器,其特征在于,具备本发明的虚像显示装置,且安装于观察者的头部。The head-mounted display of the present invention is characterized in that it includes the virtual image display device of the present invention and is installed on the head of the observer.
由此,能够提供观察者容易辨识的头戴式显示器。Accordingly, it is possible to provide a head-mounted display that is easily recognized by a viewer.
在本发明的头戴式显示器中,优选构成为,上述光学元件配置为,在安装于上述观察者的头部的状态下,在上述观察者的左眼和右眼排列的方向上放大从上述光学元件的上述射出面射出的上述影像光的截面积。In the head-mounted display according to the present invention, it is preferable that the optical element is arranged so that, in a state of being attached to the head of the observer, it enlarges the optical element from the The cross-sectional area of the image light emitted from the emitting surface of the optical element.
由此,能够提供观察者更加容易辨识的头戴式显示器。Accordingly, it is possible to provide a head-mounted display that is more easily recognized by a viewer.
附图说明Description of drawings
图1是示出具备第一实施方式的虚像显示装置的头戴式显示器的简要结构的图。FIG. 1 is a diagram showing a schematic configuration of a head-mounted display including a virtual image display device according to a first embodiment.
图2是图1所示的头戴式显示器的简要立体图。FIG. 2 is a schematic perspective view of the head-mounted display shown in FIG. 1 .
图3是示意地示出图1所示的虚像显示装置的结构的图。FIG. 3 is a diagram schematically showing the configuration of the virtual image display device shown in FIG. 1 .
图4是示意地示出图2所示的图像生成部的结构的图。FIG. 4 is a diagram schematically showing the configuration of an image generation unit shown in FIG. 2 .
图5是示出图4所示的驱动信号生成部的驱动信号的一个例子的图。FIG. 5 is a diagram showing an example of a drive signal of a drive signal generator shown in FIG. 4 .
图6是图4所示的光扫描部的俯视图。FIG. 6 is a plan view of the light scanning unit shown in FIG. 4 .
图7是图6所示的光扫描部的剖视图(沿X1轴的剖视图)。Fig. 7 is a cross-sectional view (cross-sectional view along the X1 axis) of the optical scanning unit shown in Fig. 6 .
图8是示出图3所示的光学元件的简要结构的图,图8(a)是主视图,图8(b)是俯视图,图8(c)是右视图,图8(d)是左侧图。Fig. 8 is a figure showing the schematic structure of the optical element shown in Fig. 3, Fig. 8 (a) is a front view, Fig. 8 (b) is a plan view, Fig. 8 (c) is a right view, Fig. 8 (d) is Figure on the left.
图9是用于说明向图8所示的光学元件入射的影像光的路径的图。FIG. 9 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 8 .
图10是用于说明向图8所示的光学元件入射的影像光的路径的图。FIG. 10 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 8 .
图11是示出第二实施方式的虚像显示装置所具备的光学元件的简要结构的图,图11(a)是主视图,图11(b)是俯视图,图11(c)是右视图,图11(d)是左侧图。11 is a diagram showing a schematic configuration of optical elements included in the virtual image display device of the second embodiment, FIG. 11( a ) is a front view, FIG. 11( b ) is a top view, and FIG. 11( c ) is a right side view, Fig. 11(d) is a diagram on the left side.
图12是用于说明向图11所示的光学元件入射的影像光的路径的图。FIG. 12 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 11 .
图13是示出第三实施方式的虚像显示装置所具备的光学元件的简要结构的图,图13(a)是主视图,图13(b)是俯视图,图13(c)是右视图,图13(d)是左侧图。13 is a diagram showing a schematic configuration of an optical element included in a virtual image display device according to a third embodiment, FIG. 13( a ) is a front view, FIG. 13( b ) is a plan view, and FIG. 13( c ) is a right side view, Fig. 13(d) is a diagram on the left side.
图14是用于说明向图13所示的光学元件入射的影像光的路径的图。FIG. 14 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 13 .
图15是示出第四实施方式的虚像显示装置所具备的光学元件的图,图15(a)是俯视图,图15(b)是侧视图。FIG. 15 is a diagram showing optical elements included in a virtual image display device according to a fourth embodiment, FIG. 15( a ) is a plan view, and FIG. 15( b ) is a side view.
图16是用于说明向图15所示的光学元件入射的影像光的路径的图。FIG. 16 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 15 .
图17是示出第五实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 17 is a diagram showing a schematic configuration of an image generating unit included in a virtual image display device according to a fifth embodiment.
图18是示出第六实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 18 is a diagram showing a schematic configuration of an image generation unit included in a virtual image display device according to a sixth embodiment.
图19是示出第七实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 19 is a diagram illustrating a schematic configuration of an image generation unit included in a virtual image display device according to a seventh embodiment.
图20是示出第八实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 20 is a diagram showing a schematic configuration of an image generation unit included in a virtual image display device according to an eighth embodiment.
图21是示出图3所示的光学元件的其它例子的图,图21(a)是主视图,图21(b)是俯视图,图21(c)是右视图,图21(d)是左侧图。Figure 21 is a figure showing another example of the optical element shown in Figure 3, Figure 21 (a) is a front view, Figure 21 (b) is a top view, Figure 21 (c) is a right view, Figure 21 (d) is Figure on the left.
具体实施方式detailed description
以下,参照附图对本发明的虚像显示装置以及头戴式显示器的优选的实施方式进行说明。Hereinafter, preferred embodiments of the virtual image display device and the head-mounted display of the present invention will be described with reference to the drawings.
第一实施方式first embodiment
图1是示出具备第一实施方式的虚像显示装置的头戴式显示器的简要结构的图,图2是图1所示的头戴式显示器的简要立体图,图3是示意地示出图1所示的虚像显示装置的结构的图,图4是示意地示出图2所示的图像生成部的结构的图,图5是示出图4所示的驱动信号生成部的驱动信号的一个例子的图,图6是图4所示的光扫描部的俯视图,图7是图6所示的光扫描部的剖视图(沿X1轴的剖视图),图8是示出图3所示的光学元件的简要结构的图,图8(a)是主视图,图8(b)是俯视图,图8(c)是右视图,图8(d)是左侧图,图9是用于说明向图8所示的光学元件入射的影像光的路径的图,图10是用于说明向图8所示的光学元件入射的影像光的路径的图。并且,图21是示出图3所示的光学元件的其它例子的图,图21(a)是主视图,图21(b)是俯视图,图21(c)是右视图,图21(d)是左侧图。1 is a diagram showing a schematic configuration of a head-mounted display equipped with a virtual image display device according to a first embodiment, FIG. 2 is a schematic perspective view of the head-mounted display shown in FIG. 1 , and FIG. Figure 4 is a diagram schematically illustrating the structure of the image generation unit shown in Figure 2, and Figure 5 is a diagram illustrating the drive signal of the drive signal generation unit shown in Figure 4. Figure 6 is a top view of the optical scanning section shown in Figure 4, Figure 7 is a cross-sectional view (section along the X1 axis) of the optical scanning section shown in Figure 6, and Figure 8 shows the optical scanning section shown in Figure 3. Figure 8(a) is a front view, Figure 8(b) is a top view, Figure 8(c) is a right view, Figure 8(d) is a left side view, and Figure 9 is used to explain FIG. 8 is a diagram showing the path of video light incident on the optical element shown in FIG. 8 , and FIG. 10 is a diagram for explaining the path of video light incident on the optical element shown in FIG. 8 . And, Fig. 21 is a figure showing another example of the optical element shown in Fig. 3, Fig. 21 (a) is a front view, Fig. 21 (b) is a top view, Fig. 21 (c) is a right view, Fig. 21 (d) ) is the graph on the left.
此外,在图1~图3、图8、图9中,为便于说明,作为相互正交的三个轴,图示了X轴、Y轴以及Z轴,并将该图示的箭头的前端侧设为“+(正)”,将基端侧设为“-(负)”。并且,将与X轴平行的方向设为“X轴方向”,将与Y轴平行的方向设为“Y轴方向”,并将与Z轴平行的方向设为“Z轴方向”。In addition, in FIGS. 1 to 3 , FIG. 8 , and FIG. 9 , for convenience of description, the X axis, the Y axis, and the Z axis are illustrated as three mutually orthogonal axes, and the tips of the arrows in the illustrations are The side was set to "+ (positive)", and the proximal side was set to "- (negative)". In addition, the direction parallel to the X axis is referred to as "X axis direction", the direction parallel to the Y axis is referred to as "Y axis direction", and the direction parallel to the Z axis is referred to as "Z axis direction".
此处,X轴、Y轴以及Z轴设定为,在虚像显示装置1安装于观察者的头部H时,X轴方向成为头部H的左右方向,Y轴方向成为头部H的上下方向,Z轴方向成为头部H的前后方向。Here, the X-axis, Y-axis, and Z-axis are set so that when the virtual image display device 1 is mounted on the head H of the observer, the X-axis direction becomes the left-right direction of the head H, and the Y-axis direction becomes the vertical direction of the head H. direction, the Z-axis direction becomes the front-rear direction of the head H.
如图1所示,具备本实施方式的虚像显示装置1的头戴式显示器(头部安装型虚像显示装置)10形成为眼镜那样的外观,以安装于观察者的头部H的方式来使用,使观察者以虚像的图像与外部图像叠加了的状态辨识虚像的图像。As shown in FIG. 1 , a head-mounted display (head-mounted virtual image display device) 10 including a virtual image display device 1 according to this embodiment has an appearance like glasses and is used by being attached to the head H of an observer. , so that the observer recognizes the image of the virtual image in a state where the image of the virtual image is superimposed on the external image.
如图1、图2所示,头戴式显示器10具有虚像显示装置1和框架2,该虚像显示装置1具有图像生成部3、放大光学系统4及反射部6。As shown in FIGS. 1 and 2 , a head-mounted display 10 includes a virtual image display device 1 and a frame 2 .
在该头戴式显示器10中,图像生成部3形成基于影像信号调制后的影像光,放大光学系统4放大该影像光的光束宽度(截面积),反射部6将由放大光学系统4放大后的影像光引导向观察者的眼睛EY。由此,能够使观察者辨识与影像信号对应的虚像。In this head-mounted display 10, the image generating unit 3 forms video light modulated based on a video signal, the magnifying optical system 4 amplifies the beam width (cross-sectional area) of the video light, and the reflecting unit 6 amplifies the beam width (cross-sectional area) of the video light amplified by the magnifying optical system 4. The image light is directed toward the observer's eye EY. This enables the observer to recognize a virtual image corresponding to the video signal.
并且,头戴式显示器10配设为,虚像显示装置1所具备的图像生成部3、放大光学系统4、以及反射部6分别设置在框架2的右侧以及左侧,以YZ平面为基准对称(左右对称)。在框架2的右侧设置的图像生成部3、放大光学系统4、以及反射部6形成右眼用的虚像,在框架2的左侧设置的图像生成部3、放大光学系统4、以及反射部6形成左眼用的虚像。In addition, the head-mounted display 10 is arranged such that the image generation unit 3, the magnification optical system 4, and the reflection unit 6 included in the virtual image display device 1 are respectively provided on the right side and the left side of the frame 2, and are symmetrical with respect to the YZ plane. (bilateral symmetry). The image generation part 3, the magnification optical system 4, and the reflection part 6 provided on the right side of the frame 2 form a virtual image for the right eye, and the image generation part 3, the magnification optical system 4 and the reflection part provided on the left side of the frame 2 6 Forms a virtual image for the left eye.
此外,在本实施方式中,头戴式显示器10是在框架2的右侧以及左侧分别设置图像生成部3、放大光学系统4、以及反射部6而形成右眼用的虚像和左眼用的虚像的结构,但并不限定于此,例如也可以仅在框架2的左侧设置图像生成部3、放大光学系统4、以及反射部6,而仅形成左眼用的虚像。并且,例如也可以仅在框架2的右侧设置图像生成部3、放大光学系统4、以及反射部6,而仅形成右眼用的虚像。即,本发明的头戴式显示器不限定于本实施方式那样的双眼类型的头戴式显示器10,也可以是单眼类型的头戴式显示器。In addition, in this embodiment, the head-mounted display 10 is provided with the image generating unit 3, the magnifying optical system 4, and the reflecting unit 6 on the right side and the left side of the frame 2, respectively, to form a virtual image for the right eye and a virtual image for the left eye. The structure of the virtual image is not limited thereto. For example, the image generating unit 3, the magnifying optical system 4, and the reflecting unit 6 may be provided only on the left side of the frame 2 to form a virtual image for the left eye only. Also, for example, the image generating unit 3 , the magnifying optical system 4 , and the reflection unit 6 may be provided only on the right side of the frame 2 to form only a virtual image for the right eye. That is, the head-mounted display of the present invention is not limited to the binocular type head-mounted display 10 as in this embodiment, and may be a monocular type head-mounted display.
以下,依次详细地对头戴式显示器10的各部进行说明。Hereinafter, each part of the head-mounted display 10 will be described in detail sequentially.
此外,两个图像生成部3、两个放大光学系统4、以及两个反射部6分别具有相同的结构,从而以下以在框架2的左侧设置的图像生成部3、放大光学系统4、以及反射部6为中心进行说明。In addition, the two image generation parts 3, the two magnification optical systems 4, and the two reflection parts 6 have the same structure respectively, so that the image generation part 3, the magnification optical system 4, and The reflection section 6 will be described as a center.
框架frame
如图2所示,框架2形成为眼镜框架那样的形状,具有对虚像显示装置1所具备的图像生成部3、放大光学系统4、以及反射部6进行支承的功能。As shown in FIG. 2 , the frame 2 is formed in the shape of an eyeglass frame, and has a function of supporting the image generation unit 3 , the magnification optical system 4 , and the reflection unit 6 included in the virtual image display device 1 .
框架2具有前部21和从前部21的左右两端沿Z轴方向伸出的镜腿22,该前部21具有边框211和背阴部212。The frame 2 has a front part 21 and temples 22 protruding from the left and right ends of the front part 21 in the Z-axis direction. The front part 21 has a frame 211 and a shade part 212 .
背阴部212具有抑制外部光线的透过的功能,是支承反射部6的部件。背阴部212在其内侧具有朝向观察者侧开口的凹部27,在该凹部27设有反射部6。而且,支承该反射部6的背阴部212由边框211支承。The shade portion 212 has a function of suppressing the transmission of external light, and is a member that supports the reflection portion 6 . The shade portion 212 has a concave portion 27 opened toward the viewer on its inner side, and the reflecting portion 6 is provided in the concave portion 27 . Furthermore, the shade portion 212 supporting the reflecting portion 6 is supported by the frame 211 .
并且,在背阴部212的中央部设有鼻托23。鼻托23在观察者将头戴式显示器10安装于头部H时与观察者的鼻子NS抵接,从而将头戴式显示器10支承于观察者的头部H。Furthermore, a nose pad 23 is provided at the center of the pudendum 212 . The nose pad 23 contacts the nose NS of the observer when the observer attaches the head-mounted display 10 to the head H, and supports the head-mounted display 10 on the head H of the observer.
镜腿22是用于勾挂于观察者的耳朵EA的未赋予角度的笔直镜腿,当观察者将头戴式显示器10安装于头部H后,镜腿22的一部分构成为与观察者的耳朵EA抵接。并且,在镜腿22的内部收纳有图像生成部3以及放大光学系统4。The temples 22 are straight temples without angles for hooking on the observer's ears EA. When the observer mounts the head-mounted display 10 on the head H, a part of the temples 22 is formed to be in contact with the observer. Ear EA abutment. Furthermore, the image generator 3 and the magnification optical system 4 are accommodated inside the temple 22 .
并且,作为镜腿22的构成材料,没有特别限定,例如,可以使用各种树脂材料、在树脂混合有碳纤维或玻璃纤维等纤维的复合材料、铝或镁等金属材料等。Furthermore, there are no particular limitations on the constituent material of the temple 22, and for example, various resin materials, composite materials in which fibers such as carbon fibers or glass fibers are mixed in resin, metal materials such as aluminum or magnesium, and the like can be used.
此外,若框架2的形状是能够安装于观察者的头部H的形状,则不限定于图示的结构。In addition, as long as the shape of the frame 2 is a shape which can be attached to the observer's head H, it is not limited to the structure shown in figure.
虚像显示装置virtual image display device
如上所述,虚像显示装置1具有图像生成部3、放大光学系统4、以及反射部6。As described above, the virtual image display device 1 has the image generation unit 3 , the magnification optical system 4 , and the reflection unit 6 .
以下,详细地对本实施方式的虚像显示装置1的各部进行说明。Hereinafter, each part of the virtual image display device 1 of this embodiment will be described in detail.
图像生成部Image Generation Department
如图2所示,图像生成部3内置于上述的框架2的镜腿22。As shown in FIG. 2 , the image generator 3 is incorporated in the temple 22 of the above-mentioned frame 2 .
如图3以及图4所示,图像生成部3具备影像光生成部31、驱动信号生成部32、控制部33、透镜34、以及光扫描部35。As shown in FIGS. 3 and 4 , the image generation unit 3 includes a video light generation unit 31 , a drive signal generation unit 32 , a control unit 33 , a lens 34 , and a light scanning unit 35 .
这样的图像生成部3具有生成基于影像信号调制后的影像光的功能、和生成驱动光扫描部35的驱动信号的功能。Such an image generator 3 has a function of generating video light modulated based on a video signal, and a function of generating a drive signal for driving the light scanning unit 35 .
以下,详述图像生成部3的各部。Hereinafter, each unit of the image generation unit 3 will be described in detail.
影像光生成部Image Light Generation Department
影像光生成部31生成由光扫描部35(光扫描仪)扫描(光扫描)的影像光L1。The image light generating unit 31 generates image light L1 scanned (optical scanned) by the optical scanning unit 35 (optical scanner).
该影像光生成部31具有有波长不同的多个光源(光源部)311R、311G、311B的光源部311、多个驱动电路312R、312G、312B、以及光合成部(合成部)313。The image light generation unit 31 has a light source unit 311 including a plurality of light sources (light source units) 311R, 311G, and 311B having different wavelengths, a plurality of driving circuits 312R, 312G, and 312B, and a light synthesis unit (synthesis unit) 313 .
光源部311所具有的光源311R(R光源)是射出红色光的光源,光源311G(G光源)是射出绿色光的光源,光源311B是射出蓝色光的光源。通过使用这样的三色的光,能够显示全彩色的图像。The light source 311R (R light source) included in the light source unit 311 emits red light, the light source 311G (G light source) emits green light, and the light source 311B emits blue light. By using such three-color lights, a full-color image can be displayed.
光源311R、311G、311B分别没有特别限定,例如可以使用激光二极管、LED等。The light sources 311R, 311G, and 311B are not particularly limited, and for example, laser diodes, LEDs, and the like can be used.
这样的光源311R、311G、311B分别与驱动电路312R、312G、312B电连接。Such light sources 311R, 311G, and 311B are electrically connected to drive circuits 312R, 312G, and 312B, respectively.
驱动电路312R具有驱动上述的光源311R的功能,驱动电路312G具有驱动上述的光源311G的功能,驱动电路312B具有驱动上述的光源311B的功能。The drive circuit 312R has a function of driving the above-mentioned light source 311R, the drive circuit 312G has a function of driving the above-mentioned light source 311G, and the drive circuit 312B has a function of driving the above-mentioned light source 311B.
从由这样的驱动电路312R、312G、312B驱动的光源311R、311G、311B射出的三个(三色)光(影像光)向光合成部313入射。Three (three-color) lights (video lights) emitted from the light sources 311R, 311G, and 311B driven by the driving circuits 312R, 312G, and 312B enter the light combining unit 313 .
光合成部313对来自多个光源311R、311G、311B的光进行合成。The light combining unit 313 combines the lights from the plurality of light sources 311R, 311G, and 311B.
在本实施方式中,光合成部313具有两个分色镜313a、313b。In this embodiment, the light combining unit 313 has two dichroic mirrors 313a and 313b.
分色镜313a具有使红色光透过并反射绿色光的功能。并且,分色镜313b具有使红色光以及绿色光透过并反射蓝色光的功能。The dichroic mirror 313a has a function of transmitting red light and reflecting green light. Furthermore, the dichroic mirror 313b has a function of transmitting red light and green light and reflecting blue light.
通过使用这样的分色镜313a、313b,来对来自光源311R、311G、311B的红色光、绿色光以及蓝色光的三色的光进行合成,而形成一个影像光L1。By using such dichroic mirrors 313a and 313b, the three-color lights of red light, green light, and blue light from the light sources 311R, 311G, and 311B are combined to form one image light L1.
此处,在本实施方式中,上述的光源部311配置为,来自光源311R、311G、311B的红色光、绿色光以及蓝色光的光路长度相互相等。Here, in this embodiment, the above-mentioned light source unit 311 is arranged such that the optical path lengths of the red light, green light, and blue light from the light sources 311R, 311G, and 311B are equal to each other.
此外,光合成部313不限定于使用上述的分色镜的结构,例如也可以由棱镜、光波导、光纤等构成。In addition, the light combining part 313 is not limited to the structure using the above-mentioned dichroic mirror, For example, it may be comprised by a prism, an optical waveguide, an optical fiber, etc.
在以上那样的结构的影像光生成部31中,从光源部311生成三色的影像光,并在光合成部313合成这样的影像光,从而生成为一个影像光L1。而且,由影像光生成部31生成的影像光L1朝向透镜34。In the video light generation unit 31 having the above configuration, three-color video lights are generated from the light source unit 311 , and such video lights are synthesized in the light combining unit 313 to generate one video light L1 . Furthermore, the video light L1 generated by the video light generating unit 31 goes toward the lens 34 .
此外,也可以在上述的影像光生成部31,设有例如对由光源311R、311G、311B生成的影像光L1的强度等进行检测的光检测机构(未图示)等。通过设置这样的光检测机构,能够与检测结果对应地调整影像光L1的强度。In addition, for example, a light detection mechanism (not shown) for detecting the intensity of the image light L1 generated by the light sources 311R, 311G, and 311B may be provided in the above-mentioned image light generation unit 31 . By providing such a light detection mechanism, it is possible to adjust the intensity of the image light L1 according to the detection result.
透镜lens
由影像光生成部31生成的影像光L1向透镜34入射。The video light L1 generated by the video light generating unit 31 enters the lens 34 .
透镜34具有控制影像光L1的放射角度的功能。该透镜34例如是准直透镜。准直透镜是将光调整(调制)为平行状态的光束的透镜。The lens 34 has a function of controlling the radiation angle of the image light L1. This lens 34 is, for example, a collimating lens. The collimator lens is a lens that adjusts (modulates) light into a parallel beam.
在这样的透镜34中,从影像光生成部31射出的影像光L1以平行化后的状态向光扫描部35传送。In such a lens 34 , the video light L1 emitted from the video light generation unit 31 is transmitted to the light scanning unit 35 in a parallelized state.
驱动信号生成部Drive Signal Generator
驱动信号生成部32生成驱动光扫描部35(光扫描仪)的驱动信号。The drive signal generator 32 generates a drive signal for driving the optical scanner 35 (optical scanner).
该驱动信号生成部32具有:生成用于光扫描部35的第一方向上的扫描(水平扫描)的第一驱动信号的驱动电路321(第一驱动电路);和生成用于光扫描部35的与第一方向正交的第二方向上的扫描(垂直扫描)的第二驱动信号的驱动电路322(第二驱动电路)。This driving signal generating section 32 has: a driving circuit 321 (first driving circuit) that generates a first driving signal for scanning (horizontal scanning) in the first direction of the optical scanning section 35; The driving circuit 322 (second driving circuit) of the second driving signal for scanning in the second direction orthogonal to the first direction (vertical scanning).
例如,驱动电路321是产生如图5(a)所示地以周期T1周期性地变化的第一驱动信号V1(水平扫描用电压)的电路,驱动电路322是产生如图5(b)所示地以与周期T1不同的周期T2周期性地变化的第二驱动信号V2(垂直扫描用电压)的电路。For example, the driving circuit 321 is a circuit that generates the first driving signal V1 (horizontal scanning voltage) that changes periodically with a cycle T1 as shown in FIG. A circuit is shown in which the second drive signal V2 (voltage for vertical scanning) changes periodically at a period T2 different from the period T1.
此外,对于第一驱动信号以及第二驱动信号将与后述的光扫描部35的说明一起在后面详细加以叙述。In addition, the first drive signal and the second drive signal will be described in detail later together with the description of the light scanning unit 35 described later.
这样的驱动信号生成部32经由未图示的信号线与光扫描部35电连接。由此,由驱动信号生成部32生成的驱动信号(第一驱动信号以及第二驱动信号)向光扫描部35输入。Such a driving signal generation unit 32 is electrically connected to the light scanning unit 35 via a signal line not shown. Accordingly, the drive signals (the first drive signal and the second drive signal) generated by the drive signal generation unit 32 are input to the light scanning unit 35 .
控制部control department
上述的影像光生成部31的驱动电路312R、312G、312B以及驱动信号生成部32的驱动电路321、322与控制部33电连接。控制部33具有基于影像信号(图像信息)来对影像光生成部31的驱动电路312R、312G、312B以及驱动信号生成部32的驱动电路321、322的驱动进行控制的功能。The above-described drive circuits 312R, 312G, and 312B of the image light generation unit 31 and the drive circuits 321 and 322 of the drive signal generation unit 32 are electrically connected to the control unit 33 . The control unit 33 has a function of controlling driving of the drive circuits 312R, 312G, and 312B of the video light generation unit 31 and the drive circuits 321 and 322 of the drive signal generation unit 32 based on video signals (image information).
基于控制部33的指令,影像光生成部31生成与图像信息对应地调制后的影像光L1,并且驱动信号生成部32生成与图像信息对应的驱动信号。Based on an instruction from the control unit 33 , the video light generating unit 31 generates video light L1 modulated according to image information, and the driving signal generating unit 32 generates a driving signal corresponding to the image information.
光扫描部Light Scanning Department
从影像光生成部31射出的影像光L1经由透镜34向光扫描部35入射。The video light L1 emitted from the video light generation unit 31 enters the light scanning unit 35 via the lens 34 .
光扫描部35是2维地扫描来自影像光生成部31的影像光L1的光扫描仪。通过由该光扫描部35扫描影像光L1来形成扫描光(影像光)L2。The optical scanning unit 35 is an optical scanner that two-dimensionally scans the image light L1 from the image light generating unit 31 . Scanning light (image light) L2 is formed by scanning image light L1 with this light scanning unit 35 .
如图6所示,该光扫描部35具备可动反光镜部11、一对轴部12a、12b(第一轴部)、框体部13、两对轴部14a、14b、14c、14d(第二轴部)、支承部15、永久磁铁16以及线圈17。换言之,光扫描部35具有所谓的万向构造。As shown in FIG. 6, the optical scanning unit 35 includes a movable mirror unit 11, a pair of shaft parts 12a, 12b (first shaft parts), a frame part 13, and two pairs of shaft parts 14a, 14b, 14c, 14d ( second shaft), a support 15 , a permanent magnet 16 and a coil 17 . In other words, the optical scanning unit 35 has a so-called gimbal structure.
此处,可动反光镜部11以及一对轴部12a、12b构成绕Y1轴(第一轴)摆动(往复转动)的第一振动系统。并且,可动反光镜部11、一对轴部12a、12b、框体部13、两对轴部14a、14b、14c、14d以及永久磁铁16构成绕X1轴(第二轴)摆动(往复转动)的第二振动系统。Here, the movable mirror portion 11 and the pair of shaft portions 12a, 12b constitute a first vibration system that oscillates (reciprocates) around the Y1 axis (first axis). And, the movable mirror portion 11, the pair of shaft portions 12a, 12b, the frame portion 13, the two pairs of shaft portions 14a, 14b, 14c, 14d, and the permanent magnet 16 are configured to swing (reciprocate) around the X1 axis (second axis). ) of the second vibration system.
并且,光扫描部35具有信号叠加部18(参照图7),永久磁铁16、线圈17、信号叠加部18以及驱动信号生成部32构成使上述的第一振动系统以及第二振动系统驱动(即,使可动反光镜部11绕X1轴以及Y1轴摆动)的驱动部。And the optical scanning part 35 has the signal superimposing part 18 (referring to Fig. 7), and the permanent magnet 16, the coil 17, the signal superimposing part 18 and the driving signal generating part 32 constitute the above-mentioned first vibrating system and the second vibrating system to drive (that is, , to make the movable mirror portion 11 swing around the X1 axis and the Y1 axis) driving portion.
以下,依次详细地对光扫描部35的各部进行说明。Hereinafter, each unit of the light scanning unit 35 will be described in detail sequentially.
可动反光镜部11具有基部111(可动部)、和经由隔离物112而固定于基部111的光反射板113。The movable mirror part 11 has a base part 111 (movable part), and a light reflection plate 113 fixed to the base part 111 via a spacer 112 .
在光反射板113的上表面(一个面)设有具有光反射性的光反射部114。A light reflective portion 114 having light reflectivity is provided on the upper surface (one surface) of the light reflective plate 113 .
该光反射板113设为相对于轴部12a、12b在厚度方向上分离,并且当从厚度方向观察时(以下,也称作“俯视”)与轴部12a、12b重叠。This light reflection plate 113 is separated in the thickness direction with respect to the shaft parts 12a and 12b, and overlaps with the shaft parts 12a and 12b when viewed from the thickness direction (hereinafter, also referred to as "plan view").
因此,能够缩短轴部12a与轴部12b之间的距离,并且能够增大光反射板113的板面的面积。并且,由于能够缩短轴部12a与轴部12b之间的距离,所以能够实现框体部13的小型化。另外,由于能够实现框体部13的小型化,所以能够缩短轴部14a、14b与轴部14c、14d之间的距离。Therefore, the distance between the shaft portion 12a and the shaft portion 12b can be shortened, and the area of the plate surface of the light reflection plate 113 can be increased. In addition, since the distance between the shaft portion 12a and the shaft portion 12b can be shortened, the size of the frame body portion 13 can be reduced. Moreover, since the frame body part 13 can be downsized, the distance between the shaft part 14a, 14b and the shaft part 14c, 14d can be shortened.
根据这样的情况,即使增大光反射板113的板面的面积,也能够实现光扫描部35的小型化。换言之,能够缩小光扫描部35相对于光反射部114的面积的大小。According to such a situation, even if the area of the plate surface of the light reflection plate 113 is increased, it is possible to reduce the size of the light scanning unit 35 . In other words, the size of the area of the light scanning unit 35 relative to the light reflection unit 114 can be reduced.
并且,在俯视的情况下,光反射板113以覆盖轴部12a、12b的整体的方式形成。换言之,在俯视的情况下,轴部12a、12b分别相对于光反射板113的外周而位于内侧。由此,光反射板113的板面的面积变大,结果,能够增大光反射部114的面积。并且,能够防止不需要的光由轴部12a、12b反射而成为杂散光。Moreover, the light reflection plate 113 is formed so that the whole shaft part 12a, 12b may be covered in planar view. In other words, the shaft portions 12a and 12b are respectively located inside with respect to the outer periphery of the light reflection plate 113 in plan view. Thereby, the area of the plate surface of the light reflection plate 113 becomes large, and as a result, the area of the light reflection part 114 can be enlarged. In addition, unnecessary light can be prevented from being reflected by the shaft portions 12a and 12b and becoming stray light.
并且,在俯视的情况下,光反射板113以覆盖框体部13的整体的方式形成。换言之,在俯视的情况下,框体部13相对于光反射板113的外周而位于内侧。由此,光反射板113的板面的面积变大,结果,能够增大光反射部114的面积。并且,能够防止不需要的光由框体部13反射而成为杂散光。In addition, the light reflection plate 113 is formed to cover the entire frame body portion 13 in plan view. In other words, the frame body portion 13 is located inside the outer periphery of the light reflection plate 113 in plan view. Thereby, the area of the plate surface of the light reflection plate 113 becomes large, and as a result, the area of the light reflection part 114 can be enlarged. In addition, it is possible to prevent unnecessary light from being reflected by the frame portion 13 and becoming stray light.
另外,在俯视的情况下,光反射板113以覆盖轴部14a、14b、14c、14d的整体的方式形成。换言之,在俯视的情况下,轴部14a、14b、14c、14d分别相对于光反射板113的外周而位于内侧。由此,光反射板113的板面的面积变大,结果,能够增大光反射部114的面积。并且,能够防止不需要的光由轴部14a、14b、14c、14d反射而成为杂散光。Moreover, the light reflection plate 113 is formed so that the whole shaft part 14a, 14b, 14c, and 14d may be covered in planar view. In other words, the shaft portions 14 a , 14 b , 14 c , and 14 d are respectively located inside with respect to the outer periphery of the light reflection plate 113 in plan view. Thereby, the area of the plate surface of the light reflection plate 113 becomes large, and as a result, the area of the light reflection part 114 can be enlarged. In addition, unnecessary light can be prevented from being reflected by the shaft portions 14a, 14b, 14c, and 14d to become stray light.
在本实施方式中,在俯视的情况下,光反射板113形成为圆形。此外,光反射板113的俯视形状并不限定于此,例如,也可以是椭圆形、四边形等多边形。In the present embodiment, the light reflection plate 113 is formed in a circular shape in plan view. In addition, the planar view shape of the light reflection plate 113 is not limited to this, For example, polygonal shapes, such as an ellipse and a quadrangle, may be sufficient.
在这样的光反射板113的下表面(另一个面),如图7所示地设有硬质层115。A hard layer 115 is provided on the lower surface (the other surface) of such a light reflection plate 113 as shown in FIG. 7 .
硬质层115由比光反射板113主体的构成材料硬质的材料构成。由此,能够提高光反射板113的刚性。因此,能够防止或者抑制光反射板113在摆动时的挠曲。并且,变薄光反射板113的厚度,而能够抑制光反射板113绕X1轴以及Y1轴摆动时的惯性力矩。The hard layer 115 is made of a material harder than the constituent material of the main body of the light reflection plate 113 . Thereby, the rigidity of the light reflection plate 113 can be improved. Therefore, it is possible to prevent or suppress deflection of the light reflection plate 113 when swinging. In addition, the moment of inertia when the light reflection plate 113 swings around the X1 axis and the Y1 axis can be suppressed by reducing the thickness of the light reflection plate 113 .
作为这样的硬质层115的构成材料,若是比光反射板113主体的构成材料硬质的材料,则没有特别限定,例如可以使用金刚石,氮化碳膜、水晶、蓝宝石、钽酸锂、铌酸钾等,但尤其优选使用金刚石。The constituent material of such a hard layer 115 is not particularly limited as long as it is harder than the constituent material of the main body of the light reflection plate 113. For example, diamond, carbon nitride film, crystal, sapphire, lithium tantalate, niobium, etc. can be used. Potassium acid and the like, but diamond is particularly preferably used.
硬质层115的厚度(平均)没有特别限定,但优选为1~10μm左右,更优选为1~5μm左右。The thickness (average) of the hard layer 115 is not particularly limited, but is preferably about 1 to 10 μm, and more preferably about 1 to 5 μm.
并且,硬质层115也可以由单层构成,也可以由多个层的层叠体构成。此外,硬质层115是根据需要而设置的,也能够省略。Furthermore, the hard layer 115 may be composed of a single layer, or may be composed of a laminated body of a plurality of layers. In addition, the hard layer 115 is provided as needed and can also be omitted.
对于这样的硬质层115的形成,例如可以使用等离子CVD、热CVD、激光CVD那样的化学蒸镀法(CVD)、真空蒸镀、溅射、离子镀敷等干式镀金法、电镀、浸镀、无电镀等湿式镀金法、热喷涂、片状部件的接合等。For the formation of such a hard layer 115, for example, chemical vapor deposition (CVD) such as plasma CVD, thermal CVD, and laser CVD, dry gold plating such as vacuum deposition, sputtering, and ion plating, electroplating, immersion plating, etc., can be used. Plating, electroless plating and other wet gold plating methods, thermal spraying, joining of chip parts, etc.
并且,光反射板113的下表面经由隔离物112而固定于基部111。由此,能够防止与轴部12a、12b、框体部13以及轴部14a、14b、14c、14d的接触,并且能够使光反射板113绕Y1轴摆动。In addition, the lower surface of the light reflection plate 113 is fixed to the base 111 via the spacer 112 . Thereby, contact with the shaft parts 12a and 12b, the frame body part 13, and the shaft parts 14a, 14b, 14c, and 14d can be prevented, and the light reflection plate 113 can be swung around the Y1 axis.
并且,在俯视的情况下,基部111分别相对于光反射板113的外周位于内侧。即,光反射板113的设置光反射部114的面(板面)的面积比基部111的固定隔离物112的面的面积大。并且,对于基部111的俯视情况下的面积而言,在基部111能够经由隔离物112支承光反射板113的情况下,该面积优选尽量小。由此,能够增大光反射板113的板面的面积,并能够缩小轴部12a与轴部12b之间的距离。In addition, the bases 111 are located inside the outer circumference of the light reflection plate 113 in a plan view. That is, the area of the surface (plate surface) of the light reflection plate 113 on which the light reflection portion 114 is provided is larger than the area of the surface of the base portion 111 on which the spacer 112 is fixed. Furthermore, the area of the base 111 in plan view is preferably as small as possible when the base 111 can support the light reflection plate 113 via the spacer 112 . Thereby, the area of the plate surface of the light reflection plate 113 can be enlarged, and the distance between the shaft part 12a and the shaft part 12b can be made small.
如图6所示,框体部13形成为框状,并以包围上述的可动反光镜部11的基部111的方式设置。换言之,可动反光镜部11的基部111在形成为框状的框体部13的内侧设置。As shown in FIG. 6 , the frame body portion 13 is formed in a frame shape and provided so as to surround the base portion 111 of the above-mentioned movable mirror portion 11 . In other words, the base portion 111 of the movable mirror portion 11 is provided inside the frame body portion 13 formed in a frame shape.
而且,框体部13经由轴部14a、14b、14c、14d而支承于支承部15。并且,可动反光镜部11的基部111经由轴部12a、12b而支承于框体部13。And the frame body part 13 is supported by the support part 15 via the shaft part 14a, 14b, 14c, 14d. Furthermore, the base portion 111 of the movable mirror portion 11 is supported by the frame body portion 13 via the shaft portions 12a, 12b.
并且,框体部13的沿着Y1轴的方向上的长度比沿着X1轴的方向上的长度长。即,当将沿着Y1轴的方向上的框体部13的长度设为a、将沿着X1轴的方向上的框体部13的长度设为b时,满足a>b的关系。由此,能够确保轴部12a、12b所需要的长度,并且能够抑制沿着X1轴的方向上的光扫描部35的长度。In addition, the length of the frame body 13 in the direction along the Y1 axis is longer than the length in the direction along the X1 axis. That is, when the length of the frame portion 13 in the direction along the Y1 axis is a and the length of the frame portion 13 in the direction along the X1 axis is b, the relationship of a>b is satisfied. Thereby, the length required for the shaft part 12a, 12b can be ensured, and the length of the optical scanning part 35 in the direction along the X1 axis can be suppressed.
并且,在俯视的情况下,框体部13形成为沿着由可动反光镜部11的基部111以及一对轴部12a、12b构成的构造体的外形的形状。由此,允许由可动反光镜部11以及一对轴部12a、12b构成的第一振动系统的振动、即允许可动反光镜部11的绕Y1轴的摆动,并能够实现框体部13的小型化。In addition, the frame body portion 13 is formed in a shape following the outer shape of a structure composed of the base portion 111 of the movable mirror portion 11 and the pair of shaft portions 12 a and 12 b in plan view. Thus, the vibration of the first vibration system composed of the movable mirror part 11 and the pair of shaft parts 12a, 12b is allowed, that is, the swing of the movable mirror part 11 around the Y1 axis is allowed, and the frame part 13 can be realized. miniaturization.
此外,若框体部13的形状是包围可动反光镜部11的基部111的框状,则不限定于图示的形状。In addition, if the shape of the frame body part 13 is a frame shape surrounding the base part 111 of the movable mirror part 11, it is not limited to the shape shown in figure.
轴部12a、12b以使可动反光镜部11能够绕Y1轴(第一轴)转动(摆动)的方式连结可动反光镜部11和框体部13。并且,轴部14a、14b、14c、14d以使框体部13能够绕与Y1轴正交的X1轴(第二轴)转动(摆动)的方式连结框体部13和支承部15。The shaft portions 12 a and 12 b connect the movable mirror portion 11 and the frame portion 13 so that the movable mirror portion 11 can rotate (swing) around the Y1 axis (first axis). Shaft portions 14a, 14b, 14c, and 14d connect frame body 13 and support portion 15 so that frame body 13 can rotate (swing) around X1 axis (second axis) perpendicular to Y1 axis.
轴部12a、12b配置为经由可动反光镜部11的基部111相互对置。并且,轴部12a、12b分别形成为在沿着Y1轴的方向上延伸的长条形状。而且,轴部12a、12b分别形成为,一端部与基部111连接,另一端部与框体部13连接。并且,轴部12a、12b分别配置为中心轴与Y1轴一致。The shaft portions 12 a and 12 b are arranged to face each other via the base portion 111 of the movable mirror portion 11 . And the shaft parts 12a, 12b are each formed in the elongate shape extended in the direction along the Y1 axis. And the shaft parts 12a and 12b are each formed so that one end part may be connected to the base part 111, and the other end part may be connected to the frame part 13. As shown in FIG. And the shaft parts 12a and 12b are respectively arrange|positioned so that a central axis may coincide with the Y1 axis.
这样的轴部12a、12b分别随着可动反光镜部11的绕Y1轴的摆动而扭转变形。Such shaft portions 12 a and 12 b are twisted and deformed in accordance with the swing of the movable mirror portion 11 around the Y1 axis.
轴部14a、14b以及轴部14c、14d配置为隔着(夹着)框体部13相互对置。并且,轴部14a、14b、14c、14d分别形成为在沿着X1轴的方向上延伸的长条形状。而且,轴部14a、14b、14c、14d分别形成为,一端部与框体部13连接,另一端部与支承部15连接。并且,轴部14a、14b配置为隔着X1轴相互对置,同样,轴部14c、14d配置为隔着X1轴相互对置。The shaft parts 14 a and 14 b and the shaft parts 14 c and 14 d are arranged to face each other with the frame body part 13 interposed therebetween. And the shaft parts 14a, 14b, 14c, 14d are each formed in the elongate shape extended in the direction along the X1 axis. And the shaft parts 14a, 14b, 14c, 14d are each formed so that one end part may be connected to the frame part 13, and the other end part may be connected to the support part 15. As shown in FIG. And the shaft parts 14a, 14b are arrange|positioned so that they may oppose each other across the X1 axis, and similarly, the shaft parts 14c, 14d will be arrange|positioned so that they may oppose each other across the X1 axis.
对于这样的轴部14a、14b、14c、14d而言,随着框体部13的绕X1轴的摆动,轴部14a、14b整体以及轴部14c、14d整体分别扭转变形。In such shaft portions 14 a , 14 b , 14 c , and 14 d , the entire shaft portions 14 a , 14 b and the entire shaft portions 14 c , 14 d are torsionally deformed as the frame body portion 13 swings around the X1 axis.
这样,能够使可动反光镜部11绕Y1轴摆动,并且能够使框体部13绕X1轴摆动,从而能够使可动反光镜部11绕相互正交的X1轴以及Y1轴这两个轴摆动(往复转动)。In this way, the movable mirror portion 11 can be swung around the Y1 axis, and the frame body portion 13 can be swung around the X1 axis, so that the movable mirror portion 11 can be swung around two axes, the X1 axis and the Y1 axis, which are perpendicular to each other. Swing (reciprocating rotation).
并且,在这样的轴部12a、12b中的至少一个轴部、以及轴部14a、14b、14c、14d中的至少一个轴部,分别设有例如形变传感器那样的角度检测传感器,但对此未图示。该角度检测传感器能够检测光扫描部35的角度信息、更具体而言为光反射部114的绕X1轴以及绕Y1轴的各个摆动角。该检测结果经由未图示的缆线向控制部33输入。And, at least one of such shaft parts 12a, 12b and at least one of shaft parts 14a, 14b, 14c, 14d are respectively provided with an angle detection sensor such as a strain sensor, but this has not been done. icon. This angle detection sensor can detect angle information of the light scanning unit 35 , more specifically, each swing angle of the light reflection unit 114 around the X1 axis and around the Y1 axis. The detection result is input to the control unit 33 via a cable not shown.
此外,轴部12a、12b以及轴部14a、14b、14c、14d的形状分别不限定于上述的形状,例如,也可以在中途的至少一个位置具有屈曲或者弯曲的部分、分支的部分。In addition, the shapes of the shaft portions 12a, 12b and the shaft portions 14a, 14b, 14c, and 14d are not limited to the above-mentioned shapes, and for example, may have bent or curved portions or branched portions at at least one midway position.
上述的基部111、轴部12a、12b、框体部13、轴部14a、14b、14c、14d以及支承部15一体形成。The above-mentioned base portion 111, shaft portions 12a, 12b, frame body portion 13, shaft portions 14a, 14b, 14c, 14d, and support portion 15 are integrally formed.
在本实施方式中,基部111、轴部12a、12b、框体部13、轴部14a、14b、14c、14d以及支承部15通过对依次层叠有第一Si层(器件层)、SiO2层(箱层)、以及第二Si层(处理层)的SOI基板进行蚀刻而形成。由此,能够使第一振动系统以及第二振动系统的振动特性优异。并且,由于SOI基板能够利用蚀刻进行微小的加工,所以通过使用SOI基板来形成基部111、轴部12a、12b、框体部13、轴部14a、14b、14c、14d以及支承部15,能够使它们的尺寸精度优异,并且能够实现光扫描部35的小型化。In this embodiment, the base portion 111, the shaft portions 12a, 12b, the frame portion 13, the shaft portions 14a, 14b, 14c, 14d, and the support portion 15 are sequentially laminated with the first Si layer (device layer), SiO2 layer (box layer) and the SOI substrate of the second Si layer (handling layer) are formed by etching. Thereby, the vibration characteristics of the first vibration system and the second vibration system can be made excellent. In addition, since the SOI substrate can be subjected to fine processing by etching, the base portion 111, the shaft portions 12a, 12b, the frame portion 13, the shaft portions 14a, 14b, 14c, and 14d, and the support portion 15 are formed using the SOI substrate. These are excellent in dimensional accuracy, and can realize miniaturization of the optical scanning unit 35 .
而且,基部111、轴部12a、12b以及轴部14a、14b、14c、14d分别由SOI基板的第一Si层构成。由此,能够使轴部12a、12b以及轴部14a、14b、14c、14d的弹性优异。并且,当基部111绕Y1轴转动时能够防止其与框体部13接触。Furthermore, the base portion 111, the shaft portions 12a, 12b, and the shaft portions 14a, 14b, 14c, and 14d are each composed of the first Si layer of the SOI substrate. Thereby, the elasticity of shaft part 12a, 12b and shaft part 14a, 14b, 14c, 14d can be made excellent. Also, the base portion 111 can be prevented from coming into contact with the frame portion 13 when it is rotated around the Y1 axis.
并且,框体部13以及支承部15分别由如下层叠体构成,该层叠体由SOI基板的第一Si层、SiO2层以及第二Si层构成。由此,能够使框体部13以及支承部15的刚性优异。并且,框体部13的SiO2层以及第二Si层不仅具有作为提高框体部13的刚性的肋的功能,还具有防止可动反光镜部11与永久磁铁16接触的功能。Furthermore, the frame body portion 13 and the support portion 15 are each composed of a laminated body composed of a first Si layer, an SiO 2 layer, and a second Si layer of an SOI substrate. Thereby, the rigidity of the frame body part 13 and the support part 15 can be made excellent. Furthermore, the SiO 2 layer and the second Si layer of the frame portion 13 not only function as ribs for increasing the rigidity of the frame portion 13 but also function to prevent the movable mirror portion 11 from contacting the permanent magnet 16 .
并且,优选对支承部15的上表面实施防反射处理。由此,能够防止向支承部15照射的无用光成为杂散光。Furthermore, it is preferable to perform anti-reflection treatment on the upper surface of the support portion 15 . Thereby, it is possible to prevent unnecessary light irradiated on the support portion 15 from becoming stray light.
作为这样的防反射处理,没有特别限定,例如可以举出防反射膜(电介质多层膜)的形成、粗糙化处理、黑色处理等。Such antireflection treatment is not particularly limited, and examples thereof include formation of an antireflection film (dielectric multilayer film), roughening treatment, and blackening treatment.
此外,上述的基部111、轴部12a、12b以及轴部14a、14b、14c、14d的构成材料以及形成方法是一个例子,本发明不限定于此。In addition, the above-mentioned constituent materials and forming methods of base portion 111, shaft portions 12a, 12b, and shaft portions 14a, 14b, 14c, and 14d are examples, and the present invention is not limited thereto.
并且,在本实施方式中,隔离物112以及光反射板113也通过对SOI基板进行蚀刻而形成。而且,隔离物112由如下层叠体构成,该层叠体由SOI基板的SiO2层以及第二Si层构成。并且,光反射板113由SOI基板的第一Si层构成。Furthermore, in this embodiment, the spacer 112 and the light reflection plate 113 are also formed by etching the SOI substrate. Furthermore, the spacer 112 is composed of a laminated body composed of the SiO 2 layer and the second Si layer of the SOI substrate. In addition, the light reflection plate 113 is composed of the first Si layer of the SOI substrate.
这样,通过使用SOI基板来形成隔离物112以及光反射板113,能够简单且高精度地制造相互接合的隔离物112以及光反射板113。Thus, by forming the spacer 112 and the light reflection plate 113 using the SOI substrate, the spacer 112 and the light reflection plate 113 bonded to each other can be manufactured easily and with high precision.
这样的隔离物112例如利用粘合剂、钎料等接合材料(未图示)来接合于基部111。Such a spacer 112 is bonded to the base 111 with, for example, a bonding material (not shown) such as an adhesive or solder.
在上述的框体部13的下表面(光反射板113的相反侧的面),接合有永久磁铁16。The permanent magnet 16 is bonded to the lower surface (the surface on the opposite side to the light reflection plate 113 ) of the frame portion 13 described above.
作为永久磁铁16与框体部13的接合方法没有特别限定,例如可以使用利用粘合剂的接合方法。The method of joining the permanent magnet 16 and the frame body 13 is not particularly limited, and for example, a joining method using an adhesive can be used.
在俯视的情况下,永久磁铁16在相对于X1轴以及Y1轴倾斜的方向上被磁化。The permanent magnet 16 is magnetized in a direction inclined with respect to the X1 axis and the Y1 axis in plan view.
在本实施方式中,永久磁铁16形成为长条形状(棒状),沿相对于X1轴以及Y1轴倾斜的方向配置。而且,永久磁铁16在其长边方向上被磁化。即,永久磁铁16被磁化为,一端部为S极,另一端部为N极。In the present embodiment, the permanent magnets 16 are formed in a long shape (rod shape), and are arranged in a direction inclined with respect to the X1 axis and the Y1 axis. Also, the permanent magnet 16 is magnetized in its longitudinal direction. That is, the permanent magnet 16 is magnetized such that one end is an S pole and the other end is an N pole.
并且,在俯视的情况下,永久磁铁16设为以X1轴与Y1轴的交点为中心对称。In addition, the permanent magnet 16 is symmetrical about the intersection point of the X1 axis and the Y1 axis in plan view.
此外,在本实施方式中,以在框体部13设置有一个永久磁铁的数量的情况为例进行说明,但并不限定于此,例如也可以在框体部13设置两个永久磁铁。在该情况下,例如形成为长条状的两个永久磁铁以在俯视的情况下隔着基部111相互对置、并且相互平行的方式设置于框体部13即可。In addition, in this embodiment, the case where the number of one permanent magnet is provided in the frame part 13 is demonstrated as an example, However, it is not limited to this, For example, two permanent magnets may be provided in the frame part 13. In this case, for example, two elongated permanent magnets may be provided in the frame body 13 so as to face each other across the base 111 in plan view and to be parallel to each other.
永久磁铁16的磁化方向(延伸方向)相对于X1轴的倾斜角θ没有特别限定,优选为30°以上60°以下,更优选为45°以上60°以下,进一步优选为45°。通过像这样设置永久磁铁16,能够使可动反光镜部11顺利并且可靠地绕X1轴转动。The inclination angle θ of the magnetization direction (extending direction) of the permanent magnet 16 with respect to the X1 axis is not particularly limited, but is preferably 30° to 60°, more preferably 45° to 60°, and still more preferably 45°. By providing the permanent magnet 16 in this way, the movable mirror portion 11 can be smoothly and reliably rotated around the X1 axis.
作为这样的永久磁铁16,例如能够适当使用钕磁铁、铁氧体磁铁、钐钴磁铁、铝镍钴磁铁、粘结磁铁等。这样的永久磁铁16是将硬磁性体磁化而成的,例如通过在将磁化前的硬磁性体设置于框体部13后进行磁化来形成。若欲将已经磁化了的永久磁铁16设置于框体部13,则因外部、其它部件的磁场的影响,有无法将永久磁铁16设置于所希望的位置的情况。As such a permanent magnet 16 , for example, a neodymium magnet, a ferrite magnet, a samarium cobalt magnet, an alnico magnet, a bonded magnet, or the like can be suitably used. Such a permanent magnet 16 is formed by magnetizing a hard magnetic body, and is formed, for example, by placing a hard magnetic body before magnetization on the frame portion 13 and then magnetizing it. If it is desired to install the magnetized permanent magnet 16 on the frame body 13, the permanent magnet 16 may not be installed at a desired position due to the influence of the magnetic field of the outside or other components.
在这样的永久磁铁16的正下方设有线圈17。即,以与框体部13的下表相面对置的方式设有线圈17。由此,能够使从线圈17产生的磁场高效地作用于永久磁铁16。由此,能够实现光扫描部35的省电以及小型化。A coil 17 is provided directly under such a permanent magnet 16 . That is, the coil 17 is provided so as to face the lower surface of the frame body portion 13 . Thereby, the magnetic field generated from the coil 17 can be efficiently acted on the permanent magnet 16 . Accordingly, power saving and downsizing of the optical scanning unit 35 can be achieved.
这样的线圈17与信号叠加部18电连接(参照图7)。Such a coil 17 is electrically connected to a signal superimposing unit 18 (see FIG. 7 ).
而且,通过由信号叠加部18对线圈17施加电压,来从线圈17产生具有与X1轴以及Y1轴正交的磁通的磁场。Then, by applying a voltage to the coil 17 from the signal superimposing unit 18 , a magnetic field having a magnetic flux perpendicular to the X1 axis and the Y1 axis is generated from the coil 17 .
信号叠加部18具有将上述的第一驱动信号V1和第二驱动信号V2叠加的加法器(未图示),并将该叠加后的电压施加于线圈17。The signal superposition unit 18 has an adder (not shown) that superimposes the first drive signal V1 and the second drive signal V2 described above, and applies the superimposed voltage to the coil 17 .
此处,详述第一驱动信号V1以及第二驱动信号V2。Here, the first driving signal V1 and the second driving signal V2 are described in detail.
如上所述,如图5(a)所示,驱动电路321产生以周期T1周期性地变化的第一驱动信号V1(水平扫描用电压)。即,驱动电路321产生第一频率(1/T1)的第一驱动信号V1。As described above, as shown in FIG. 5( a ), the driving circuit 321 generates the first driving signal V1 (horizontal scanning voltage) that changes periodically at the period T1 . That is, the driving circuit 321 generates the first driving signal V1 of the first frequency (1/T1).
第一驱动信号V1形成为正弦波那样的波形。因此,光扫描部35能够有效地对光进行主扫描。此外,第一驱动信号V1的波形不限定于此。The first drive signal V1 has a waveform like a sine wave. Therefore, the light scanning unit 35 can efficiently perform main scanning of light. In addition, the waveform of the first driving signal V1 is not limited thereto.
并且,若第一频率(1/T1)是适于水平扫描的频率,则没有特别限定,但优选为10~40kHz。In addition, the first frequency (1/T1) is not particularly limited as long as it is a frequency suitable for horizontal scanning, but is preferably 10 to 40 kHz.
在本实施方式中,第一频率设定为与由可动反光镜部11以及一对轴部12a、12b构成的第一振动系统(扭转振动系统)的扭转共振频率(f1)相等。也就是说,第一振动系统设计(制造)为其扭转共振频率f1成为适于水平扫描的频率。由此,能够增大可动反光镜部11的绕Y1轴的转动角。In this embodiment, the first frequency is set to be equal to the torsional resonance frequency (f1) of the first vibration system (torsion vibration system) constituted by the movable mirror portion 11 and the pair of shaft portions 12a, 12b. That is, the first vibration system is designed (manufactured) such that the torsional resonance frequency f1 becomes a frequency suitable for horizontal scanning. Accordingly, the rotation angle of the movable mirror portion 11 around the Y1 axis can be increased.
另一方面,如上所述,如图5(b)所示,驱动电路322产生以与周期T1不同的周期T2周期性地变化的第二驱动信号V2(垂直扫描用电压)。即,驱动电路322产生第二频率(1/T2)的第二驱动信号V2。On the other hand, as described above, as shown in FIG. 5( b ), the driving circuit 322 generates the second driving signal V2 (voltage for vertical scanning) that changes periodically at the period T2 different from the period T1 . That is, the driving circuit 322 generates the second driving signal V2 with the second frequency (1/T2).
第二驱动信号V2形成为锯齿形波那样的波形。因此,光扫描部35能够有效地对光进行垂直扫描(副扫描)。此外,第二驱动信号V2的波形不限定于此。The second drive signal V2 has a waveform like a sawtooth wave. Therefore, the light scanning unit 35 can efficiently vertically scan light (sub-scan). In addition, the waveform of the second driving signal V2 is not limited thereto.
若第二频率(1/T2)是与第一频率(1/T1)不同、并且适于垂直扫描的频率,则没有特别限定,但优选为30~80Hz(60Hz左右)。这样,通过将第二驱动信号V2的频率设为60Hz左右,并如上所述地将第一驱动信号V1的频率设为10~40kHz,从而能够以适于显示器上的描绘的频率,使可动反光镜部11绕相互正交的两个轴(X1轴以及Y1轴)分别转动。其中,若能够使可动反光镜部11绕X1轴以及Y1轴分别转动,则第一驱动信号V1的频率与第二驱动信号V2的频率的组合没有特别限定。The second frequency (1/T2) is not particularly limited as long as it is different from the first frequency (1/T1) and suitable for vertical scanning, but is preferably 30 to 80 Hz (about 60 Hz). In this way, by setting the frequency of the second drive signal V2 to about 60 Hz and setting the frequency of the first drive signal V1 to 10 to 40 kHz as described above, the movable The mirror unit 11 rotates about two mutually orthogonal axes (X1 axis and Y1 axis). However, the combination of the frequency of the first drive signal V1 and the frequency of the second drive signal V2 is not particularly limited as long as the movable mirror portion 11 can be rotated around the X1 axis and the Y1 axis respectively.
在本实施方式中,第二驱动信号V2的频率调整为与由可动反光镜部11、一对轴部12a、12b、框体部13、两对轴部14a、14b、14c、14d以及永久磁铁16构成的第二振动系统(扭转振动系统)的扭转共振频率(共振频率)不同的频率。In the present embodiment, the frequency of the second drive signal V2 is adjusted to be consistent with the frequency of the movable mirror part 11, the pair of shaft parts 12a, 12b, the frame part 13, the two pairs of shaft parts 14a, 14b, 14c, 14d, and the permanent mirror part 11. The torsional resonance frequency (resonance frequency) of the second vibration system (torsional vibration system) constituted by the magnet 16 is different in frequency.
这样的第二驱动信号V2的频率(第二频率)优选比第一驱动信号V1的频率(第一频率)小。即,周期T2优选比周期T1长。由此,能够更加可靠并且更加顺利地使可动反光镜部11以第一频率绕Y1轴转动,并以第二频率绕X1轴转动。The frequency (second frequency) of such a second drive signal V2 is preferably smaller than the frequency (first frequency) of the first drive signal V1. That is, the period T2 is preferably longer than the period T1. Accordingly, the movable mirror portion 11 can be rotated around the Y1 axis at the first frequency and rotated around the X1 axis at the second frequency more reliably and smoothly.
并且,当将第一振动系统的扭转共振频率设为f1[Hz]、并将第二振动系统的扭转共振频率设为f2[Hz]时,f1和f2优选满足f2<f1的关系,更优选满足f1≥10f2的关系。由此,能够更加顺利地使可动反光镜部11以第一驱动信号V1的频率绕Y1轴转动,并且以第二驱动信号V2的频率绕X1轴转动。与此相对,在f1≤f2的情况下,有因第二频率而引起第一振动系统的振动的可能性。And, when the torsional resonance frequency of the first vibration system is set to f1 [Hz], and the torsional resonance frequency of the second vibration system is set to f2 [Hz], f1 and f2 preferably satisfy the relationship of f2<f1, more preferably Satisfy the relationship of f1≥10f2. Accordingly, the movable mirror portion 11 can be rotated around the Y1 axis at the frequency of the first drive signal V1 and around the X1 axis at the frequency of the second drive signal V2 more smoothly. On the other hand, in the case of f1≦f2, there is a possibility that the first vibration system may vibrate due to the second frequency.
接下来,对光扫描部35的驱动方法进行说明。此外,在本实施方式中,如上所述,第一驱动信号V1的频率设定为与第一振动系统的扭转共振频率相等,第二驱动信号V2的频率设定为与第二振动系统的扭转共振频率不同的值,并且设定为比第一驱动信号V1的频率小(例如,第一驱动信号V1的频率设定为18kHz,第二驱动信号V2的频率设定为60HZ)。Next, a method of driving the optical scanning unit 35 will be described. In addition, in this embodiment, as described above, the frequency of the first drive signal V1 is set to be equal to the torsional resonance frequency of the first vibration system, and the frequency of the second drive signal V2 is set to be equal to the torsional resonance frequency of the second vibration system. The resonant frequency is different and set to be lower than the frequency of the first drive signal V1 (for example, the frequency of the first drive signal V1 is set to 18 kHz, and the frequency of the second drive signal V2 is set to 60 Hz).
例如,在信号叠加部18将图5(a)所示的第一驱动信号V1和图5(b)所示的第二驱动信号V2叠加,并将叠加后的电压施加于线圈17。For example, the first drive signal V1 shown in FIG. 5(a) and the second drive signal V2 shown in FIG.
这样,通过第一驱动信号V1来交替地切换欲将永久磁铁16的一端部(N极)拉近线圈17并且欲使永久磁铁16的另一端部(S极)远离线圈17的磁场(将该磁场称作“磁场A1”)、和欲使永久磁铁16的一端部(N极)远离线圈17并且欲将永久磁铁16的另一端部(S极)拉近线圈17的磁场(将该磁场称作“磁场A2”)。In this way, the magnetic field that intends to draw one end (N pole) of the permanent magnet 16 closer to the coil 17 and to make the other end (S pole) of the permanent magnet 16 away from the coil 17 is alternately switched by the first drive signal V1 (the The magnetic field is referred to as "magnetic field A1"), and the magnetic field intended to keep one end (N pole) of the permanent magnet 16 away from the coil 17 and to draw the other end (S pole) of the permanent magnet 16 closer to the coil 17 (this magnetic field is called as "magnetic field A2").
此处,如上所述,永久磁铁16配置为,各个端部(磁极)位于由Y1轴分割的两个区域。即,在图6的俯视的情况下,隔着Y1轴而在一侧存在永久磁铁16的N极,并在另一侧存在永久磁铁16的S极。因此,通过交替地切换磁场A1和磁场A2,来在框体部13激励具有绕Y1轴的扭转振动成分的振动,随着该振动,使轴部12a、12b扭转变形,并且可动反光镜部11以第一驱动信号V1的频率绕Y1轴转动。Here, as described above, the permanent magnet 16 is arranged such that each end (magnetic pole) is located in two regions divided by the Y1 axis. That is, in the plan view of FIG. 6 , the N pole of the permanent magnet 16 exists on one side and the S pole of the permanent magnet 16 exists on the other side across the Y1 axis. Therefore, by alternately switching the magnetic field A1 and the magnetic field A2, vibration having a torsional vibration component around the Y1 axis is excited in the frame portion 13, and the shaft portions 12a, 12b are torsionally deformed along with the vibration, and the movable mirror portion 11 rotates around the Y1 axis at the frequency of the first driving signal V1.
并且,第一驱动信号V1的频率与第一振动系统的扭转共振频率相等。因此,通过第一驱动信号V1,能够有效地使可动反光镜部11绕Y1轴转动。即,即使上述的框体部13的具有绕Y1轴的扭转振动成分的振动较小,也能够增大随着该振动而产生的可动反光镜部11的绕Y1轴的转动角。Moreover, the frequency of the first driving signal V1 is equal to the torsional resonance frequency of the first vibration system. Therefore, the movable mirror portion 11 can be effectively rotated around the Y1 axis by the first drive signal V1. That is, even if the above-mentioned vibration of the frame portion 13 having a torsional vibration component around the Y1 axis is small, the rotation angle of the movable mirror portion 11 around the Y1 axis due to the vibration can be increased.
另一方面,通过第二驱动信号V2来交替地切换欲将永久磁铁16的一端部(N极)拉近线圈17并且欲使永久磁铁16的另一端部(S极)远离线圈17的磁场(将该磁场称作“磁场B1”)、和欲使永久磁铁16的一端部(N极)远离线圈17并且欲将永久磁铁16的另一端部(S极)拉近线圈17的磁场(将该磁场称作“磁场B2”)。On the other hand, the magnetic field that intends to draw one end (N pole) of the permanent magnet 16 closer to the coil 17 and to make the other end (S pole) of the permanent magnet 16 away from the coil 17 is alternately switched by the second drive signal V2 ( This magnetic field is referred to as "magnetic field B1"), and a magnetic field intended to keep one end (N pole) of the permanent magnet 16 away from the coil 17 and to draw the other end (S pole) of the permanent magnet 16 closer to the coil 17 (the The magnetic field is referred to as "magnetic field B2").
此处,如上所述,永久磁铁16配置为,各个端部(磁极)位于由X1轴分割的两个区域。即、在图6的俯视的情况下,隔着X1轴而在一侧存在永久磁铁16的N极,并在另一侧存在永久磁铁16的S极。因此,通过交替地切换磁场B1和磁场B2,使轴部14a、14b以及轴部14c、14d分别扭转变形,并且框体部13和可动反光镜部11一起以第二驱动信号V2的频率绕X1轴转动。Here, as described above, the permanent magnet 16 is arranged such that each end (magnetic pole) is located in two regions divided by the X1 axis. That is, in the plan view of FIG. 6 , the N pole of the permanent magnet 16 exists on one side and the S pole of the permanent magnet 16 exists on the other side across the X1 axis. Therefore, by alternately switching the magnetic field B1 and the magnetic field B2, the shaft portions 14a, 14b and the shaft portions 14c, 14d are respectively twisted and deformed, and the frame body portion 13 and the movable mirror portion 11 rotate together at the frequency of the second drive signal V2. The X1 axis rotates.
并且,第二驱动信号V2的频率设定为与第一驱动信号V1的频率相比极低。并且,第二振动系统的扭转共振频率设定为比第一振动系统的扭转共振频率低。因此,能够防止可动反光镜部11以第二驱动信号V2的频率绕Y1轴转动。Also, the frequency of the second drive signal V2 is set to be extremely lower than the frequency of the first drive signal V1. Also, the torsional resonance frequency of the second vibration system is set lower than the torsional resonance frequency of the first vibration system. Therefore, it is possible to prevent the movable mirror portion 11 from rotating around the Y1 axis at the frequency of the second drive signal V2.
根据以上说明的光扫描部35,由于使具有有光反射性的光反射部114的可动反光镜部11绕相互正交的两个轴分别摆动,所以能够实现光扫描部35的小型化以及轻型化。结果,能够成为对于观察者而言使用便利性更加优异的虚像显示装置1。According to the light scanning section 35 described above, since the movable mirror section 11 having the light reflective light reflection section 114 is swung around two axes perpendicular to each other, the miniaturization of the light scanning section 35 and lightweight. As a result, it is possible to provide the virtual image display device 1 with more excellent usability for the observer.
特别是由于光扫描部35具有万向构造,所以能够使2维地扫描影像光的结构(光扫描部35)更加小型。In particular, since the light scanning unit 35 has a gimbal structure, the structure (the light scanning unit 35 ) that scans image light two-dimensionally can be made smaller.
放大光学系统4Magnification Optical System 4
如图3所示,由上述的光扫描部35扫描后的扫描光(影像光)L2向放大光学系统4传送。As shown in FIG. 3 , the scanning light (image light) L2 scanned by the above-mentioned light scanning unit 35 is transmitted to the enlarging optical system 4 .
放大光学系统4具有放大由光扫描部35扫描后的影像光L2的光束宽度的、即放大影像光L2的截面积的功能。The enlarging optical system 4 has a function of enlarging the beam width of the image light L2 scanned by the light scanning unit 35 , that is, enlarging the cross-sectional area of the image light L2 .
如图3所示,该放大光学系统4具备光学元件5、修正透镜42、以及遮光板43。As shown in FIG. 3 , the magnifying optical system 4 includes an optical element 5 , a correction lens 42 , and a light shielding plate 43 .
以下,依次详细地对这样的放大光学系统4的各部进行说明。Hereinafter, each part of such an enlarging optical system 4 will be described in detail sequentially.
光学元件5Optics 5
如图3所示,光学元件5在光扫描部35的附近设置,具有光透过性(透光性),并形成为沿着Z轴方向的长条状。As shown in FIG. 3 , the optical element 5 is provided near the optical scanning unit 35 , has light transmittance (light transmission), and is formed in an elongated shape along the Z-axis direction.
由上述的光扫描部35扫描后的影像光L2向光学元件5入射。The image light L2 scanned by the above-mentioned light scanning unit 35 enters the optical element 5 .
该光学元件5对由光扫描部35扫描后的影像光L2的光束宽度(截面积)进行放大。具体而言,光学元件5使由光扫描部35扫描后的影像光L2一边在光学元件5内部多重反射,一边在Z方向上进行传播,从而放大影像光L2的光束宽度,并且射出与影像光L2相比光束宽度较大的影像光L3、L4。The optical element 5 amplifies the beam width (cross-sectional area) of the image light L2 scanned by the optical scanning unit 35 . Specifically, the optical element 5 propagates the image light L2 scanned by the optical scanning unit 35 in the Z direction while multiple reflections inside the optical element 5, thereby enlarging the beam width of the image light L2, and emitting the same image light L2. Image light L3 and L4 having a larger beam width than L2.
如图8所示,光学元件5在其长度方向(Z轴方向)的一端具有入射面56和射出面57,它们(入射面56以及射出面57)对置。并且,光学元件5具有在其厚度方向(X轴方向)上对置的侧面58a、58b和在宽度方向(Y轴方向)上对置的侧面59a、59b。As shown in FIG. 8 , the optical element 5 has an incident surface 56 and an output surface 57 at one end in the longitudinal direction (Z-axis direction), and these (incident surface 56 and output surface 57 ) face each other. Further, the optical element 5 has side surfaces 58a, 58b facing in the thickness direction (X-axis direction) and side surfaces 59a, 59b facing in the width direction (Y-axis direction).
并且,入射面56设为与光扫描部35相面对,射出面57设为与修正透镜42以及遮光板43侧相面对(参照图3)。Furthermore, the incident surface 56 is set to face the light scanning unit 35 , and the output surface 57 is set to face the side of the correction lens 42 and the light shielding plate 43 (see FIG. 3 ).
入射面56是具有光透过性的面,且是由光扫描部35扫描后的影像光L2入射的面。另一方面,射出面57是具有光透过性的面,且是从入射面56入射的影像光L2作为影像光L3、L4而射出的面。The incident surface 56 is a surface having light transmittance, and is a surface on which the image light L2 scanned by the light scanning unit 35 enters. On the other hand, the output surface 57 is a surface having light transparency, and is a surface from which the video light L2 incident from the incident surface 56 is emitted as the video lights L3 and L4.
并且,侧面58a、58b分别是全反射面,使向光学元件5内入射的影像光L2全反射。此处,全反射面不仅是透光率为0%的面,还包括稍微透过光的面,例如包括透光率不足3%的面。In addition, the side surfaces 58 a and 58 b are total reflection surfaces, respectively, and totally reflect the image light L2 incident into the optical element 5 . Here, the total reflection surface includes not only a surface having a light transmittance of 0%, but also a surface slightly transmitting light, for example, a surface having a light transmittance of less than 3%.
并且,侧面59a和侧面59b也可以是任何透光率的面,例如也可以是全反射面、半反射面,但特别优选是透光率比较低的面。由此,能够防止光学元件5内的光成为杂散光。并且,作为防止光学元件5内的光成为杂散光的方法,例如可以举出使侧面59a和侧面59b粗糙的方法等。Furthermore, the side surface 59a and the side surface 59b may be surfaces of any light transmittance, for example, may be a total reflection surface or a semi-reflection surface, but they are particularly preferably surfaces with a relatively low light transmittance. Thereby, it is possible to prevent the light inside the optical element 5 from becoming stray light. Furthermore, as a method of preventing the light in the optical element 5 from becoming stray light, for example, a method of roughening the side surfaces 59 a and 59 b may be mentioned.
并且,如图8所示,入射面56与射出面57平行。并且,侧面58a与侧面58b平行。并且,侧面59a与侧面59b平行。因此,在本实施方式中,光学元件5的整体形状形成为立方体。Furthermore, as shown in FIG. 8 , the incident surface 56 is parallel to the outgoing surface 57 . And, the side surface 58a is parallel to the side surface 58b. And, the side surface 59a is parallel to the side surface 59b. Therefore, in the present embodiment, the overall shape of the optical element 5 is a cube.
此外,上述“平行”除了是完全平行之外,例如还包括各面所成的角度为±2°左右的情况。In addition, the above-mentioned "parallel" includes, for example, the case where the angle formed by each surface is about ±2°, in addition to being completely parallel.
并且,在本实施方式中,入射面56与射出面57平行,但入射面56与射出面57也可以不平行,倾斜角度的绝对值相同即可。“入射面56与射出面57的倾斜角度的绝对值相同”例如包括入射面56在+Z轴方向上相对于XY面以锐角α(例如,+20°)倾斜、射出面57在-Z轴方向上相对于XY面以锐角α(例如,-20°)倾斜的状态。即,包括如图21所示地由入射面56和射出面57构成“ハ”字状(附图)。并且,上述“倾斜角度的绝对值相同”除了倾斜角度的绝对值完全相同之外,例如还包括这样的绝对值相差2°左右的情况。Moreover, in this embodiment, the incident surface 56 and the emission surface 57 are parallel, but the incident surface 56 and the emission surface 57 may not be parallel, and the absolute value of the inclination angle should just be the same. "The absolute values of the inclination angles of the incident surface 56 and the exit surface 57 are the same" include, for example, that the incident surface 56 is inclined at an acute angle α (for example, +20°) relative to the XY plane in the +Z axis direction, and the exit surface 57 is inclined at the -Z axis. A state in which the direction is inclined at an acute angle α (for example, -20°) with respect to the XY plane. That is, it includes a "H" shape formed by the incident surface 56 and the outgoing surface 57 as shown in FIG. 21 (drawing). In addition, the above-mentioned "the absolute values of the inclination angles are the same" includes, for example, a case where the absolute values of the inclination angles differ by about 2° in addition to the absolute values of the inclination angles being completely the same.
并且,在本实施方式中,侧面59a与侧面59b平行,但入射面56与射出面57也可以不平行,倾斜角度也可以不同。Moreover, in this embodiment, the side surface 59a and the side surface 59b are parallel, but the incident surface 56 and the emission surface 57 may not be parallel, and the inclination angle may differ.
并且,光学元件5的厚度(X轴方向上的长度)例如优选为0.1mm以上100mm以下,更优选为0.3mm以上50mm以下。由此,能够实现光学元件5的小型化,并且能够较大地放大从射出面57射出的影像光L3。In addition, the thickness (length in the X-axis direction) of the optical element 5 is, for example, preferably from 0.1 mm to 100 mm, more preferably from 0.3 mm to 50 mm. Accordingly, the size of the optical element 5 can be reduced, and the video light L3 emitted from the emission surface 57 can be greatly enlarged.
光学元件5的长度(Z轴方向上的长度)没有特别限定,但例如优选为1mm以上50mm以下,更优选为5mm以上30mm以下。由此,能够实现光学元件5的小型化,并且能够使影像光L2在光学元件5的内部充分地多重反射,从而能够进一步提高从射出面57射出的影像光L3的强度分布的均匀性。The length (the length in the Z-axis direction) of the optical element 5 is not particularly limited, but is, for example, preferably from 1 mm to 50 mm, and more preferably from 5 mm to 30 mm. Thus, the size of the optical element 5 can be reduced, and the image light L2 can be sufficiently multiple-reflected inside the optical element 5 , thereby further improving the uniformity of the intensity distribution of the image light L3 emitted from the emission surface 57 .
光学元件5的宽度(Y轴方向上的长度)例如优选为0.1mm以上100mm以下,更优选为0.3mm以上50mm以下。由此,能够实现光学元件5的小型化,并且能够较大地放大从射出面57射出的影像光L3。The width (length in the Y-axis direction) of the optical element 5 is, for example, preferably from 0.1 mm to 100 mm, more preferably from 0.3 mm to 50 mm. Accordingly, the size of the optical element 5 can be reduced, and the video light L3 emitted from the emission surface 57 can be greatly enlarged.
如图8所示,这样的结构的光学元件5具有对影像光L2进行导向的导光部(第一导光部)51、导光部(第二导光部)52及导光部(第三导光部)53、半反光镜层(第一光分支层)54、半反光镜层(第二光分支层)55。As shown in FIG. 8 , the optical element 5 having such a structure has a light guide portion (first light guide portion) 51 for guiding image light L2, a light guide portion (second light guide portion) 52, and a light guide portion (second light guide portion). Three light guides) 53, a half mirror layer (first light branching layer) 54, and a half mirror layer (second light branching layer) 55.
该光学元件5的导光部51、半反光镜层54、导光部52、半反光镜层55、导光部53依次沿各厚度方向(X轴方向)层叠。即,光学元件5是导光部51、52、53经由半反光镜层54、55沿各厚度方向(第一方向)排列的1维阵列。The light guide part 51, the half mirror layer 54, the light guide part 52, the half mirror layer 55, and the light guide part 53 of this optical element 5 are laminated|stacked sequentially along each thickness direction (X-axis direction). That is, the optical element 5 is a one-dimensional array in which light guides 51 , 52 , and 53 are arranged in each thickness direction (first direction) via half mirror layers 54 , 55 .
导光部51、52、53分别是形成为板状的光管,具有在+Z方向上对从入射面56入射的影像光L2(由光扫描部35扫描后的影像光)进行传播的功能。The light guides 51 , 52 , and 53 are plate-shaped light pipes, and have a function of propagating the image light L2 (image light scanned by the light scanning unit 35 ) incident from the incident surface 56 in the +Z direction. .
此外,如图8(a)、图8(b)所示,导光部51、52、53的剖面形状(XY平面的剖面形状)形成为长方形,但导光部51、52、53的剖面形状(XY平面的剖面形状)并不限定于此,也可以是正方形等四边形状、其它多边形状等。In addition, as shown in FIG. 8(a) and FIG. 8(b), the cross-sectional shape (cross-sectional shape of the XY plane) of the light guides 51, 52, and 53 is formed as a rectangle, but the cross-sectional shapes of the light guides 51, 52, and 53 The shape (cross-sectional shape in the XY plane) is not limited thereto, and may be a quadrilateral shape such as a square, other polygonal shapes, or the like.
并且,各导光部51、52、53的厚度没有特别限定,但在本实施方式中,构成为比向入射面56入射的影像光L2的直径(光束宽度的直径)小(参照图9)。换言之,沿着各导光部51、52、53的排列方向的各导光部51、52、53在入射面56上的宽度比沿着各导光部51、52、53的排列方向的影像光L2在入射面56上的宽度小。由此,能够横跨多个导光部(在本实施方式中,导光部51、52、53)地使影像光L2入射,从而能够进一步提高从射出面57射出的影像光L3、L4的强度分布的均匀性。为了得到这样的效果,各导光部51、52、53的厚度例如优选为0.01mm以上10mm以下,更优选为0.01mm以上5mm以下。In addition, the thickness of each light guide part 51, 52, 53 is not particularly limited, but in this embodiment, it is configured to be smaller than the diameter (beam width diameter) of the image light L2 incident on the incident surface 56 (see FIG. 9 ). . In other words, the width of each light guide portion 51 , 52 , 53 on the incident surface 56 along the alignment direction of each light guide portion 51 , 52 , 53 is larger than the image along the alignment direction of each light guide portion 51 , 52 , 53 . The width of the light L2 on the incident surface 56 is small. As a result, the image light L2 can be made incident across the plurality of light guides (light guides 51, 52, 53 in this embodiment), and the ratio of the image lights L3, L4 emitted from the emission surface 57 can be further improved. Uniformity of intensity distribution. In order to obtain such an effect, the thickness of each of the light guide parts 51 , 52 , and 53 is, for example, preferably from 0.01 mm to 10 mm, more preferably from 0.01 mm to 5 mm.
此外,在本实施方式中,导光部51、52、53的厚度构成为比影像光L2的直径(光束宽度的直径)小,但导光部51、52、53的厚度也可以设定为比影像光L2的直径大。In addition, in the present embodiment, the thickness of the light guides 51, 52, 53 is configured to be smaller than the diameter of the video light L2 (the diameter of the beam width), but the thicknesses of the light guides 51, 52, 53 may be set to It is larger than the diameter of the image light L2.
并且,导光部51、52、53具有光透过性即可,例如,由丙烯酸树脂、聚碳酸酯树脂等各种树脂材料、各种玻璃等构成。In addition, the light guide parts 51 , 52 , and 53 only need to have light transmittance, and are made of, for example, various resin materials such as acrylic resin and polycarbonate resin, various types of glass, and the like.
半反光镜层54、55例如由具有光透过性的反射膜、即半透过反射膜构成。该半反光镜层54、55具有使影像光L2的一部分反射、并且使一部分透过的功能。该半反光镜层54、55例如由银(Ag)、铝(Al)等的金属反射膜、电介质多层膜等半透过反射膜构成。The half mirror layers 54 and 55 are composed of, for example, a light-transmitting reflective film, that is, a semi-transmissive reflective film. The half mirror layers 54 and 55 have a function of reflecting a part of the image light L2 and transmitting a part thereof. The half mirror layers 54 and 55 are formed of, for example, metal reflective films such as silver (Ag) and aluminum (Al), or semi-transmissive reflective films such as dielectric multilayer films.
这样的结构的光学元件5例如能够通过对在主面上形成有能够成为半反光镜层54、55的薄膜的导光部51、导光部52、以及导光部53进行表面活性化接合来得到。通过利用表面活性化接合制造光学元件5,能够提高各部(导光部51、52、53)的平行度。The optical element 5 having such a structure can be formed, for example, by surface-activated bonding of the light guide part 51, the light guide part 52, and the light guide part 53 on which thin films that can become the half-mirror layers 54 and 55 are formed on the main surface. get. By manufacturing the optical element 5 by surface-activated bonding, the parallelism of each part (light guide part 51, 52, 53) can be improved.
如图9所示,以上结构的光学元件5将由光扫描部35扫描后的影像光L2从入射面56入射,在光学元件5的内部使之多重反射,并作为光束宽度放大了的状态的影像光L3、L4从射出面57射出。这样,对于由光学元件5放大影像光L2的光束宽度(截面积)而言,基于图9以及图10对光学元件5的内部的影像光L2的光路进行说明,并且以下进行详述。此外,图10中,仅以影像光L2的主光线为代表进行了图示。As shown in FIG. 9 , in the optical element 5 having the above configuration, the image light L2 scanned by the optical scanning unit 35 enters from the incident surface 56, and is multiple-reflected inside the optical element 5 to form an image in a state in which the beam width is enlarged. The lights L3 and L4 are emitted from the emission surface 57 . In this way, the optical path of the image light L2 inside the optical element 5 for enlarging the beam width (cross-sectional area) of the image light L2 by the optical element 5 will be described based on FIGS. 9 and 10 , and will be described in detail below. In addition, in FIG. 10 , only the chief ray of the image light L2 is shown as a representative.
首先,如图10所示,由光扫描部35扫描后的影像光L2从入射面56向光学元件5内入射。此时,影像光L2以相对于与侧面58a及侧面58b平行的轴线X倾斜角度θ5的状态入射。若如图10(a)所示,入射的影像光L2在导光部52内前进,到达半反光镜层54,则影像光L2的一部分透过半反光镜层54,剩余被半反光镜层54反射。First, as shown in FIG. 10 , the image light L2 scanned by the optical scanning unit 35 enters the optical element 5 from the incident surface 56 . At this time, the image light L2 enters in a state inclined by an angle θ5 with respect to the axis X parallel to the side surface 58 a and the side surface 58 b. If, as shown in FIG. 10( a), the incident image light L2 advances in the light guide portion 52 and reaches the half mirror layer 54, then a part of the image light L2 passes through the half mirror layer 54, and the rest is reflected by the half mirror layer 54. reflection.
透过半反光镜层54后的影像光L21在导光部51内前进,并被侧面58a全反射。另一方面,由半反光镜层54反射后的影像光L22在导光部52内前进,到达半反光镜层55。此处,并且到达半反光镜层55后的影像光L22如图10(b)所示地其一部分透过半反光镜层55,剩余被半反光镜层55反射。如图10(b)所示,透过半反光镜层55后的影像光L22被侧面58b全反射。The image light L21 transmitted through the half mirror layer 54 advances in the light guide portion 51 and is totally reflected by the side surface 58 a. On the other hand, the image light L22 reflected by the half mirror layer 54 advances in the light guide portion 52 and reaches the half mirror layer 55 . Here, part of the image light L22 that has reached the half mirror layer 55 passes through the half mirror layer 55 as shown in FIG. 10( b ), and the rest is reflected by the half mirror layer 55 . As shown in FIG. 10( b ), the image light L22 transmitted through the half mirror layer 55 is totally reflected by the side surface 58 b.
这样,被引导至光学元件5内的影像光L2在侧面58a、58b中反复进行全反射,并且在半反光镜层54、55中反复进行反射和透过。即,如图9所示,被引导至光学元件5内的影像光L2在光学元件5的内部多重反射。In this way, the image light L2 guided into the optical element 5 repeats total reflection on the side surfaces 58 a and 58 b , and repeats reflection and transmission on the half mirror layers 54 and 55 . That is, as shown in FIG. 9 , the image light L2 guided into the optical element 5 is multiple-reflected inside the optical element 5 .
而且,影像光L2在光学元件5的内部多重反射的结果,反复进行了多重反射的光成分重叠,从而光束宽度放大了的影像光L3以及L4从射出面57射出。Then, as a result of multiple reflections of the video light L2 inside the optical element 5 , the light components repeatedly undergoing multiple reflections overlap, and the video lights L3 and L4 with enlarged beam widths are emitted from the emission surface 57 .
此处,如上所述,入射面56与射出面57平行。因此,能够使向入射面56入射的影像光L2的折射的量与从射出面57射出的影像光L3、L4的折射的量相同。即,能够使影像光L2向半反光镜层54、55入射的角度θ5与影像光L3以及L4从半反光镜层54、55射出的角度θ5相同。由此,能够防止由折射的法则的三角函数引起的形变、由材料的折射率的波长分散引起的色差的产生。Here, as described above, the incident surface 56 is parallel to the outgoing surface 57 . Therefore, the amount of refraction of the image light L2 incident on the incident surface 56 can be made the same as the amount of refraction of the image light L3 and L4 emitted from the output surface 57 . That is, the angle θ5 at which the image light L2 enters the half mirror layers 54 and 55 can be made the same as the angle θ5 at which the image lights L3 and L4 are emitted from the half mirror layers 54 and 55 . Thereby, it is possible to prevent deformation caused by the trigonometric function of the law of refraction and occurrence of chromatic aberration caused by the wavelength dispersion of the refractive index of the material.
此外,在本实施方式中,入射面56与射出面57相互平行,但如上所述,若入射面56与射出面57的倾斜角度的绝对值相同,则影像光L2的入射角与影像光L3的射出角的绝对值能够相同。因此,若入射面56与射出面57的倾斜角度的绝对值相同,则能够得到上述的效果。In addition, in this embodiment, the incident surface 56 and the exit surface 57 are parallel to each other, but as described above, if the absolute values of the inclination angles of the incident surface 56 and the exit surface 57 are the same, then the incident angle of the image light L2 is the same as that of the image light L3. The absolute values of the emission angles can be the same. Therefore, if the absolute values of the inclination angles of the incidence surface 56 and the emission surface 57 are the same, the above-mentioned effect can be obtained.
并且,本实施方式的光学元件5是导光部51、52、53沿厚度方向(第一方向)排列的1维阵列(第一1维阵列)。这样,利用经由硬涂层54、55层叠导光部51、52、53这样的比较简单的结构,能够使从入射面56入射的影像光L2在光学元件5内多重反射。因此,即使不使用使影像光与观察者的视线、观察者的左右的眼睛EY的位置一致那样的位置检测机构等,利用本实施方式那样的比较简单的结构,也能够放大影像光L2的光束宽度。Furthermore, the optical element 5 of the present embodiment is a one-dimensional array (first one-dimensional array) in which the light guides 51 , 52 , and 53 are arranged in the thickness direction (first direction). In this way, with a relatively simple structure in which the light guide portions 51 , 52 , and 53 are laminated via the hard coat layers 54 , 55 , the image light L2 incident from the incident surface 56 can be multiple-reflected in the optical element 5 . Therefore, even without using a position detection mechanism for aligning the image light with the line of sight of the observer or the positions of the observer's left and right eyes EY, it is possible to amplify the beam of the image light L2 with a relatively simple configuration as in this embodiment. width.
并且,如图3所示,光学元件5配置为,在安装于观察者的头部H的状态下,从反射部6在包括与观察者的左眼EY和右眼EY所排列的方向(X轴方向)平行的轴线W(参照图1、图3)的面内方向(XZ面内方向)上,射出影像光L3以及L4的主光线。换言之,光学元件5配置为在轴线W方向上放大影像光L3的截面积。并且,修正透镜42以及遮光板43沿轴线W排列。因此,从射出面57射出的影像光L3经由修正透镜42朝向反射部6射出,从射出面57射出的影像光L4朝向遮光板43射出。这样,通过将光学元件5配置为在轴线W方向上放大影像光L3的截面积,从而能够将经由修正透镜42以及反射部6而被引导至观察者的眼睛的影像光L3在眼睛的左右方向上放大。由此,能够在相对于眼睛的上下方向而移动范围较大的左右方向上提高辨识性。And, as shown in FIG. 3 , the optical element 5 is arranged so that, in the state mounted on the head H of the observer, the optical element 5 is disposed from the reflector 6 in a direction (X In the in-plane direction (XZ in-plane direction) parallel to the axis W (see FIG. 1 and FIG. 3 ), the chief rays of the video light L3 and L4 are emitted. In other words, the optical element 5 is configured to enlarge the cross-sectional area of the image light L3 in the axis W direction. Furthermore, the correction lens 42 and the visor 43 are arranged along the axis W. As shown in FIG. Therefore, the image light L3 emitted from the emission surface 57 is emitted toward the reflector 6 via the correction lens 42 , and the image light L4 emitted from the emission surface 57 is emitted toward the light shielding plate 43 . Thus, by arranging the optical element 5 so as to enlarge the cross-sectional area of the video light L3 in the direction of the axis W, the video light L3 guided to the observer's eyes via the correction lens 42 and the reflector 6 can be directed to the left and right of the eyes. to zoom in. Thereby, visibility can be improved in the left-right direction in which the movement range is large with respect to the up-down direction of eyes.
修正透镜correction lens
如图3所示,从光学元件5射出的影像光L3向修正透镜42入射。As shown in FIG. 3 , the image light L3 emitted from the optical element 5 enters the correction lens 42 .
该修正透镜42具有利用后述的反射部6所具备的非球面反光镜61来对影像光L3的平行性紊乱进行修正的功能。由此,能够提高影像光L3的分辨率性能。作为这样的修正透镜42,例如可以举出环面透镜、柱面透镜、自由曲面透镜等。The correction lens 42 has a function of correcting the parallelism disturbance of the image light L3 by using the aspheric mirror 61 included in the reflector 6 described later. Thereby, the resolution performance of the image light L3 can be improved. As such a correction lens 42, a toric lens, a cylindrical lens, a free-form surface lens, etc. are mentioned, for example.
遮光板visor
从光学元件5射出的影像光L4向遮光板43入射。The image light L4 emitted from the optical element 5 enters the light shielding plate 43 .
该遮光板43由吸收光的光吸收部件构成,是遮挡光的遮光机构。由此,从光学元件5射出的影像光L4作为无用光而被遮挡。The light-shielding plate 43 is constituted by a light-absorbing member that absorbs light, and is a light-shielding mechanism that blocks light. Accordingly, the image light L4 emitted from the optical element 5 is blocked as unnecessary light.
这样的遮光板43例如由不锈钢、铝合金等形成。Such a light shielding plate 43 is formed of, for example, stainless steel, aluminum alloy, or the like.
此外,在本实施方式中,作为遮挡影像光L4的遮光机构,使用了遮光板43,但作为遮挡影像光L4的遮光机构,并不限定于此,只要是防止影像光L4成为杂散光的机构即可。例如,作为遮光机构,也可以不使用遮光板43,而是通过在框架2的周边部分涂覆涂料等来遮挡影像光L4的结构。In addition, in this embodiment, the light-shielding plate 43 is used as the light-shielding means for blocking the image light L4, but the light-shielding means for blocking the image light L4 is not limited thereto, as long as it is a mechanism for preventing the image light L4 from becoming stray light. That's it. For example, instead of using the light shielding plate 43 as the light shielding means, a structure may be employed in which the image light L4 is shielded by coating the peripheral portion of the frame 2 with paint or the like.
由以上结构的放大光学系统4放大了光束宽度的影像光L3如图3所示地经由修正透镜42向反射部6入射。The image light L3 whose beam width has been enlarged by the magnifying optical system 4 having the above configuration is incident on the reflection unit 6 via the correction lens 42 as shown in FIG. 3 .
反射部reflector
反射部6设置在前部21的背阴部212,并配置为在使用时位于观察者的左眼EY的前方。该反射部6具有足以覆盖观察者的眼睛EY的大小,并具有使来自光学元件5的影像光L3朝向观察者的眼睛EY入射的功能。The reflection part 6 is provided in the shady part 212 of the front part 21, and is arrange|positioned so that it may be located in front of the observer's left eye EY at the time of use. The reflector 6 has a size sufficient to cover the observer's eyes EY, and has a function of making the image light L3 from the optical element 5 enter toward the observer's eyes EY.
反射部6具有包括光偏转部65的非球面反光镜61。The reflection section 6 has an aspheric mirror 61 including a light deflection section 65 .
非球面反光镜61是在由可视范围内呈现较高的透光性(光透过性)的树脂材料等形成的基材上制成有半透过反射膜的透光性部件。即,非球面反光镜61是半反光镜,也具有使外部光线透过的功能(相对于可见光的透光性)。因此,具备非球面反光镜61的反射部6具有使从光学元件5射出的影像光L3反射、并且在使用时使从反射部6的外侧朝向观察者的眼睛EY的外部光线透过的功能。由此,观察者能够一边辨识外部图像,一边辨识由影像光L5形成的虚像(图像)。即,能够实现透视型头戴式显示器。The aspheric mirror 61 is a light-transmitting member formed of a base material such as a resin material exhibiting high light-transmittance (light-transmittance) in the visible range, and a semi-transparent reflective film formed thereon. That is, the aspheric mirror 61 is a half mirror, and also has a function of transmitting external light (translucency with respect to visible light). Therefore, the reflector 6 including the aspheric mirror 61 has the function of reflecting the image light L3 emitted from the optical element 5 and transmitting external light from the outside of the reflector 6 toward the observer's eye EY during use. Accordingly, the observer can recognize the virtual image (image) formed by the image light L5 while recognizing the external image. That is, a see-through head-mounted display can be realized.
这样的非球面反光镜61形成为沿框架2的前部21的弯曲而弯曲的形状,在使用时凹面611位于观察者侧。由此,能够使由非球面反光镜61反射后的影像光L5朝向观察者的眼睛EY高效地聚光。Such an aspheric mirror 61 is formed in a shape curved along the curvature of the front portion 21 of the frame 2, and the concave surface 611 is located on the viewer's side in use. Thereby, the image light L5 reflected by the aspheric mirror 61 can be efficiently focused toward the observer's eyes EY.
并且,在凹面611上设有光偏转部65。光偏转部65具有使从光学元件5的射出面57射出的影像光L3向观察者的眼睛EY的方向偏转的功能。Furthermore, the light deflection unit 65 is provided on the concave surface 611 . The light deflection unit 65 has a function of deflecting the image light L3 emitted from the emission surface 57 of the optical element 5 toward the observer's eye EY.
在本实施方式中,这样的光偏转部65由作为衍射光栅的一种的全息元件651构成。该全息元件651是如下半透过膜,其具有使从光学元件5向全息元件651照射的影像光L3中的特定波段的光衍射、并使除此以外的波段的光透过的性质。In this embodiment, such a light deflection unit 65 is constituted by a hologram element 651 which is a type of diffraction grating. The hologram element 651 is a semi-transmissive film having a property of diffracting light of a specific wavelength band and transmitting light of other wavelength bands among image light L3 irradiated from the optical element 5 to the hologram element 651 .
通过使用这样的全息元件651,对于特定的波段的影像光而言,利用衍射调整被引导至观察者的眼睛的影像光的角度、光束状态,从而能够形成虚像。具体而言,由非球面反光镜61反射后的影像光L3向外部射出,通过全息元件651作为影像光L5而向观察者的左眼EY入射。此外,对于位于右眼EY侧的反射部6也相同。而且,向观察者的左右的眼睛EY分别入射的影像光L5在观察者的视网膜成像。由此,观察者在视场区域内能够对从光学元件5射出的影像光L3所形成的虚像(图像)进行观察。By using such a hologram element 651 , it is possible to form a virtual image by adjusting the angle and beam state of the video light guided to the observer's eyes by diffraction for video light of a specific wavelength band. Specifically, the image light L3 reflected by the aspheric mirror 61 is emitted to the outside, passes through the hologram element 651 , and enters the observer's left eye EY as image light L5 . In addition, the same applies to the reflector 6 positioned on the right eye EY side. Then, the image light L5 incident on each of the left and right eyes EY of the observer forms an image on the retina of the observer. Accordingly, the observer can observe a virtual image (image) formed by the image light L3 emitted from the optical element 5 within the field of view area.
根据以上说明的虚像显示装置1,通过利用放大光学系统4放大由图像生成部3生成的影像光L1,并利用反射部6将其引导至观察者的眼睛EY,观察者能够将由图像生成部3生成的影像光L1识别为在观察者的视场区域形成的虚像。According to the virtual image display device 1 described above, by amplifying the video light L1 generated by the image generating unit 3 by the magnifying optical system 4 and guiding it to the eyes EY of the observer by the reflecting unit 6, the observer can see the image light L1 generated by the image generating unit 3 The generated image light L1 is recognized as a virtual image formed in the viewer's field of view.
第二实施方式second embodiment
接下来对本发明的虚像显示装置的第二实施方式进行说明。Next, a second embodiment of the virtual image display device of the present invention will be described.
图11是示出第二实施方式的虚像显示装置所具备的光学元件的简要结构的图,图11(a)是主视图,图11(b)是俯视图,图11(c)是右视图,图11(d)是左侧图。图12是用于说明向图11所示的光学元件入射的影像光的路径的图。11 is a diagram showing a schematic configuration of optical elements included in the virtual image display device of the second embodiment, FIG. 11( a ) is a front view, FIG. 11( b ) is a top view, and FIG. 11( c ) is a right side view, Fig. 11(d) is a diagram on the left side. FIG. 12 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 11 .
以下,参照该图对本发明的虚像显示装置的第二实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a second embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiment, and descriptions of the same matters will be omitted.
在第二实施方式中,放大光学部的结构不同,除此以外都与上述实施方式相同。The second embodiment is the same as the above-mentioned embodiment except that the structure of the magnifying optical part is different.
如图11所示,光学元件5X具有第一光学元件(光学元件)5A和第二光学元件(光学元件)5B,该两个光学元件5A、5B成为一体。具体而言,光学元件5A、5B分别是与在第一实施方式中使用的光学元件5相同的结构,光学元件5B以使光学元件5A绕Z轴旋转90°后的状态配置。As shown in FIG. 11 , the optical element 5X has a first optical element (optical element) 5A and a second optical element (optical element) 5B, and these two optical elements 5A, 5B are integrated. Specifically, the optical elements 5A and 5B have the same configuration as the optical element 5 used in the first embodiment, and the optical element 5B is arranged in a state where the optical element 5A is rotated by 90° around the Z axis.
以下,详述该光学元件5A。Hereinafter, this optical element 5A will be described in detail.
光学元件5X通过接合光学元件5A的射出面57A和光学元件5B的入射面56B,来使它们(光学元件5A、5B)成为一体。而且,光学元件5A的入射面56A与光学元件5X的入射面对应,光学元件5B的射出面57B与光学元件5X的射出面对应。In the optical element 5X, these (optical elements 5A, 5B) are integrated by joining the output surface 57A of the optical element 5A and the incident surface 56B of the optical element 5B. Furthermore, the incident surface 56A of the optical element 5A corresponds to the incident surface of the optical element 5X, and the output surface 57B of the optical element 5B corresponds to the output surface of the optical element 5X.
并且,光学元件5X与第一实施方式相同,具有在光学元件5X的厚度方向(X轴方向)上对置的侧面58Xa、58Xb、以及在光学元件5X的宽度方向(Y轴方向)上对置的侧面59Xa、59Xb。侧面58Xa、58Xb、59Xa、59Xb全部是全反射面,使向光学元件5X的内部入射的影像光L2全反射。In addition, the optical element 5X has side surfaces 58Xa and 58Xb that face each other in the thickness direction (X-axis direction) of the optical element 5X, and have side surfaces 58Xa and 58Xb that face each other in the width direction (Y-axis direction) of the optical element 5X, as in the first embodiment. The sides 59Xa, 59Xb of the. All of the side surfaces 58Xa, 58Xb, 59Xa, and 59Xb are total reflection surfaces, and totally reflect the image light L2 incident on the inside of the optical element 5X.
并且,光学元件5A是导光部51A、52A、53A经由半反光镜层54A、55A而沿各厚度方向(第一方向)排列的第一1维阵列。并且,光学元件5B是导光部51B、52B、53B经由半反光镜层54B、55B而沿各厚度方向(第二方向)排列的第二1维阵列。这样,光学元件5X具有两个1维阵列。Furthermore, the optical element 5A is a first one-dimensional array in which light guides 51A, 52A, and 53A are arranged in each thickness direction (first direction) via half mirror layers 54A, 55A. Further, the optical element 5B is a second one-dimensional array in which the light guides 51B, 52B, and 53B are arranged in each thickness direction (second direction) via the half mirror layers 54B, 55B. Thus, the optical element 5X has two 1-dimensional arrays.
并且,光学元件5A的导光部51A、52A、53A的并列方向即层叠方向(X轴方向)、与光学元件5B的导光部51B、52B、53B的并列方向即层叠方向(Y轴方向)不同,此处是正交。In addition, the lamination direction (X-axis direction) which is the direction in which the light guides 51A, 52A, and 53A of the optical element 5A are aligned, and the lamination direction (Y-axis direction) which is the alignment direction of the light guides 51B, 52B, and 53B of the optical element 5B. Different, here it is orthogonal.
以上结构的光学元件5X使从入射面56A入射的影像光L2在光学元件5X的内部多重反射,并作为光束宽度放大了状态的影像光L3a、L3b、L4a、L4b从射出面57B射出(参照图12)。The optical element 5X having the above structure multiple-reflects the image light L2 incident from the incident surface 56A inside the optical element 5X, and emits the image light L3a, L3b, L4a, L4b from the emission surface 57B as the image light L3a, L3b, L4a, L4b in a state in which the beam width is enlarged (see FIG. 12).
具体而言,与第一实施方式相同,从入射面56A入射且被引导至光学元件5A内的影像光L2一边在光学元件5A侧的侧面58Xa、58Xb反复进行全反射,并在半反光镜层54A、55A反复进行反射和透过,一边沿Z轴方向传播。在光学元件5A内沿Z轴方向传播的影像光L2从光学元件5A的射出面57A射出,并从入射面56B向光学元件5B的内部引导。被引导至光学元件5B内的影像光L2一边在光学元件5B侧的侧面58Xa、58Xb、59Xa、59Xb反复进行全反射,并在半反光镜层54B、55B反复进行反射和透过,一边沿Z轴方向传播。这样,影像光L2在光学元件5X的内部被多重反射,并作为影像光L3a、L3b、L4a、L4b从射出面57B射出。而且,影像光L3a经由修正透镜42向反射部6传送,影像光L3b、L4a、L4b作为无用光由遮光板(未图示)遮挡。此外,在本实施方式中,仅影像光L3a向反射部6传送,但也可以是影像光L3a、L3b、L4a、L4b中两个以上的影像光向反射部6传送。Specifically, as in the first embodiment, the image light L2 incident from the incident surface 56A and guided into the optical element 5A undergoes total reflection repeatedly on the side surfaces 58Xa and 58Xb on the side of the optical element 5A, and is reflected on the half mirror layer. 54A and 55A propagate along the Z-axis direction while repeating reflection and transmission. The image light L2 propagating in the Z-axis direction in the optical element 5A is emitted from the output surface 57A of the optical element 5A, and is guided into the optical element 5B from the incident surface 56B. The image light L2 guided into the optical element 5B undergoes total reflection repeatedly on the side surfaces 58Xa, 58Xb, 59Xa, and 59Xb on the side of the optical element 5B, and repeats reflection and transmission on the half mirror layers 54B, 55B, while being repeatedly reflected and transmitted along the Z side. Axial propagation. In this way, the image light L2 is multiple-reflected inside the optical element 5X, and is emitted from the emission surface 57B as image lights L3 a , L3 b , L4 a , and L4 b. Furthermore, the image light L3a is transmitted to the reflection unit 6 through the correction lens 42, and the image light L3b, L4a, and L4b are blocked as unnecessary light by a light shielding plate (not shown). In addition, in this embodiment, only the image light L3a is transmitted to the reflector 6 , but two or more image lights among the image lights L3a , L3b , L4a , and L4b may be transmitted to the reflector 6 .
此处,如上所述,光学元件5A的导光部51A、52A、53A的并列方向(层叠方向)与光学元件5B的导光部51B、52B、53B的并列方向(层叠方向)正交。而且,光学元件5X配置为,从一个光学元件(第一1维阵列)5A的射出面57A射出的影像光L2向另一个光学元件(第二1维阵列)5B的入射面56B入射,射出面57A与入射面56B连接。因此,沿作为各导光部的并列方向的两个方向,能够放大从入射面56A入射的影像光L2的截面积。并且,能够由多个导光部(在本实施方式中,导光部51A、52A、53A、51B、52B、53B)多重反射,由此能够进一步提高从射出面57A射出的影像光L3a、L3b、L4a、L4b的强度分布的均匀性。Here, as described above, the alignment direction (stacking direction) of the light guide portions 51A, 52A, and 53A of the optical element 5A is perpendicular to the alignment direction (stacking direction) of the light guide portions 51B, 52B, and 53B of the optical element 5B. Further, the optical elements 5X are arranged so that the image light L2 emitted from the exit surface 57A of one optical element (first one-dimensional array) 5A enters the incident surface 56B of the other optical element (second one-dimensional array) 5B, and the exit surface 57A is connected to the incident surface 56B. Therefore, the cross-sectional area of the image light L2 incident from the incident surface 56A can be enlarged in two directions, which are the directions in which the respective light guides are arranged. Furthermore, multiple reflections can be performed by a plurality of light guides (in this embodiment, light guides 51A, 52A, 53A, 51B, 52B, and 53B), thereby further improving the image light L3a, L3b output from the output surface 57A. , The uniformity of the intensity distribution of L4a, L4b.
此外,在本实施方式中,导光部51A、52A、53A的并列方向(层叠方向)与光学元件5B的导光部51B、52B、53B的并列方向(层叠方向)正交,但并不限定于此,若导光部51A、52A、53A的并列方向与导光部51B、52B、53B的并列方向不同,则能够得到上述的效果。In addition, in the present embodiment, the direction in which the light guides 51A, 52A, and 53A are arranged (the lamination direction) is perpendicular to the direction in which the light guides 51B, 52B, and 53B of the optical element 5B are arranged (the lamination direction), but the direction is not limited to Here, if the alignment direction of the light guide parts 51A, 52A, and 53A is different from the alignment direction of the light guide parts 51B, 52B, and 53B, the above-mentioned effect can be obtained.
通过以上结构的第二实施方式的光学元件5X,也能够与第一实施方式相同地以比较简单的结构来放大影像光L2的光束宽度。The optical element 5X of the second embodiment configured as above can also enlarge the beam width of the image light L2 with a relatively simple structure as in the first embodiment.
第三实施方式third embodiment
接下来对本发明的虚像显示装置的第三实施方式进行说明。Next, a third embodiment of the virtual image display device of the present invention will be described.
图13是示出第三实施方式的虚像显示装置所具备的光学元件的简要结构的图,图13(a)是主视图,图13(b)是俯视图,图13(c)是右视图,图13(d)是左侧图。图14是用于说明向图13所示的光学元件入射的影像光的路径的图。13 is a diagram showing a schematic configuration of an optical element included in a virtual image display device according to a third embodiment, FIG. 13( a ) is a front view, FIG. 13( b ) is a plan view, and FIG. 13( c ) is a right side view, Fig. 13(d) is a diagram on the left side. FIG. 14 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 13 .
以下,参照该图对本发明的虚像显示装置的第三实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a third embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiment, and descriptions of the same matters will be omitted.
在第三实施方式中,光学元件的结构不同,除此以外都与上述实施方式相同。The third embodiment is the same as the above-mentioned embodiment except that the structure of the optical element is different.
以下,详述第三实施方式的虚像显示装置所具备的光学元件5Y。Hereinafter, the optical element 5Y included in the virtual image display device of the third embodiment will be described in detail.
光学元件5Y与第一实施方式相同,具有在其长度方向(Z轴方向)上对置的入射面56Y、射出面57Y、在厚度方向(X轴方向)上对置的侧面58Ya、58Yb、以及在宽度方向(Y轴方向)上对置的侧面59Ya、59Yb。Like the first embodiment, the optical element 5Y has an incident surface 56Y, an output surface 57Y opposed in its longitudinal direction (Z-axis direction), side surfaces 58Ya, 58Yb opposed in a thickness direction (X-axis direction), and Side surfaces 59Ya and 59Yb facing each other in the width direction (Y-axis direction).
并且,侧面58Ya、58Yb、59Ya、59Yb全部是全反射面,使向光学元件5Y的内部入射的影像光L2全反射。In addition, all of the side surfaces 58Ya, 58Yb, 59Ya, and 59Yb are total reflection surfaces, and totally reflect the image light L2 incident on the inside of the optical element 5Y.
这样的光学元件5Y具有第一导光部(导光部)51C、第二导光部(导光部)52C、第三导光部(导光部)51D、第四导光部(导光部)53C、第五导光部(导光部)52D、第六导光部(导光部)53D、第七导光部(导光部)51E、第八导光部(导光部)52E、第九导光部(导光部)53E、半反光镜层(第一光分支层)54C、半反光镜层(第二光分支层)55C、半反光镜层(第三光分支层)54D、半反光镜层(第四光分支层)55D。Such an optical element 5Y has a first light guide (light guide) 51C, a second light guide (light guide) 52C, a third light guide (light guide) 51D, a fourth light guide (light guide) part) 53C, fifth light guide part (light guide part) 52D, sixth light guide part (light guide part) 53D, seventh light guide part (light guide part) 51E, eighth light guide part (light guide part) 52E, ninth light guide part (light guide part) 53E, half mirror layer (first light branching layer) 54C, half mirror layer (second light branching layer) 55C, half mirror layer (third light branching layer) ) 54D, half mirror layer (fourth light branching layer) 55D.
九个导光部51C、52C、53C、51D、52D、53D、51E、52E、53E在相互正交的X轴方向以及Y轴方向上排列为3×3的行列状。具体而言,光学元件5Y构成为,例如第一导光部51C、第二导光部52C以及第四导光部53C沿第一方向(Y轴方向)排列,第一导光部51C、第三导光部51D以及第七导光部51E沿与上述第一方向(Y轴方向)不同的第二方向(X轴方向)排列。并且,第二导光部52C、第五导光部52D以及第八导光部52E沿与上述第一方向(Y轴方向)不同的第二方向(X轴方向)排列。并且,第四导光部53C、第六导光部53D以及第九导光部53E沿与上述第一方向(Y轴方向)不同的第二方向(X轴方向)排列。这样,九个导光部51C、52C、53C、51D、52D、53D、51E、52E、53E2维地排列。The nine light guides 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E are arranged in a 3×3 matrix in the mutually orthogonal X-axis direction and Y-axis direction. Specifically, the optical element 5Y is configured such that, for example, the first light guide portion 51C, the second light guide portion 52C, and the fourth light guide portion 53C are arranged along the first direction (Y-axis direction), and the first light guide portion 51C, the second light guide portion The third light guide part 51D and the seventh light guide part 51E are arranged along a second direction (X-axis direction) different from the above-mentioned first direction (Y-axis direction). Furthermore, the second light guide portion 52C, the fifth light guide portion 52D, and the eighth light guide portion 52E are arranged along a second direction (X-axis direction) different from the above-mentioned first direction (Y-axis direction). Furthermore, the fourth light guide portion 53C, the sixth light guide portion 53D, and the ninth light guide portion 53E are arranged along a second direction (X-axis direction) different from the above-mentioned first direction (Y-axis direction). In this way, the nine light guide portions 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E are arranged two-dimensionally.
并且,在各导光部51C、52C、53C、51D、52D、53D、51E、52E、53E彼此之间设有半反光镜层54C、55C、54D、55D。Furthermore, half mirror layers 54C, 55C, 54D, and 55D are provided between the respective light guide portions 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E.
如图14所示,这样的结构的光学元件5Y使从入射面56Y入射的影像光L2在光学元件5Y的内部多重反射,并作为光束宽度放大了的状态的影像光L3c、L3d、L4c、L4d从射出面57Y射出。As shown in FIG. 14 , in the optical element 5Y having such a structure, the image light L2 incident from the incident surface 56Y is multiple-reflected inside the optical element 5Y, and the image light L3c, L3d, L4c, and L4d in a state in which the beam width is enlarged are obtained. It is emitted from the emission surface 57Y.
具体而言,由光扫描部35扫描后的影像光L2从入射面56Y入射,并被引导至光学元件5Y内,一边在侧面58Ya、58Yb、59Ya、59Yb反复进行全反射,并在半反光镜层54C、55C、54D、55D反复进行反射和透过,一边沿Z轴方向传播。这样,影像光L2在光学元件5Y的内部被多重反射,并作为影像光L3c、L3d、L4c、L4d从射出面57Y射出。而且,影像光L3c经由修正透镜42向反射部6传送,影像光L3d、L4c、L4d作为无用光由遮光板(未图示)遮挡。此外,在本实施方式中,仅影像光L3c向反射部6传送,但也可以是影像光L3c、L3d、L4c、L4d中两个以上的影像光向反射部6传送。Specifically, the image light L2 scanned by the optical scanning unit 35 enters from the incident surface 56Y, is guided into the optical element 5Y, and undergoes repeated total reflection on the side surfaces 58Ya, 58Yb, 59Ya, and 59Yb, and is then reflected on the half mirror. The layers 54C, 55C, 54D, and 55D repeat reflection and transmission while propagating in the Z-axis direction. In this way, the image light L2 is multiple-reflected inside the optical element 5Y, and is emitted from the emission surface 57Y as image lights L3c, L3d, L4c, and L4d. Furthermore, the image light L3c is transmitted to the reflection unit 6 through the correcting lens 42, and the image light L3d, L4c, and L4d are blocked as unnecessary light by a light shielding plate (not shown). In addition, in this embodiment, only the image light L3c is transmitted to the reflector 6 , but two or more image lights among the image lights L3c , L3d , L4c , and L4d may be transmitted to the reflector 6 .
此处,如上所述,光学元件5Y如上所述地九个导光部51C、52C、53C、51D、52D、53D、51E、52E、53E2维地排列。因此,沿作为各导光部的并列方向的两个方向,能够放大从入射面56Y入射的影像光L2的截面积。并且,能够由多个导光部(在本实施方式中,导光部51C、52C、53C、51D、52D、53D、51E、52E、53E)多重反射,由此能够进一步提高从射出面57Y射出的影像光L3c、L3d、L4c、L4d的强度分布的均匀性。Here, as described above, the optical element 5Y has nine light guide portions 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E arranged two-dimensionally. Therefore, the cross-sectional area of the image light L2 incident from the incident surface 56Y can be enlarged in two directions, which are the directions in which the respective light guides are arranged. In addition, multiple reflections can be performed by a plurality of light guides (in this embodiment, light guides 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E), thereby further improving the output from the output surface 57Y. The uniformity of the intensity distribution of the image light L3c, L3d, L4c, L4d.
此外,在本实施方式中,导光部51C、52C、53C、51D、52D、53D、51E、52E、53E配置为3×3的行列状,但导光部的数量、配置、形状等并不限定于此,只要导光部2维地排列,便能够得到上述的效果。In addition, in this embodiment, the light guides 51C, 52C, 53C, 51D, 52D, 53D, 51E, 52E, and 53E are arranged in a matrix of 3×3, but the number, arrangement, shape, etc. of the light guides do not vary. Limiting to this, the above-mentioned effect can be obtained as long as the light guides are arranged two-dimensionally.
通过以上结构的第三实施方式的光学元件5Y,也能够与第一实施方式相同地比较简单的结构来放大影像光L2的光束宽度。The optical element 5Y of the third embodiment configured as above can also enlarge the beam width of the image light L2 with a relatively simple structure as in the first embodiment.
第四实施方式Fourth Embodiment
接下来对本发明的虚像显示装置的第四实施方式进行说明。Next, a fourth embodiment of the virtual image display device of the present invention will be described.
图15是示出第四实施方式的虚像显示装置所具备的光学元件的图,图15(a)是俯视图,图15(b)是侧视图。图16是用于说明向图15所示的光学元件入射的影像光的路径的图。FIG. 15 is a diagram showing optical elements included in a virtual image display device according to a fourth embodiment, FIG. 15( a ) is a plan view, and FIG. 15( b ) is a side view. FIG. 16 is a diagram for explaining the path of image light incident on the optical element shown in FIG. 15 .
以下,参照该图对本发明的虚像显示装置的第四实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a fourth embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiments, and descriptions of the same matters will be omitted.
在第四实施方式中,不具备修正透镜42、遮光板43以及反射部6,而代替地具备放大导光部60,除此以外都与上述第一实施方式相同。In the fourth embodiment, the correction lens 42 , the light shielding plate 43 , and the reflection unit 6 are not provided, and the magnifying light guide unit 60 is provided instead, and the above-mentioned first embodiment is the same as other points.
如图15所示,放大导光部60具备第一导光板(第一放大导光部)66、和形成有光提取部64的第二导光板(第二放大导光部)62。并且,放大导光部60与光学元件5连接。As shown in FIG. 15 , the enlarged light guide unit 60 includes a first light guide plate (first enlarged light guide unit) 66 and a second light guide plate (second enlarged light guide unit) 62 on which the light extraction unit 64 is formed. Furthermore, the amplifying light guide part 60 is connected to the optical element 5 .
该放大导光部60具有使来自光学元件5的影像光L3朝向观察者的眼睛EY入射的功能,并且具有2维地放大从光学元件5射出的影像光L3的功能。即,放大导光部60具有使从光学元件5射出的影像光L3的光束宽度进一步放大的功能。The magnifying light guide unit 60 has a function of causing the image light L3 from the optical element 5 to enter toward the observer's eyes EY, and also has a function of two-dimensionally amplifying the image light L3 emitted from the optical element 5 . That is, the amplifying light guide unit 60 has a function of further amplifying the beam width of the image light L3 emitted from the optical element 5 .
以下,详细地对放大导光部60进行说明。Hereinafter, the enlarged light guide unit 60 will be described in detail.
如图15(a)所示,第一导光板66形成为长条状,具有在第一导光板66的宽度方向(放大导光部60的厚度方向:Z轴方向)上对置的一对侧面613、614、在第一导光板66的厚度方向(与第一导光板66的宽度方向以及长边方向正交的方向)上对置的第一主面(第一反射面)615以及第二主面612。第一主面615与第二主面612平行,侧面613与侧面614平行。此外,在本说明书中,“平行”是指各面所成的角度为±2°以下,更优选为0.2°以下。As shown in FIG. 15( a ), the first light guide plate 66 is formed in an elongated shape, and has a pair of light guide plates facing each other in the width direction of the first light guide plate 66 (thickness direction of the enlarged light guide part 60: Z-axis direction). The side surfaces 613, 614, the first main surface (first reflective surface) 615 and the second main surface (first reflective surface) 615 facing each other in the thickness direction of the first light guide plate 66 (the direction perpendicular to the width direction and the longitudinal direction of the first light guide plate 66). Two main surfaces 612 . The first main surface 615 is parallel to the second main surface 612 , and the side surface 613 is parallel to the side surface 614 . In addition, in this specification, "parallel" means that the angle formed by each surface is ±2° or less, more preferably 0.2° or less.
在该第一导光板66的第二主面612固定有第二导光板62。The second light guide plate 62 is fixed to the second main surface 612 of the first light guide plate 66 .
第二导光板62形成为在X轴方向上较长的长条状,具有在第二导光板62的厚度方向(Z轴方向)上对置的一对第一主面621及第二主面622、在第二导光板62的宽度方向(Y轴方向)上对置的一对侧面623、624、以及在第二导光板62的长边方向(X轴方向)对置的一对端面625、626。并且,第一主面621与第二主面622平行,侧面623与侧面624平行。并且,端面625设为相对于第二导光板62的宽度方向(入射方向)倾斜,其俯视形状与第一导光板66的第二主面612的俯视形状相等。另一方面,端面626设为与第二导光板62的长边方向垂直。The second light guide plate 62 is formed in an elongated shape long in the X-axis direction, and has a pair of first main surfaces 621 and second main surfaces facing each other in the thickness direction (Z-axis direction) of the second light guide plate 62 . 622 , a pair of side faces 623 and 624 facing each other in the width direction (Y-axis direction) of the second light guide plate 62 , and a pair of end faces 625 facing each other in the longitudinal direction (X-axis direction) of the second light guide plate 62 , 626. Moreover, the first main surface 621 is parallel to the second main surface 622 , and the side surface 623 is parallel to the side surface 624 . Furthermore, the end surface 625 is inclined with respect to the width direction (incident direction) of the second light guide plate 62 , and its plan view shape is equal to the plan view shape of the second main surface 612 of the first light guide plate 66 . On the other hand, the end surface 626 is set perpendicular to the longitudinal direction of the second light guide plate 62 .
此外,端面625的倾斜角θ1优选为20°以上70°以下,更优选为40°以上50°以下,特别优选为45°。由此,当使从光学元件5射出的影像光L3沿与第二导光板62的长边方向垂直的方向入射时,能够沿第二导光板62的长边方向对影像光L3进行导向。由此,入射角度的调整变得容易。In addition, the inclination angle θ1 of the end surface 625 is preferably not less than 20° and not more than 70°, more preferably not less than 40° and not more than 50°, particularly preferably 45°. Thus, when the image light L3 emitted from the optical element 5 is incident in a direction perpendicular to the longitudinal direction of the second light guide plate 62 , the image light L3 can be guided along the longitudinal direction of the second light guide plate 62 . Thereby, adjustment of an incident angle becomes easy.
并且,在第二导光板62的第一主面621,设有向第二导光板62的外侧(图15(a)中纸面近前侧)提取在第二导光板62上被导向的光的光提取部64。光提取部64由全息元件641构成。该全息元件641在第二导光板62的长边方向(X轴方向)上具有宽度,并在第二导光板62的宽度方向(Y轴方向)上具有高度。全息元件641与第一实施方式相同,是具有使特定波段的光衍射、并使除此以外的波段的光透过的性质的局部反射透过膜。全息元件641利用衍射调整特定的波段的影像光使入射角度、光束状态成为所希望的,从而形成虚像,并使大范围的波段的外部光线的成分的大半透过。通过作为光提取部64而使用全息元件641,能够容易地变更光的前进方向,从而能够提供光利用效率优异的虚像显示装置1。In addition, on the first main surface 621 of the second light guide plate 62, there is provided a device for extracting the light guided on the second light guide plate 62 to the outside of the second light guide plate 62 (the front side of the paper in FIG. 15( a )). Light extraction part 64 . The light extraction unit 64 is composed of a hologram element 641 . The hologram element 641 has a width in the longitudinal direction (X-axis direction) of the second light guide plate 62 and a height in the width direction (Y-axis direction) of the second light guide plate 62 . Like the first embodiment, the hologram element 641 is a partially reflective transmissive film having a property of diffracting light of a specific wavelength band and transmitting light of other wavelength bands. The hologram element 641 adjusts video light of a specific wavelength band by diffraction to make the incident angle and beam state desired, thereby forming a virtual image and transmitting most of the components of external light in a wide range of wavelength bands. By using the hologram element 641 as the light extraction unit 64, the traveling direction of light can be easily changed, and the virtual image display device 1 excellent in light utilization efficiency can be provided.
对于这样的第一导光板66和第二导光板62而言,第一导光板66的第二主面612和第二导光板62的端面625固定,第一导光板66的宽度方向与第二导光板62的厚度方向一致。For such a first light guide plate 66 and a second light guide plate 62, the second main surface 612 of the first light guide plate 66 and the end surface 625 of the second light guide plate 62 are fixed, and the width direction of the first light guide plate 66 and the second light guide plate 66 are fixed. The thickness direction of the light guide plate 62 is consistent.
在这样的结构的放大导光部60所具备的第二导光板62的第二主面612侧,并且在侧面624与端面625的边界部附近(后述的高透过面671的影像光L3的前进方向近前侧)设有光学元件5。光学元件5配置为,相对于放大导光部60,从光学元件5射出的影像光L3、L4经由后述的高透过面671向第一导光板66入射。并且,光学元件5配置为,侧面58a和侧面58b沿图15的Z轴方向并列,侧面59a和侧面59b沿X轴方向并列。The image light L3 on the side of the second main surface 612 of the second light guide plate 62 included in the amplifying light guide unit 60 having such a structure and in the vicinity of the boundary between the side surface 624 and the end surface 625 (high transmission surface 671 described later) The advancing direction near side) is provided with optical element 5. The optical element 5 is arranged such that the image lights L3 and L4 emitted from the optical element 5 are incident on the first light guide plate 66 through a high transmission surface 671 to be described later with respect to the amplifying light guide portion 60 . In addition, the optical element 5 is arranged such that the side surface 58 a and the side surface 58 b are aligned in the Z-axis direction in FIG. 15 , and the side surface 59 a and the side surface 59 b are aligned in the X-axis direction.
在这样的放大导光部60中,第一导光板66的第一主面615、侧面613、614、第二导光板62的第一主面621、第二主面622以及侧面623、624成为使入射的光全反射的全反射面。In such an enlarged light guide part 60, the first main surface 615, the side surfaces 613, 614 of the first light guide plate 66, the first main surface 621, the second main surface 622, and the side surfaces 623, 624 of the second light guide plate 62 become A total reflection surface that completely reflects incident light.
而且,如图16所示,在第一导光板66与第二导光板62之间,形成有局部透过反射面(第二反射面)67。在本实施方式中,该局部透过反射面67在第一导光板66的第二主面612上形成。局部透过反射面67在第一导光板66的第二主面612的除去两端部的部分(图16(a)中粗线所示的面)形成。并且,局部透过反射面67将入射的光的一部分反射,并使入射的光的一部分透过。此外,局部透过反射面67也可以在第二导光板62的端面625上形成。Furthermore, as shown in FIG. 16 , between the first light guide plate 66 and the second light guide plate 62 , a partially transmissive reflection surface (second reflection surface) 67 is formed. In this embodiment, the partial transmission and reflection surface 67 is formed on the second main surface 612 of the first light guide plate 66 . The partial transmissive reflection surface 67 is formed on the second main surface 612 of the first light guide plate 66 except both ends (the surface indicated by the thick line in FIG. 16( a )). And, the partial transmission reflective surface 67 reflects a part of the incident light and transmits a part of the incident light. In addition, the partially transmissive reflective surface 67 may also be formed on the end surface 625 of the second light guide plate 62 .
作为该局部透过反射面67的形成方法,没有特别限定,例如可以举出对Cr、Ag等金属膜、介电膜、将它们组合而成的混合膜等进行蒸镀的方法等。The method for forming the partially transmissive reflection surface 67 is not particularly limited, and examples thereof include a method of vapor-depositing a metal film such as Cr or Ag, a dielectric film, or a mixed film obtained by combining them.
并且,在局部透过反射面67中,图16中下端部的透光率为5%以上10%以下,图16中上侧的端部的透光率为12%以上17%以下。并且,在局部透过反射面67中,在两端部之间的部分,随着远离后述的高透过面(光入射部)671,透光率逐渐变大。作为这样的结构的方法,例如可以举出调整上述金属膜、上述介电膜或者上述混合膜的厚度的方法等。In addition, in the partial transmissive reflection surface 67 , the light transmittance of the lower end portion in FIG. 16 is not less than 5% and not more than 10%, and the light transmittance of the upper end portion in FIG. 16 is not less than 12% and not more than 17%. In addition, in the part between both ends of the partial transmissive reflection surface 67 , the light transmittance gradually increases as the distance from the high transmissive surface (light incident part) 671 described later. As a method of such a structure, for example, a method of adjusting the thickness of the above-mentioned metal film, the above-mentioned dielectric film, or the above-mentioned mixed film, etc. are mentioned.
并且,在局部透过反射面67的两端侧(第一导光板66的第二主面612的未形成局部透过反射面67的区域),形成有与局部透过反射面67相比透光率较高的高透过面671、672。高透过面671位于局部透过反射面67的侧面624侧,高透过面672位于局部透过反射面67的侧面623侧。该高透过面671、672的透光率优选为95%以上。And, on both end sides of the partial transmission reflection surface 67 (the region where the partial transmission reflection surface 67 is not formed in the second main surface 612 of the first light guide plate 66 ), there is formed High transmittance surfaces 671 and 672 with high light efficiency. The high transmission surface 671 is located on the side 624 side of the partial transmission reflection surface 67 , and the high transmission surface 672 is located on the side surface 623 of the partial transmission reflection surface 67 . The light transmittance of the high transmittance surfaces 671 and 672 is preferably 95% or more.
此处,对从光学元件5射出的影像光L3、L4通过放大导光部60而2维地放大的原理进行说明。此外,以下作为影像光L3、L4中的代表对影像光L3通过放大导光部60而2维地放大的原理进行详述。并且,以下,由全反射面反射光时的衰减量相对于向全反射面入射的光量足够小,从而忽略上述衰减量。并且,当在第一导光板66对影像光L3进行导向时,影像光L3在第一主面615、第二主面612、侧面613、614之间反复进行全反射并在第一导光板66上被导向,但为便于说明,影像光L3在第一主面615以及第二主面612之间反复进行反射并在第一导光板66上被导向。同样,当光在第二导光板62上被导向时,影像光L3在第一主面621、第二主面622、侧面623、624之间反复进行全反射并在第二导光板62上被导向,但为便于说明,影像光L3在第一主面621以及第二主面622之间反复进行反射并在第二导光板62上被导向。Here, the principle of two-dimensionally amplifying the image lights L3 and L4 emitted from the optical element 5 by the enlarging light guide 60 will be described. In addition, the principle of two-dimensionally amplifying the image light L3 by the magnifying light guide part 60 as a representative of the image lights L3 and L4 will be described in detail below. In addition, hereinafter, the amount of attenuation when light is reflected by the total reflection surface is sufficiently small relative to the amount of light incident on the total reflection surface, so that the above attenuation amount can be ignored. In addition, when the image light L3 is guided by the first light guide plate 66, the image light L3 repeats total reflection between the first main surface 615, the second main surface 612, and the side surfaces 613 and 614, and then passes through the first light guide plate 66. However, for convenience of illustration, the image light L3 is repeatedly reflected between the first main surface 615 and the second main surface 612 and then guided on the first light guide plate 66 . Similarly, when the light is guided on the second light guide plate 62 , the image light L3 is repeatedly totally reflected between the first main surface 621 , the second main surface 622 , and the side surfaces 623 and 624 and is absorbed on the second light guide plate 62 . However, for the convenience of illustration, the image light L3 is repeatedly reflected between the first main surface 621 and the second main surface 622 and then guided on the second light guide plate 62 .
首先,从光学元件5射出的影像光L3经由第二导光板62的侧面624、高透过面671向第一导光板66入射。如上所述,高透过面671的透光率比95%大,从而能够使绝大多数的光向第一导光板66内入射。First, the image light L3 emitted from the optical element 5 enters the first light guide plate 66 through the side surface 624 and the high transmission surface 671 of the second light guide plate 62 . As described above, the light transmittance of the high transmittance surface 671 is greater than 95%, so that most of the light can be incident into the first light guide plate 66 .
如图16(a)所示,透过高透过面671后的影像光L3被第一主面615的部分67A反射,而朝向局部透过反射面67。到达局部透过反射面67的部分67A的影像光L3的一部分反射,作为光L31而再次朝向第一主面615。而且,到达局部透过反射面67的部分67A的影像光L3的一部分(残留部分)作为光L32向第二导光板62入射。As shown in FIG. 16( a ), the image light L3 transmitted through the high transmission surface 671 is reflected by the portion 67A of the first main surface 615 , and partially transmits through the reflection surface 67 . Part of the image light L3 that reaches the portion 67A that partially transmits the reflection surface 67 is reflected, and goes toward the first main surface 615 again as light L31 . Then, a part (remaining part) of the image light L3 reaching the portion 67A partially transmitted through the reflection surface 67 enters the second light guide plate 62 as light L32 .
如图16(b)所示,朝向第一主面615的光L31由相比第一主面615的部分615A靠光的前进方向下游侧的部分615B反射,并再次朝向局部透过反射面67。而且,到达相比局部透过反射面67的部分67A靠光的前进方向下游侧的部分67B的光L31与上述相同,其一部分反射,并作为光L33再次朝向第一主面615。到达局部透过反射面67的部分67B的光L31的残留部分作为光L34向第二导光板62入射。As shown in Figure 16 (b), the light L31 towards the first main surface 615 is reflected by the part 615B on the downstream side of the light advancing direction compared with the part 615A of the first main surface 615, and then is transmitted toward the partial reflection surface 67 again. . The light L31 reaching the portion 67B downstream of the portion 67A partially transmitted through the reflective surface 67 in the direction of light advance is partly reflected as described above, and goes toward the first main surface 615 again as light L33 . The remaining part of the light L31 that reaches the part 67B partially transmitted through the reflection surface 67 enters the second light guide plate 62 as light L34 .
像这样反复进行全反射和局部反射,影像光L3在第一导光板66内被导向,并且也向第二导光板62内入射。并且,向第二导光板62入射的光(光L32~光Lx)在第二导光板62的第一主面621以及第二主面622之间反复进行全反射而从图16中左侧向图16中右侧被导向。而且,光L32~光Lx的一部分由全息元件641向第二导光板62的外侧提取,从而观察者能够将其作为虚像来辨识。此时,如图15(b)所示,光L32~光Lx在全息元件641与第二主面622之间被多重反射。光L32~光Lx的一部分透过全息元件641,而沿第二导光板62的厚度方向朝第二导光板62的外侧射出。Total reflection and partial reflection are repeated in this way, and the image light L3 is guided in the first light guide plate 66 and also enters the second light guide plate 62 . And, the light (light L32~light Lx) incident on the second light guide plate 62 repeats total reflection between the first main surface 621 and the second main surface 622 of the second light guide plate 62, and is directed from the left side in FIG. The right side in Figure 16 is directed. In addition, part of the light L32 to the light Lx is extracted by the hologram element 641 to the outside of the second light guide plate 62 , so that the observer can recognize it as a virtual image. At this time, as shown in FIG. 15( b ), the light L32 to the light Lx are multiple-reflected between the hologram element 641 and the second main surface 622 . Part of the light L32 to the light Lx passes through the hologram element 641 , and is emitted toward the outside of the second light guide plate 62 along the thickness direction of the second light guide plate 62 .
这样,光L32~光Lx在全息元件641的宽度方向(第二导光板62的长边方向:X轴方向)上放大。In this way, the light L32 to the light Lx are amplified in the width direction of the hologram element 641 (the longitudinal direction of the second light guide plate 62: the X-axis direction).
此处,对于向第二导光板62入射的影像光而言,在局部透过反射面67的透光率遍及局部透过反射面67的长边方向的全长恒定的情况下,随着远离高透过面671而衰减。即,在局部透过反射面67的透光率遍及局部透过反射面67的长边方向的全长恒定的情况下,在向第二导光板62入射的光中,光量按照光L32~光Lx的顺序衰减而变少。然而,如上所述,在局部透过反射面67中,透光率构成为,透光率随着远离高透过面671而逐渐变大。因此,例如影像光L34在局部透过反射面67中的透光率比光L32所透过的部分的透光率高的部分透过。结果,能够尽量缩小光L32的光量与光L34的光量的差。由此,能够尽量使向第二导光板62入射的光(光L32~光Lx)的光量均匀。由此,能够减少由全息元件641显示的虚像的不均匀。Here, when the light transmittance of the image light incident on the second light guide plate 62 is constant over the entire length of the partially transmitted reflection surface 67 in the longitudinal direction of the partially transmitted reflection surface 67, the The high transmission surface 671 is attenuated. That is, in the case where the light transmittance of the partially transmissive reflective surface 67 is constant over the entire length of the partially transmissive reflective surface 67 in the longitudinal direction, in the light incident on the second light guide plate 62, the amount of light is in the range of light L32 to light L32. The order of Lx decays and becomes less. However, as described above, in the partial transmissive reflection surface 67 , the light transmittance is configured such that the light transmittance gradually increases as the distance from the high transmission surface 671 increases. Therefore, for example, the video light L34 is transmitted through a portion of the partially transmitted reflection surface 67 whose light transmittance is higher than the light transmittance of the portion through which the light L32 passes. As a result, the difference between the light quantity of the light L32 and the light quantity of the light L34 can be made as small as possible. Thereby, the light quantity of the light (light L32 - light Lx) which enters the 2nd light guide plate 62 can be made uniform as much as possible. Accordingly, it is possible to reduce the unevenness of the virtual image displayed by the hologram element 641 .
另外,影像光Lx是影像光L32~光Lx中衰减量较多的光。然而,如图16(b)所示,由于影像光Lx在高透过面672通过,所以能够更加有效地使向第二导光板62入射的影像光(影像光L32~光Lx)的光量大致均匀。In addition, the image light Lx is light having a large amount of attenuation among the image light L32 to the light Lx. However, as shown in FIG. 16(b), since the image light Lx passes through the high transmission surface 672, the light quantity of the image light (image light L32 to light Lx) incident on the second light guide plate 62 can be more effectively made approximately uniform.
此外,作为构成第一导光板66以及第二导光板62的材料,若分别具有光透过性则没有特别限定,例如可以使用丙烯酸、环氧树脂等各种树脂、各种玻璃等。Moreover, as a material which comprises the 1st light guide plate 66 and the 2nd light guide plate 62, it will not specifically limit if each has light transmittance, For example, various resins, such as acrylic and epoxy resin, various glass, etc. can be used.
这样,放大导光部60将影像光L3在第一导光板66上沿图16中上下方向放大,并在第二导光板62(全息元件641)上沿图16中左右方向放大。即,放大导光部60能够2维地放大影像光L3。并且,在放大导光部60中,能够利用第一导光板66的第一主面615与局部透过反射面67平行地对置配置这样的非常简单的结构来2维地放大影像光L3。In this way, the enlarged light guide unit 60 magnifies the image light L3 on the first light guide plate 66 in the vertical direction in FIG. 16 , and on the second light guide plate 62 (hologram element 641 ) in the left and right directions in FIG. 16 . That is, the magnifying light guide unit 60 can magnify the image light L3 two-dimensionally. In addition, in the amplifying light guide unit 60 , the image light L3 can be two-dimensionally amplified by a very simple structure in which the first main surface 615 of the first light guide plate 66 is arranged to face each other in parallel with the partially transmissive reflection surface 67 .
另外,当制造放大导光部60时,由于只要调节成使两个面(第一导光板66的第一主面615以及第二主面612)平行即可,所以能够非常容易地进行制造。而且,在本实施方式中,能够通过在第二导光板62的端面625固定厚度恒定的第一导光板66这样的简单的方法来制造放大导光部60。In addition, when manufacturing the amplifying light guide part 60 , it is only necessary to adjust so that the two surfaces (the first main surface 615 and the second main surface 612 of the first light guide plate 66 ) are parallel, so the manufacture can be very easily. Furthermore, in the present embodiment, the enlarged light guide portion 60 can be manufactured by a simple method of fixing the first light guide plate 66 with a constant thickness to the end surface 625 of the second light guide plate 62 .
第五实施方式Fifth Embodiment
接下来对本发明的虚像显示装置的第五实施方式进行说明。Next, a fifth embodiment of the virtual image display device of the present invention will be described.
图17是示出第五实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 17 is a diagram showing a schematic configuration of an image generating unit included in a virtual image display device according to a fifth embodiment.
以下,参照该图对本发明的虚像显示装置的第五实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a fifth embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiment, and descriptions of the same matters will be omitted.
在第五实施方式中,图像生成部的结构不同,除此以外都与上述实施方式相同。The fifth embodiment is the same as the above-mentioned embodiment except that the structure of the image generating unit is different.
如图17所示,图像生成部900具有光源装置920、均匀照明光学系统930、光调制装置940以及投射光学系统960。As shown in FIG. 17 , the image generator 900 has a light source device 920 , a uniform illumination optical system 930 , a light modulation device 940 , and a projection optical system 960 .
这样的图像生成部900通过利用光调制装置940与给予的影像信号对应地对从光源装置920射出的光进行调制,从而形成影像光。Such an image generator 900 forms video light by modulating the light emitted from the light source device 920 by the light modulation device 940 in accordance with the video signal to be given.
光源装置920具备作为光源的超高压水银灯921和反射器922。在这样的结构中,从超高压水银灯921放射出的光由反射器922反射而在前方侧聚光。此外,作为光源,并不限定于超高压水银灯,例如也可以采用金属卤化物灯等。The light source device 920 includes an ultra-high pressure mercury lamp 921 and a reflector 922 as a light source. In such a configuration, the light emitted from the ultra-high pressure mercury lamp 921 is reflected by the reflector 922 to be focused on the front side. In addition, as a light source, it is not limited to an ultrahigh pressure mercury lamp, For example, a metal halide lamp etc. can also be used.
均匀照明光学系统930具有棒状积分器931、色轮932、中继透镜组933以及反射镜934。在这样的均匀照明光学系统930中,从光源装置920射出的光束在色轮932通过之后,具有角度地向棒状积分器931入射。The uniform illumination optical system 930 has a rod integrator 931 , a color wheel 932 , a relay lens group 933 , and a mirror 934 . In such a uniform illumination optical system 930 , the light beam emitted from the light source device 920 passes through the color wheel 932 and enters the rod integrator 931 at an angle.
色轮932设为能够通过未图示的马达等驱动源而旋转。并且,在色轮932形成有与在棒状积分器931的入射侧的端形成的端口对置的滤色面932a,在该滤色面932a,沿周向隔开区域地并列形成有R(红)、G(绿)、B(蓝)这三色的滤色器。此外,色轮932也可以在棒状积分器931的射出侧设置。The color wheel 932 is rotatable by a driving source such as a motor (not shown). In addition, a color filter surface 932a is formed on the color wheel 932 to face the port formed at the end of the rod integrator 931 on the incident side, and R (red and red) are formed in parallel on the color filter surface 932a at intervals in the circumferential direction. ), G (green), and B (blue) color filters. In addition, the color wheel 932 may also be provided on the emission side of the rod integrator 931 .
向色轮932入射的光束由滤色面932a按照时间序列地色分离为红色(R)光、绿色(G)光、蓝色(B)光这三色。向红色、绿色、蓝色这三色的分离以比显示的虚像(图像)的帧频高速的频率进行。通过以这样的频率进行色分离,能够显示全彩色图像。The light beam incident on the color wheel 932 is color-separated into three colors of red (R) light, green (G) light, and blue (B) light by the color filter surface 932 a in time series. Separation into the three colors of red, green, and blue is performed at a frequency higher than the frame rate of the displayed virtual image (image). By performing color separation at such a frequency, a full-color image can be displayed.
通过色轮932后的光(红色光、绿色光、蓝色光)从棒状积分器931的入射端口被导入其内部。被导入棒状积分器931的内部的光在棒状积分器931内进行多次反射,由此在棒状积分器931的射出面确保均匀的照度。因此,从棒状积分器931的射出端口射出的光具有均匀的照明分布。The light (red light, green light, blue light) passing through the color wheel 932 is introduced into the interior of the rod integrator 931 from the incident port. The light introduced into the rod integrator 931 is reflected multiple times inside the rod integrator 931 , thereby ensuring uniform illuminance on the emission surface of the rod integrator 931 . Therefore, the light emitted from the output port of the rod integrator 931 has a uniform illumination distribution.
从棒状积分器931射出的光经由中继透镜组933以及反射镜934而作为均匀的照明光向光调制装置940入射。The light emitted from the rod integrator 931 enters the light modulation device 940 as uniform illumination light via the relay lens group 933 and the reflection mirror 934 .
光调制装置940具有基板941和在基板941上排列的多个光调制元件942(例如,DMD(数字·微镜·器件)。其中“DMD”是美国德州仪器股份有限公司的注册商标)。多个光调制元件942在基板941上矩阵状地配置。作为光调制元件942的数量,没有特别限定。在一个光调制元件942构成一个像素的情况下,光调制元件942配置为像素数量例如为横×纵=1280×1024,640×480。The light modulation device 940 has a substrate 941 and a plurality of light modulation elements 942 (eg, DMD (Digital Micromirror Device). "DMD" is a registered trademark of Texas Instruments Inc.) arrayed on the substrate 941 . A plurality of light modulation elements 942 are arranged in a matrix on the substrate 941 . The number of light modulation elements 942 is not particularly limited. When one light modulation element 942 constitutes one pixel, the light modulation element 942 is arranged such that the number of pixels is, for example, horizontal x vertical = 1280 x 1024, 640 x 480.
各光调制元件942具有用于对入射的光束进行反射的可动反光镜,该可动反光镜变化姿势为向投射光学系统960引导反射后的光的接通状态、或相对于接通状态倾斜不同而向吸收装置(absorber)(未图示)引导反射后的光的断开状态。Each light modulation element 942 has a movable mirror for reflecting an incident light beam, and the posture of the movable mirror is changed to an ON state for guiding the reflected light to the projection optical system 960, or an inclination relative to the ON state. Instead, the off state of the reflected light is guided to an absorber (not shown).
并且,在图像生成部900设有未图示的控制部,光调制装置940例如基于向控制部(未图示)给予的影像信号(图像信息)来独立地切换各光调制元件942的接通状态/断开状态。由此,形成规定的影像光(影像光)。而且,所形成的影像光经由投射光学系统960向光学元件5入射。In addition, a control unit (not shown) is provided in the image generation unit 900, and the light modulation device 940 independently switches on and off of each light modulation element 942 based on, for example, a video signal (image information) supplied to the control unit (not shown). status/disconnected status. Thereby, predetermined image light (image light) is formed. Then, the formed image light enters the optical element 5 via the projection optical system 960 .
通过使用这样的图像生成部900,能够使鲜明的影像光向光学元件5入射。By using such an image generation unit 900 , clear image light can be made incident on the optical element 5 .
通过以上的第五实施方式,也能够起到与上述的实施方式相同的效果。Also in the fifth embodiment described above, the same effects as those of the above-described embodiment can be achieved.
第六实施方式Sixth Embodiment
接下来对本发明的虚像显示装置的第六实施方式进行说明。Next, a sixth embodiment of the virtual image display device of the present invention will be described.
图18是示出第六实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 18 is a diagram showing a schematic configuration of an image generation unit included in a virtual image display device according to a sixth embodiment.
以下,参照该图对本发明的虚像显示装置的第六实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a sixth embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiments, and descriptions of the same matters will be omitted.
在第六实施方式中,图像生成部的结构不同,除此以外都与上述实施方式相同。The sixth embodiment is the same as the above-mentioned embodiment except that the configuration of the image generating unit is different.
如图18所示,图像生成部800具有照明光学系统810、色分离光学系统820、平行化透镜830R、830G、830B、空间光调制装置840R、840G、840B、正交分色棱镜850、以及投射光学系统860。As shown in FIG. 18 , the image generator 800 has an illumination optical system 810, a color separation optical system 820, parallelizing lenses 830R, 830G, and 830B, spatial light modulation devices 840R, 840G, and 840B, an orthogonal dichroic prism 850, and a projection Optical system 860.
照明光学系统810具有光源811、反射器812、第一透镜阵列813、第二透镜阵列814、偏振光变换元件815、以及叠加透镜816。The illumination optical system 810 has a light source 811 , a reflector 812 , a first lens array 813 , a second lens array 814 , a polarization conversion element 815 , and a superposition lens 816 .
光源811是超高压水银灯,反射器812由抛物面镜构成。从光源811射出的放射状的光束由反射器812反射而成为近似平行光束,并向第一透镜阵列813射出。此外,作为光源811,并不限定于超高压水银灯,例如也可以采用金属卤化物灯等。并且,作为反射器812,并不限定于抛物面镜,也可以采用在由椭圆面镜构成的反射器812的射出面配置有平行化凹透镜的结构。The light source 811 is an ultra-high pressure mercury lamp, and the reflector 812 is composed of a parabolic mirror. The radial light beams emitted from the light source 811 are reflected by the reflector 812 to become approximately parallel light beams, and are emitted toward the first lens array 813 . In addition, as the light source 811, it is not limited to an ultra-high pressure mercury lamp, For example, a metal halide lamp etc. can also be used. In addition, the reflector 812 is not limited to a parabolic mirror, and a configuration in which a parallelizing concave lens is arranged on the output surface of the reflector 812 formed of an elliptical mirror may be employed.
第一透镜阵列813以及第二透镜阵列814通过呈矩阵状地排列小透镜而形成。从光源811射出的光束由第一透镜阵列813分割为多个微小的部分光束,各部分光束由第二透镜阵列814以及叠加透镜816在作为照明对象的三个空间光调制装置840R、840G、840B的表面叠加。The first lens array 813 and the second lens array 814 are formed by arranging small lenses in a matrix. The light beam emitted from the light source 811 is divided into a plurality of small partial light beams by the first lens array 813, and each partial light beam is transmitted to the three spatial light modulation devices 840R, 840G, and 840B as illumination objects by the second lens array 814 and the superposition lens 816. surface overlay.
偏振光变换元件815具有使随机偏振光的光束一致为向一个方向振动的直线偏振光(s偏振光或p偏振光)的功能,在本实施方式中,一致为在色分离光学系统820中的光束的损失较少的s偏振光。The polarization conversion element 815 has the function of aligning the light beams of random polarized light into linearly polarized light (s-polarized light or p-polarized light) vibrating in one direction. The beam loses less s-polarized light.
色分离光学系统820具有将从照明光学系统810射出的光束分离为红色(R)光、绿色(G)光、蓝色(B)光这三色的色光的功能,具备B光反射分色镜821、RG光反射分色镜822、G光反射分色镜823、以及反射镜824、825。The color separation optical system 820 has the function of separating the light beam emitted from the illumination optical system 810 into three color lights of red (R) light, green (G) light, and blue (B) light, and is equipped with a B light reflecting dichroic mirror. 821 , an RG light reflecting dichroic mirror 822 , a G light reflecting dichroic mirror 823 , and reflecting mirrors 824 and 825 .
在从照明光学系统810射出的光束中,蓝色光的成分由B光反射分色镜821反射,并由反射镜824、861反射而到达平行化透镜830B。另一方面,从照明光学系统810射出的光束中,G光、R光的成分由RG光反射分色镜822反射,并由反射镜825反射而到达G光反射分色镜823。其中的G光的成分由G光反射分色镜823以及反射镜862反射而到达平行化透镜830G,红色光的成分透过G光反射分色镜823,由反射镜863反射而到达平行化透镜830R。In the light beam emitted from the illumination optical system 810 , the blue light component is reflected by the B light reflecting dichroic mirror 821 , is reflected by the reflecting mirrors 824 and 861 , and reaches the parallelizing lens 830B. On the other hand, among the light beams emitted from the illumination optical system 810 , components of the G light and the R light are reflected by the RG light reflecting dichroic mirror 822 , are reflected by the reflecting mirror 825 , and reach the G light reflecting dichroic mirror 823 . The G light component is reflected by the G light reflecting dichroic mirror 823 and the reflecting mirror 862 and reaches the parallelizing lens 830G, and the red light component passes through the G light reflecting dichroic mirror 823, is reflected by the reflecting mirror 863 and reaches the parallelizing lens 830R.
平行化透镜830R、830G、830B设定为,对于来自照明光学系统810的多个部分光束而言,以分别对空间光调制装置840R、840G、840B进行照明的方式使各部分光束分别成为大致平行的光束。The parallelizing lenses 830R, 830G, and 830B are set so that, with respect to the plurality of partial light beams from the illumination optical system 810, the partial light beams respectively illuminate the spatial light modulation devices 840R, 840G, and 840B so that the respective partial light beams are approximately parallel. Beam.
透过平行化透镜830R后的红色光到达空间光调制装置(第一空间光调制装置)840R,透过平行化透镜830G后的绿色光到达空间光调制装置(第二空间光调制装置)840G,透过平行化透镜830B后的蓝色光到达空间光调制装置(第三空间光调制装置)840B。The red light passing through the parallelizing lens 830R reaches the spatial light modulation device (first spatial light modulation device) 840R, and the green light passing through the parallelizing lens 830G reaches the spatial light modulation device (second spatial light modulation device) 840G, The blue light passing through the parallelizing lens 830B reaches the spatial light modulation device (third spatial light modulation device) 840B.
空间光调制装置840R是与图像信号对应地调制红色光的空间光调制装置,是透射型液晶显示装置(LCD)。设于空间光调制装置840R的未图示的液晶面板在两个透明基板之间封入有用于与图像信号对应地调制光的液晶层。由空间光调制装置840R调制后的红色光向作为色合成光学系统的正交分色棱镜850入射。此外,空间光调制装置840G、840B的结构以及功能与空间光调制装置840R相同。The spatial light modulation device 840R is a spatial light modulation device that modulates red light in accordance with an image signal, and is a transmissive liquid crystal display device (LCD). In the liquid crystal panel (not shown) provided in the spatial light modulation device 840R, a liquid crystal layer for modulating light according to an image signal is sealed between two transparent substrates. The red light modulated by the spatial light modulator 840R enters the cross dichroic prism 850 as a color synthesis optical system. In addition, the structures and functions of the spatial light modulation devices 840G and 840B are the same as those of the spatial light modulation device 840R.
正交分色棱镜850通过使三棱柱状的四个棱镜贴合而形成为近似正方形剖面的棱柱状,沿X字状的贴合面设有电介质多层膜851、852。电介质多层膜851使绿色光透过而将红色光反射,电介质多层膜852使绿色光透过而将蓝色光反射。而且,正交分色棱镜850使从空间光调制装置840R、840G、840B射出的各色光的调制光分别从入射面850R、850G、850B入射而合成,从而形成影像光,并使该影像光朝向投射光学系统860射出。The cross dichroic prism 850 is formed by bonding four triangular prism-shaped prisms into a prism shape with an approximately square cross section, and dielectric multilayer films 851 and 852 are provided along the X-shaped bonding surface. The dielectric multilayer film 851 transmits green light and reflects red light, and the dielectric multilayer film 852 transmits green light and reflects blue light. Furthermore, the cross dichroic prism 850 makes the modulated lights of the respective colors emitted from the spatial light modulators 840R, 840G, and 840B enter and combine them from the incident surfaces 850R, 850G, and 850B to form image light, and directs the image light toward The projection optical system 860 exits.
从投射光学系统860射出的影像光向光学元件5入射。The image light emitted from the projection optical system 860 enters the optical element 5 .
通过使用这样的图像生成部800,能够使鲜明的影像光向光学元件5入射。By using such an image generation unit 800 , clear image light can be made incident on the optical element 5 .
通过以上的第六实施方式,也能够起到与上述的实施方式相同的效果。The above-mentioned sixth embodiment can also achieve the same effects as those of the above-mentioned embodiment.
此外,在本实施方式中,对具备使用三个透射型液晶显示装置(LCD)作为空间光调制装置(光阀)的图像生成部的虚像显示装置进行了说明,但作为具备空间光调制装置的图像生成部的结构,不限定于此。例如,也可以是使用三个反射型液晶显示装置(LCD)作为空间光调制装置的结构。并且,也可以不论透射型/反射型,而例如使用两个液晶显示装置的结构。In addition, in this embodiment, a virtual image display device including an image generating unit using three transmissive liquid crystal display devices (LCD) as spatial light modulators (light valves) has been described, but as a The configuration of the image generation unit is not limited to this. For example, a configuration using three reflective liquid crystal display devices (LCD) as the spatial light modulation device may also be used. In addition, regardless of the transmissive type/reflective type, for example, a structure using two liquid crystal display devices may be used.
第七实施方式Seventh Embodiment
接下来对本发明的虚像显示装置的第七实施方式进行说明。Next, a seventh embodiment of the virtual image display device of the present invention will be described.
图19是示出第七实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 19 is a diagram illustrating a schematic configuration of an image generation unit included in a virtual image display device according to a seventh embodiment.
以下,参照该图对本发明的虚像显示装置的第七实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, a seventh embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiments, and descriptions of the same matters will be omitted.
第七实施方式中,图像生成部的结构不同,除此以外都与上述实施方式相同。The seventh embodiment is the same as the above-mentioned embodiment except that the structure of the image generating unit is different.
如图19所示,图像生成部7具有光源单元71、PBS棱镜73、反射型液晶面板74、以及投射光学系统75。As shown in FIG. 19 , the image generator 7 has a light source unit 71 , a PBS prism 73 , a reflective liquid crystal panel 74 , and a projection optical system 75 .
光源单元71具备红色、绿色、蓝色的激光光源71R、71G、71B、、与激光光源71R、71G、71B对应设置的准直透镜72R、72G、72B以及分色镜73R、73G、73B。The light source unit 71 includes red, green, and blue laser light sources 71R, 71G, and 71B, collimator lenses 72R, 72G, and 72B, and dichroic mirrors 73R, 73G, and 73B provided corresponding to the laser light sources 71R, 71G, and 71B.
激光光源71R、71G、71B分别具有未图示的光源和驱动电路。而且,激光光源71R射出红色的激光,激光光源71G射出绿色的激光,激光光源71B射出蓝色的激光。从这些激光光源71R、71G、71B射出的各色的激光是直线偏振光,相互振动方向相同(例如,S波)。The laser light sources 71R, 71G, and 71B each have a light source and a drive circuit (not shown). Furthermore, the laser light source 71R emits red laser light, the laser light source 71G emits green laser light, and the laser light source 71B emits blue laser light. Laser light of each color emitted from these laser light sources 71R, 71G, and 71B is linearly polarized light, and vibrates in the same direction (for example, S waves).
从各激光光源71R、71G、71B射出的各色的激光由准直透镜72R、72G、72B平行化,并向分色镜73R、73G、73B入射。分色镜73R具有反射红色的激光的特性。分色镜73B具有反射蓝色的激光并且使红色的激光透过的特性。分色镜73G具有反射绿色的激光并且使红色、蓝色的激光透过的特性。The laser beams of the respective colors emitted from the laser light sources 71R, 71G, and 71B are collimated by the collimator lenses 72R, 72G, and 72B, and enter the dichroic mirrors 73R, 73G, and 73B. The dichroic mirror 73R has a characteristic of reflecting red laser light. The dichroic mirror 73B has characteristics of reflecting blue laser light and transmitting red laser light. The dichroic mirror 73G has characteristics of reflecting green laser light and transmitting red and blue laser light.
激光光源71R、71G、71B以依次闪烁的方式被控制驱动,由此依次射出红色的激光、绿色的激光、蓝色的激光。射出的各色的激光分别通过准直透镜、分色镜,由PBS(偏振光束分光器)棱镜73的反射面反射而向反射型液晶面板74投射。The laser light sources 71R, 71G, and 71B are controlled and driven to blink sequentially, thereby sequentially emitting red laser light, green laser light, and blue laser light. The emitted laser light of each color passes through a collimator lens and a dichroic mirror, is reflected by a reflective surface of a PBS (polarizing beam splitter) prism 73 , and is projected toward a reflective liquid crystal panel 74 .
反射型液晶面板74是空间光调制装置,且是LCOS(Liquid Crystalon Silicon:液晶附硅),具有反射层。The reflective liquid crystal panel 74 is a spatial light modulation device, is LCOS (Liquid Crystalon Silicon) and has a reflective layer.
由反射层反射而通过PBS棱镜73的各色的激光(影像光)经由投射光学系统75向光学元件5入射。Laser light (image light) of each color that is reflected by the reflective layer and passes through the PBS prism 73 enters the optical element 5 via the projection optical system 75 .
此外,由反射型液晶面板74反射后的各色的激光的振动方向旋转90°,而成为p偏振光。In addition, the vibration directions of the laser beams of the respective colors reflected by the reflective liquid crystal panel 74 are rotated by 90° to become p-polarized light.
通过使用这样的图像生成部7,能够使鲜明的影像光向光学元件5入射。By using such an image generation unit 7 , clear image light can be made incident on the optical element 5 .
通过以上的第七实施方式,也能够起到与上述的实施方式相同的效果。The above-mentioned seventh embodiment can also achieve the same effects as those of the above-mentioned embodiment.
此外,在本实施方式中,是使用了一片反射型液晶面板74的单板方式,但图像生成部的结构不限定于此。例如,也可以按照红色光、绿色光、蓝色光而分别设置反射型液晶面板的三板方式。并且,例如也可以是替换反射型液晶面板而使用透射型液晶面板作为空间光调制装置(光阀)的结构。In addition, in the present embodiment, a single-panel system using one reflective liquid crystal panel 74 is used, but the configuration of the image generation unit is not limited to this. For example, a three-panel system in which reflective liquid crystal panels are respectively provided for red light, green light, and blue light may also be used. Furthermore, for example, instead of a reflective liquid crystal panel, a transmissive liquid crystal panel may be used as the spatial light modulation device (light valve).
第八实施方式Eighth embodiment
接下来对本发明的虚像显示装置的第八实施方式进行说明。Next, an eighth embodiment of the virtual image display device of the present invention will be described.
图20是示出第八实施方式的虚像显示装置所具备的图像生成部的简要结构的图。FIG. 20 is a diagram showing a schematic configuration of an image generation unit included in a virtual image display device according to an eighth embodiment.
以下,参照该图对本发明的虚像显示装置的第八实施方式进行说明,以与上述的实施方式不同的方面为中心进行说明,并省略相同事项的说明。Hereinafter, an eighth embodiment of the virtual image display device according to the present invention will be described with reference to this figure, focusing on points that are different from the above-mentioned embodiment, and descriptions of the same matters will be omitted.
第八实施方式中,图像生成部的结构不同,除此以外都与上述实施方式相同。The eighth embodiment is the same as the above-mentioned embodiment except that the structure of the image generating unit is different.
如图20所示,图像生成部700具有有机EL装置70和准直透镜(未图示)。As shown in FIG. 20 , the image generator 700 has an organic EL device 70 and a collimator lens (not shown).
有机EL装置70具备基材710、反射层722、保护层726、阳极724(724R、724G、724B)、有机功能层730(730R、730G、730B)、阴极732、隔壁部728、密封层744、以及彩色滤色器基板740。并且,有机EL装置70是向彩色滤色器基板740侧射出的顶部发射型。The organic EL device 70 includes a substrate 710, a reflective layer 722, a protective layer 726, an anode 724 (724R, 724G, 724B), an organic functional layer 730 (730R, 730G, 730B), a cathode 732, a partition wall 728, a sealing layer 744, and a color filter substrate 740 . Furthermore, the organic EL device 70 is a top emission type that emits light toward the color filter substrate 740 side.
此处,由阳极724R、有机功能层730R以及阴极732的一部分构成有机EL元件78R。同样,由阳极724G、有机功能层730G以及阴极732的一部分构成有机EL元件78G,由阳极724B、有机功能层730B以及阴极732的一部分构成有机EL元件78B。Here, the organic EL element 78R is constituted by the anode 724R, the organic functional layer 730R, and a part of the cathode 732 . Similarly, the organic EL element 78G is constituted by the anode 724G, the organic functional layer 730G, and a part of the cathode 732 , and the organic EL element 78B is constituted by the anode 724B, the organic functional layer 730B, and a part of the cathode 732 .
在基材710,且在各有机EL元件78R、78G、78B,设有具备半导体膜、栅极绝缘层、栅电极、漏电极以及源电极的TFT(未图示)。并且,由于有机EL装置70是顶部发射型的,所以基材710也可以由透光性材料以及不透光性材料中任一个构成。A TFT (not shown) including a semiconductor film, a gate insulating layer, a gate electrode, a drain electrode, and a source electrode is provided on the substrate 710 and on each of the organic EL elements 78R, 78G, and 78B. Furthermore, since the organic EL device 70 is a top emission type, the substrate 710 may be made of either a light-transmitting material or a light-impermeable material.
保护层726以覆盖基材710和反射层722的方式设置。保护层726的上表面平坦,保护层726例如由SiO2等无机绝缘膜、丙烯酸树脂等有机树脂形成。The protective layer 726 is provided to cover the base material 710 and the reflective layer 722 . The upper surface of the protective layer 726 is flat, and the protective layer 726 is formed of, for example, an inorganic insulating film such as SiO 2 or an organic resin such as acrylic resin.
阳极724R、724G、724B设置在保护层726上。阳极724由具有透光性的导电材料构成,例如由ITO等形成。Anodes 724R, 724G, 724B are disposed on protective layer 726 . The anode 724 is made of a light-transmitting conductive material, such as ITO, for example.
隔壁部728设置在保护层726上。隔壁部728例如由丙烯酸树脂等有机树脂形成。The partition wall portion 728 is provided on the protective layer 726 . The partition wall portion 728 is formed of, for example, an organic resin such as acrylic resin.
有机功能层730R、730G、730B分别形成在各阳极724R、724G、724B上。有机功能层730R以红色光发光,有机功能层730G以绿色光发光,有机功能层730B以蓝色光发光。Organic functional layers 730R, 730G, 730B are formed on the respective anodes 724R, 724G, 724B, respectively. The organic functional layer 730R emits red light, the organic functional layer 730G emits green light, and the organic functional layer 730B emits blue light.
有机功能层730R、730G、730B例如由空穴输送层、发光层以及电子输送层构成。在有机功能层730R、730G、730B中,分别从空穴输送层注入的空穴和从电子输送层注入的电子在发光层中再结合,从而得到红色光、绿色光、蓝色光。通过像这样具有以三个光发光的有机功能层730R、730G、730B,从而有机EL装置70能够进行全彩色发光。The organic functional layers 730R, 730G, and 730B are composed of, for example, a hole transport layer, a light emitting layer, and an electron transport layer. In the organic functional layers 730R, 730G, and 730B, holes injected from the hole transport layer and electrons injected from the electron transport layer are recombined in the light emitting layer, thereby obtaining red light, green light, and blue light. By having three organic functional layers 730R, 730G, and 730B that emit light in this manner, the organic EL device 70 can emit light in full color.
阴极732以覆盖隔壁部728和各有机功能层730R、730G、730B的方式设置。阴极732成为与全阳极对应的共通电极。阴极732作为具有使到达其表面的光的一部分透过并且使其它一部分反射的性质的半透过反射层发挥功能。阴极732例如由镁(Mg)或银(Ag)单体、或者以它们为主要成分的合金等形成。The cathode 732 is provided so as to cover the partition wall portion 728 and the respective organic functional layers 730R, 730G, and 730B. The cathode 732 is a common electrode corresponding to all anodes. The cathode 732 functions as a semi-transmissive reflective layer having a property of transmitting a part of light reaching its surface and reflecting the other part. The cathode 732 is formed of, for example, magnesium (Mg) or silver (Ag) alone, or an alloy containing these as main components.
并且,在阴极732上设有钝化层(未图示)。钝化层例如由SiO2等气体透过率较低的无机材料形成,是用于防止因氧、水分的浸入引起有机EL装置70的劣化的保护膜。Furthermore, a passivation layer (not shown) is provided on the cathode 732 . The passivation layer is formed of, for example, an inorganic material with a low gas permeability such as SiO 2 , and is a protective film for preventing deterioration of the organic EL device 70 due to intrusion of oxygen and moisture.
在这样的结构的有机EL元件78R、78G、78B的与基材710相反的一侧,配置彩色滤色器基板740。A color filter substrate 740 is arranged on the side opposite to the substrate 710 of the organic EL elements 78R, 78G, and 78B having such a structure.
彩色滤色器基板740由玻璃等透光性材料构成。在彩色滤色器基板740的基材710侧的面,形成有彩色滤色器742R、742G、742B以及遮光层743。The color filter substrate 740 is made of a translucent material such as glass. On the surface of the color filter substrate 740 on the base material 710 side, color filters 742R, 742G, and 742B and a light shielding layer 743 are formed.
彩色滤色器742R、742G、742B设为在俯视的情况下与有机EL元件78R、78G、78B重叠。此处,由上述的三个有机EL元件78R、78G、78B、以及与它们重叠设置的彩色滤色器742R、742G、742B来构成有机EL装置70的一个像素。即,在图20中,图示了有机EL装置70的一个像素。此外,有机EL装置70的像素数没有特别限定。The color filters 742R, 742G, and 742B overlap the organic EL elements 78R, 78G, and 78B in plan view. Here, one pixel of the organic EL device 70 is constituted by the above-mentioned three organic EL elements 78R, 78G, and 78B, and color filters 742R, 742G, and 742B provided to overlap them. That is, in FIG. 20 , one pixel of the organic EL device 70 is illustrated. In addition, the number of pixels of the organic EL device 70 is not particularly limited.
并且,彩色滤色器742R、742G、742B用于选择性地使从有机EL元件78R、78G、78B射出的光中的红色光、绿色光、蓝色光的各波段的光透过。彩色滤色器742R与红色光的波段对应,彩色滤色器742G与绿色光的波段对应,彩色滤色器742B与蓝色光的波段对应。Furthermore, the color filters 742R, 742G, and 742B selectively transmit light in each wavelength band of red light, green light, and blue light among the light emitted from the organic EL elements 78R, 78G, and 78B. The color filter 742R corresponds to the wavelength band of red light, the color filter 742G corresponds to the wavelength band of green light, and the color filter 742B corresponds to the wavelength band of blue light.
并且,遮光层743设为对彩色滤色器742R、742G、742B进行划分。In addition, the light shielding layer 743 is configured to partition the color filters 742R, 742G, and 742B.
这样的彩色滤色器基板740经由密封层744而与基材710贴合。密封层744例如由环氧树脂等具有透光性的固化性树脂形成。Such a color filter substrate 740 is bonded to the base material 710 via the sealing layer 744 . The sealing layer 744 is formed of, for example, a light-transmitting curable resin such as epoxy resin.
在这样的结构的有机EL装置70的彩色滤色器742R、742G、742B通过后的红色光、绿色光、蓝色光向准直透镜(未图示)入射。利用准直透镜(未图示),将从有机EL装置70射出的红色光、绿色光、蓝色光调整(调制)为大致平行状态的光束,并作为调制后的影像光向光学元件5传送。The red light, green light, and blue light passing through the color filters 742R, 742G, and 742B of the organic EL device 70 having such a configuration enters a collimator lens (not shown). The red light, green light, and blue light emitted from the organic EL device 70 are adjusted (modulated) into approximately parallel beams by a collimator lens (not shown), and transmitted to the optical element 5 as modulated image light.
通过使用这样的图像生成部700,能够使鲜明的影像光向光学元件5入射,并且能够实现图像生成部700的小型化。By using such an image generating unit 700 , clear image light can be made incident on the optical element 5 , and the size of the image generating unit 700 can be reduced.
通过以上的第八实施方式,也能够起到与上述的实施方式相同的效果。The above-mentioned eighth embodiment can also achieve the same effects as those of the above-mentioned embodiment.
以上,基于图示的实施方式对本发明的虚像显示装置以及头戴式显示器进行了说明,但本发明不限定于此。例如,本发明的虚像显示装置中,各部的结构能够置换为具有相同功能的任意结构,并且也能够附加其它的任意结构。As above, the virtual image display device and the head-mounted display according to the present invention have been described based on the illustrated embodiments, but the present invention is not limited thereto. For example, in the virtual image display device of the present invention, the configuration of each part can be replaced with an arbitrary configuration having the same function, and other arbitrary configurations can also be added.
并且,本发明也可以组合上述各实施方式中的任意两个以上的结构(特征)。Furthermore, in the present invention, any two or more configurations (features) of the above-described embodiments may be combined.
并且,若本发明的虚像显示装置是形成虚像作为观察者所辨识的图像的装置,则不限定于应用于眼镜型的头戴式显示器的情况,例如也能够应用于头盔型或者耳麦型的头戴式显示器、由观察者的颈或肩等的身体支承的形态的图像显示装置等。并且,在上述的实施方式中,以图像显示装置整体安装于观察者的头部的情况为例进行了说明,但图像显示装置也可以具有在观察者的头部安装的部分、和在观察者的头部以外的部分安装或者携带的部分。Moreover, if the virtual image display device of the present invention is a device that forms a virtual image as an image recognized by an observer, it is not limited to the case of being applied to a glasses-type head-mounted display, and can also be applied to a helmet-type or headset-type head, for example. A wearable display, an image display device in a form supported by the observer's neck or shoulders, and the like. In addition, in the above-mentioned embodiment, the case where the entire image display device is attached to the observer's head has been described as an example, but the image display device may have a part attached to the observer's head, and a portion attached to the observer's head. The part other than the head is installed or carried.
并且,在上述的实施方式中,以双眼类型的透射型头戴式显示器的结构为代表进行了说明,但例如也可以是在观察者安装有头戴式显示器的状态下遮挡外景的非透射型头戴式显示器的结构。In addition, in the above-mentioned embodiment, the structure of the transmissive head-mounted display of the binocular type has been described as a representative, but for example, it may be a non-transmissive type that blocks the outside scene while the observer is wearing the head-mounted display. The structure of the head-mounted display.
并且,本发明的头戴式显示器也可以具有扬声器、耳机等输出声音的装置等。In addition, the head-mounted display of the present invention may include devices that output sound, such as speakers and earphones.
附图标记的说明:Explanation of reference signs:
10:头戴式显示器;1:虚像显示装置;2:框架;21:前部;211:边框;212:背阴部;22:镜腿;23:鼻托;27:凹部;3、900、800、7、700:图像生成部;31:影像光生成部;311:光源部;311B:光源;311G:光源;311R:光源;313:光合成部;313a、313b:分色镜;321、322:驱动电路;32:驱动信号生成部;312B:驱动电路;312G:驱动电路;312R:驱动电路;33:控制部;34:透镜;35:光扫描部;11:可动反光镜部;12a、12b:轴部;13:框体部;14a、14b、14c、14d:轴部;15:支承部;16:永久磁铁;17:线圈;18:信号叠加部;111:基部;112:隔离物;113:光反射板;114:光反射部;115:硬质层;4:放大光学系统;42:修正透镜;43:遮光板;5、5X、5Y:光学元件;5A:第一光学元件(光学元件);5B:第二光学元件(光学元件);51、52、53:导光部;54:半反光镜层(第一光分支层);55:半反光镜层(第二光分支层);56:入射面;57:射出面;58a、58b:侧面;59a、59b:侧面;6:反射部;61:非球面反光镜;611:凹面;65:光偏转部;651:全息元件;EA:耳朵;EY:眼睛(左眼、右眼);NS:鼻子;H:头部;A1、A2、B1、B2:磁场;L1、L2、L3、L4、L21、L22、L31、L32、L33、L34、Lx:影像光;L3a、L3b、L3c、L3d、L4a、L42b、L43c、L44d:影像光;T1、T2:周期;V1:第一驱动信号;V2:第二驱动信号;X:轴线;f1:共振频率;51A、51B:第一导光部(导光部);52A、52B:第二导光部(导光部);53A、53B:第三导光部(导光部);51C:第一导光部(导光部);52C:第二导光部(导光部);51D:第三导光部(导光部);53C:第四导光部(导光部);52D:第五导光部(导光部);53D:第六导光部(导光部);51E:第七导光部(导光部);52E:第八导光部(导光部);53E:第九导光部(导光部);54A、54B、55A、55B:半反光镜层;54C、55C、54D、55D:半反光镜层;56A、56B、56Y:入射面;57A、57B、57Y:射出面;58Xa、58Xb、58Ya、58Yb:侧面;59Xa、59Xb、59Ya、59Yb:侧面;60:放大导光部;66:第一导光板(第一放大导光部);62:第二导光板(第二放大导光部);64:光提取部;67:局部透过反射面;67A、67B:部分;613:侧面;614:侧面;615:第一主面;612:第二主面;615A、615B:部分;621:第一主面;622:第二主面;623、624:侧面;625、626:端面;641:全息元件;671、672:高透过面;911G、911R:激光光源;920:光源装置;921:超高压水银灯;922:反射器;930:均匀照明光学系统;931:棒状积分器;932:色轮;932a:滤色面;933:中继透镜组;934:反射镜;940:光调制装置;941:基板;942:光调制元件;960:投射光学系统;810:照明光学系统;811:光源;812:反射器;813:第一透镜阵列;814:第二透镜阵列;815:偏振光变换元件;816:叠加透镜;820:色分离光学系统;821:B光反射分色镜;822:RG光反射分色镜;823:G光反射分色镜;824、825:反射镜;830B、830G、830R:平行化透镜;840B、840G、840R:空间光调制装置;850:正交分色棱镜;850G、850R:入射面;851、852:电介质多层膜;860:投射光学系统;861、863:反射镜;870:偏振旋转器;71:光源单元;71B、71G、71R:激光光源;72G、72:准直透镜;73:棱镜(PBS棱镜);73B、73G、73R:分色镜;74:反射型液晶面板;75:准直透镜;70:有机EL装置;710:基材;722:反射层;724:阳极;724B、724G、724R:阳极;726:保护层;728:隔壁部;730(730R、730G、730B):有机功能层;732:阴极;740:彩色滤色器基板;742B、742G、742R:彩色滤色器;743:遮光层;744:密封层;78B、78G、78R:有机EL元件;α:锐角;θ5:角度;θ:倾斜角;θ1:倾斜角;w:轴线。10: head-mounted display; 1: virtual image display device; 2: frame; 21: front; 211: frame; 212: pubic area; 22: temple; 23: nose pad; 27: recess; 3, 900, 800 , 7, 700: image generation unit; 31: image light generation unit; 311: light source unit; 311B: light source; 311G: light source; 311R: light source; 313: light synthesis unit; 313a, 313b: dichroic mirror; 321, 322: drive circuit; 32: drive signal generating unit; 312B: drive circuit; 312G: drive circuit; 312R: drive circuit; 33: control unit; 34: lens; 35: light scanning unit; 11: movable mirror unit; 12a, 12b: Shaft; 13: Frame; 14a, 14b, 14c, 14d: Shaft; 15: Support; 16: Permanent Magnet; 17: Coil; 18: Signal Superposition; 111: Base; 112: Spacer ; 113: light reflection plate; 114: light reflection part; 115: hard layer; 4: magnifying optical system; 42: correction lens; 43: light shielding plate; 5, 5X, 5Y: optical element; (optical element); 5B: second optical element (optical element); 51, 52, 53: light guide; 54: half mirror layer (first light branching layer); 55: half mirror layer (second light branch layer); 56: incident surface; 57: emitting surface; 58a, 58b: side surface; 59a, 59b: side surface; 6: reflection part; 61: aspherical mirror; 611: concave surface; 65: light deflection part; 651: Holographic element; EA: ear; EY: eye (left eye, right eye); NS: nose; H: head; A1, A2, B1, B2: magnetic field; L1, L2, L3, L4, L21, L22, L31 , L32, L33, L34, Lx: image light; L3a, L3b, L3c, L3d, L4a, L42b, L43c, L44d: image light; T1, T2: period; V1: first drive signal; V2: second drive signal ; X: axis; f1: resonance frequency; 51A, 51B: first light guide part (light guide part); 52A, 52B: second light guide part (light guide part); 53A, 53B: third light guide part ( light guide); 51C: first light guide (light guide); 52C: second light guide (light guide); 51D: third light guide (light guide); 53C: fourth light guide 52D: fifth light guide (light guide); 53D: sixth light guide (light guide); 51E: seventh light guide (light guide); 52E: eighth Light guide part (light guide part); 53E: ninth light guide part (light guide part); 54A, 54B, 55A, 55B: half mirror layer; 54C, 55C, 54D, 55D: half mirror layer; 56A, 56B, 56Y: incident surface; 57A, 57B, 57Y: emission surface; 58Xa, 58Xb, 58Ya, 58Yb: side surface; 59Xa, 59Xb, 59Ya, 59Yb: side surface; 60: enlarged light guide part; 66: first light guide plate (first enlarged light guide part); 62: second light guide plate (second enlarged light guide part); 64: light extraction part ;67: Partially through the reflective surface; 67A, 67B: part; 613: side; 614: side; 615: first main surface; 612: second main surface; 615A, 615B: part; 621: first main surface; 622: second main surface; 623, 624: side surface; 625, 626: end surface; 641: holographic element; 671, 672: high transmission surface; 911G, 911R: laser light source; 920: light source device; 921: ultra-high pressure mercury lamp ;922: reflector; 930: uniform illumination optical system; 931: rod integrator; 932: color wheel; 932a: color filter surface; 933: relay lens group; 934: mirror; 940: light modulation device; 941: Substrate; 942: light modulation element; 960: projection optical system; 810: illumination optical system; 811: light source; 812: reflector; 813: first lens array; 814: second lens array; 815: polarized light conversion element; 816: stacking lens; 820: color separation optical system; 821: B light reflecting dichroic mirror; 822: RG light reflecting dichroic mirror; 823: G light reflecting dichroic mirror; 824, 825: mirrors; 830B, 830G, 830R: parallelizing lens; 840B, 840G, 840R: spatial light modulation device; 850: cross dichroic prism; 850G, 850R: incident surface; 851, 852: dielectric multilayer film; 860: projection optical system; 861, 863 : mirror; 870: polarization rotator; 71: light source unit; 71B, 71G, 71R: laser light source; 72G, 72: collimator lens; 73: prism (PBS prism); 73B, 73G, 73R: dichroic mirror; 74: reflective liquid crystal panel; 75: collimator lens; 70: organic EL device; 710: substrate; 722: reflective layer; 724: anode; 724B, 724G, 724R: anode; 726: protective layer; 728: partition ; 730 (730R, 730G, 730B): organic functional layer; 732: cathode; 740: color filter substrate; 742B, 742G, 742R: color filter; 743: light shielding layer; 744: sealing layer; 78B, 78G , 78R: organic EL element; α: acute angle; θ5: angle; θ: tilt angle; θ1: tilt angle; w: axis.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-066358 | 2014-03-27 | ||
JP2014066358A JP6413291B2 (en) | 2014-03-27 | 2014-03-27 | Virtual image display device and head mounted display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104950445A true CN104950445A (en) | 2015-09-30 |
CN104950445B CN104950445B (en) | 2019-01-15 |
Family
ID=52706089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510133976.0A Active CN104950445B (en) | 2014-03-27 | 2015-03-25 | virtual image display apparatus and head-mounted display |
Country Status (6)
Country | Link |
---|---|
US (1) | US10282906B2 (en) |
EP (1) | EP2947503B1 (en) |
JP (1) | JP6413291B2 (en) |
KR (1) | KR20150112852A (en) |
CN (1) | CN104950445B (en) |
TW (1) | TW201602639A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107870427A (en) * | 2016-09-26 | 2018-04-03 | 精工爱普生株式会社 | head mounted display |
CN108700751A (en) * | 2016-03-04 | 2018-10-23 | 夏普株式会社 | Use space optical modulator generates the head-mounted display of hologram image |
CN110658628A (en) * | 2018-06-29 | 2020-01-07 | 精工爱普生株式会社 | head mounted display |
CN110709772A (en) * | 2017-03-21 | 2020-01-17 | 奇跃公司 | Method, apparatus and system for illuminating a spatial light modulator |
CN110832383A (en) * | 2017-07-12 | 2020-02-21 | 罗伯特·博世有限公司 | Projection device for data glasses, data glasses and method for improving the symmetry and/or reducing the diameter of a light beam |
TWI691735B (en) * | 2019-03-26 | 2020-04-21 | 宏碁股份有限公司 | Near-eye display device |
CN111123514A (en) * | 2018-10-30 | 2020-05-08 | 精工爱普生株式会社 | Head-mounted display device |
CN111258064A (en) * | 2018-11-30 | 2020-06-09 | 精工爱普生株式会社 | Light guide device and virtual image display device |
CN111628099A (en) * | 2019-02-28 | 2020-09-04 | 精工爱普生株式会社 | Image display device and virtual image display device |
CN111665622A (en) * | 2019-03-06 | 2020-09-15 | 株式会社理光 | Optical device, retina projection display device, and head-mounted display device |
CN112219152A (en) * | 2018-06-08 | 2021-01-12 | 索尼公司 | Image display device |
US11480861B2 (en) | 2017-03-21 | 2022-10-25 | Magic Leap, Inc. | Low-profile beam splitter |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8282222B2 (en) | 2007-10-10 | 2012-10-09 | Gerard Dirk Smits | Image projector with reflected light tracking |
EP2625845B1 (en) | 2010-10-04 | 2021-03-03 | Gerard Dirk Smits | System and method for 3-d projection and enhancements for interactivity |
US12025807B2 (en) | 2010-10-04 | 2024-07-02 | Gerard Dirk Smits | System and method for 3-D projection and enhancements for interactivity |
JP6340867B2 (en) | 2014-03-28 | 2018-06-13 | セイコーエプソン株式会社 | Electro-optic device |
WO2015149027A1 (en) | 2014-03-28 | 2015-10-01 | Gerard Dirk Smits | Smart head-mounted projection system |
WO2016025502A1 (en) | 2014-08-11 | 2016-02-18 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
JP6503693B2 (en) | 2014-11-05 | 2019-04-24 | セイコーエプソン株式会社 | Optical element, method of manufacturing optical element, optical device and display device |
JP6507575B2 (en) | 2014-11-05 | 2019-05-08 | セイコーエプソン株式会社 | Optical device and display device |
US10043282B2 (en) | 2015-04-13 | 2018-08-07 | Gerard Dirk Smits | Machine vision for ego-motion, segmenting, and classifying objects |
JP6367166B2 (en) | 2015-09-01 | 2018-08-01 | 株式会社東芝 | Electronic apparatus and method |
US20170102540A1 (en) * | 2015-10-12 | 2017-04-13 | Patrick Gerard McGlew | Variable reflectivity image combiner for wearable displays |
US9753126B2 (en) | 2015-12-18 | 2017-09-05 | Gerard Dirk Smits | Real time position sensing of objects |
KR102571818B1 (en) * | 2016-01-06 | 2023-08-29 | 삼성전자주식회사 | Head mounted type electronic device |
US9813673B2 (en) | 2016-01-20 | 2017-11-07 | Gerard Dirk Smits | Holographic video capture and telepresence system |
IL244179B (en) * | 2016-02-18 | 2020-05-31 | Amitai Yaakov | Compact beam expanding system |
CN109313383A (en) * | 2016-04-13 | 2019-02-05 | 赛尔米克实验室公司 | For focusing the system, apparatus and method of laser projecting apparatus |
TWI609199B (en) * | 2016-06-30 | 2017-12-21 | 葉天守 | Reflective virtual image displaying device |
WO2018057660A2 (en) | 2016-09-20 | 2018-03-29 | Apple Inc. | Augmented reality system |
JP2018054671A (en) | 2016-09-26 | 2018-04-05 | セイコーエプソン株式会社 | Beam diameter enlargement device, and display device |
JP2018054673A (en) | 2016-09-26 | 2018-04-05 | セイコーエプソン株式会社 | Retina scanning type display device, and beam diameter enlargement element |
CN110073243B (en) | 2016-10-31 | 2023-08-04 | 杰拉德·迪尔克·施密茨 | Fast scanning lidar using dynamic voxel detection |
US10215987B2 (en) * | 2016-11-10 | 2019-02-26 | North Inc. | Systems, devices, and methods for astigmatism compensation in a wearable heads-up display |
CN114895467A (en) | 2016-11-30 | 2022-08-12 | 奇跃公司 | Method and system for high resolution digital display |
EP3563347A4 (en) | 2016-12-27 | 2020-06-24 | Gerard Dirk Smits | Systems and methods for machine perception |
TWI622804B (en) * | 2017-02-16 | 2018-05-01 | 台達電子工業股份有限公司 | Head mounted display |
US10473921B2 (en) | 2017-05-10 | 2019-11-12 | Gerard Dirk Smits | Scan mirror systems and methods |
CA3061377A1 (en) * | 2017-05-16 | 2018-11-22 | Magic Leap, Inc. | Systems and methods for mixed reality |
US11122256B1 (en) * | 2017-08-07 | 2021-09-14 | Apple Inc. | Mixed reality system |
JP6958106B2 (en) | 2017-08-21 | 2021-11-02 | セイコーエプソン株式会社 | Manufacturing method of deflector, display device and deflector |
CN107422484B (en) | 2017-09-19 | 2023-07-28 | 歌尔光学科技有限公司 | Prism-type AR display device |
WO2019079750A1 (en) | 2017-10-19 | 2019-04-25 | Gerard Dirk Smits | Methods and systems for navigating a vehicle including a novel fiducial marker system |
JP7046582B2 (en) * | 2017-12-07 | 2022-04-04 | キヤノン株式会社 | Display device and head-mounted display |
CN107861247B (en) * | 2017-12-22 | 2020-08-25 | 联想(北京)有限公司 | Optical component and augmented reality device |
KR20190087977A (en) * | 2017-12-25 | 2019-07-25 | 저텍 테크놀로지 컴퍼니 리미티드 | Laser beam scanning display and augmented reality glasses |
JP7000167B2 (en) * | 2018-01-11 | 2022-01-19 | 三星電子株式会社 | Image display device |
US10379220B1 (en) | 2018-01-29 | 2019-08-13 | Gerard Dirk Smits | Hyper-resolved, high bandwidth scanned LIDAR systems |
JP7187838B2 (en) * | 2018-06-29 | 2022-12-13 | セイコーエプソン株式会社 | head mounted display |
US10955677B1 (en) | 2018-08-06 | 2021-03-23 | Apple Inc. | Scene camera |
KR102605397B1 (en) * | 2018-08-20 | 2023-11-24 | 삼성디스플레이 주식회사 | Device for providing augmented reality |
JP2020071292A (en) * | 2018-10-30 | 2020-05-07 | セイコーエプソン株式会社 | Head-mounted display device |
DE102019102609A1 (en) * | 2019-02-01 | 2020-08-06 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system and a lighting and / or projection system |
DE102019102604A1 (en) | 2019-02-01 | 2020-08-06 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
DE102019102614A1 (en) | 2019-02-01 | 2020-08-06 | Carl Zeiss Jena Gmbh | Screen with a transparent base |
DE102019102608A1 (en) | 2019-02-01 | 2020-08-06 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
JP6900961B2 (en) * | 2019-02-28 | 2021-07-14 | セイコーエプソン株式会社 | Image display device and virtual image display device |
TWI740123B (en) * | 2019-04-02 | 2021-09-21 | 酷設工坊股份有限公司 | A helmet with an optical machine remover |
WO2020235816A1 (en) | 2019-05-21 | 2020-11-26 | Samsung Electronics Co., Ltd. | Glasses-type display apparatus |
KR20200134139A (en) * | 2019-05-21 | 2020-12-01 | 삼성전자주식회사 | Glasses type display apparatus |
JP2021033170A (en) | 2019-08-28 | 2021-03-01 | セイコーエプソン株式会社 | Optical elements, manufacturing methods and display devices for optical elements |
US11372320B2 (en) | 2020-02-27 | 2022-06-28 | Gerard Dirk Smits | High resolution scanning of remote objects with fast sweeping laser beams and signal recovery by twitchy pixel array |
JP2021152564A (en) * | 2020-03-24 | 2021-09-30 | セイコーエプソン株式会社 | Virtual image display device and optical unit |
JPWO2022075463A1 (en) | 2020-10-08 | 2022-04-14 | ||
JP2022072160A (en) * | 2020-10-29 | 2022-05-17 | セイコーエプソン株式会社 | Virtual image display device and manufacturing method of virtual image display device |
TWI791327B (en) * | 2021-11-17 | 2023-02-01 | 天勤光電股份有限公司 | Laser lighting module |
DE102021132134A1 (en) | 2021-12-07 | 2023-06-07 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | FOLDED MULTI-LASER PACKAGE |
CN117687221B (en) * | 2024-02-04 | 2024-04-12 | 中国民用航空飞行学院 | VR glasses based on flight simulation inspection uses |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029032A1 (en) * | 2005-09-07 | 2007-03-15 | Bae Systems Plc | A projection display with two plate-like, co-planar waveguides including gratings |
CN101730859A (en) * | 2007-07-10 | 2010-06-09 | 微视公司 | The substrate-guided type repeater that uses with the scanning beam image source |
WO2011024291A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社島津製作所 | Display device |
US8531773B2 (en) * | 2011-01-10 | 2013-09-10 | Microvision, Inc. | Substrate guided relay having a homogenizing layer |
CN103293674A (en) * | 2012-02-24 | 2013-09-11 | 精工爱普生株式会社 | Virtual image display device |
CN103389576A (en) * | 2012-05-11 | 2013-11-13 | 精工爱普生株式会社 | Optical device, optical scanner, and image display device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1527049A (en) * | 1976-06-18 | 1978-10-04 | Pilkington Perkin Elmer Ltd | Head-up displays |
FR2430206A1 (en) * | 1978-07-06 | 1980-02-01 | Cuvillier Roger | PROTECTIVE HELMET WITH INCORPORATED MIRROR |
JPH07325267A (en) | 1994-05-31 | 1995-12-12 | Canon Inc | Light projecting optical device using light mixing optical element |
JP2002258208A (en) * | 2001-03-01 | 2002-09-11 | Mixed Reality Systems Laboratory Inc | Optical element and composite display device utilizing it |
US7418170B2 (en) | 2004-03-29 | 2008-08-26 | Sony Corporation | Optical device and virtual image display device |
JP4513516B2 (en) | 2004-11-11 | 2010-07-28 | 株式会社日立製作所 | Video display device |
JP2008041513A (en) | 2006-08-09 | 2008-02-21 | Seiko Epson Corp | Lighting device and projector |
JP2009258656A (en) | 2008-03-28 | 2009-11-05 | Brother Ind Ltd | Light pipe, illuminating optical system, and image projection device |
WO2010067116A1 (en) * | 2008-12-12 | 2010-06-17 | Bae Systems Plc | Improvements in or relating to waveguides |
ES2721600T5 (en) * | 2008-12-12 | 2022-04-11 | Bae Systems Plc | Improvements in or related to waveguides |
JP2011075956A (en) | 2009-09-30 | 2011-04-14 | Brother Industries Ltd | Head-mounted display |
EP2558776B1 (en) * | 2010-04-16 | 2022-09-14 | Azumo, Inc. | Front illumination device comprising a film-based lightguide |
US8913324B2 (en) * | 2012-08-07 | 2014-12-16 | Nokia Corporation | Display illumination light guide |
FR2999301B1 (en) * | 2012-12-12 | 2015-01-09 | Thales Sa | OPTICAL GUIDE OF COLLIMATE IMAGES WITH OPTICAL BEAM DEDOLDER AND OPTICAL DEVICE THEREFOR |
-
2014
- 2014-03-27 JP JP2014066358A patent/JP6413291B2/en active Active
-
2015
- 2015-03-24 TW TW104109438A patent/TW201602639A/en unknown
- 2015-03-25 EP EP15160773.6A patent/EP2947503B1/en active Active
- 2015-03-25 KR KR1020150041356A patent/KR20150112852A/en unknown
- 2015-03-25 CN CN201510133976.0A patent/CN104950445B/en active Active
- 2015-03-26 US US14/669,314 patent/US10282906B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029032A1 (en) * | 2005-09-07 | 2007-03-15 | Bae Systems Plc | A projection display with two plate-like, co-planar waveguides including gratings |
CN101730859A (en) * | 2007-07-10 | 2010-06-09 | 微视公司 | The substrate-guided type repeater that uses with the scanning beam image source |
WO2011024291A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社島津製作所 | Display device |
US8531773B2 (en) * | 2011-01-10 | 2013-09-10 | Microvision, Inc. | Substrate guided relay having a homogenizing layer |
CN103293674A (en) * | 2012-02-24 | 2013-09-11 | 精工爱普生株式会社 | Virtual image display device |
CN103389576A (en) * | 2012-05-11 | 2013-11-13 | 精工爱普生株式会社 | Optical device, optical scanner, and image display device |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700751A (en) * | 2016-03-04 | 2018-10-23 | 夏普株式会社 | Use space optical modulator generates the head-mounted display of hologram image |
CN108700751B (en) * | 2016-03-04 | 2020-11-24 | 夏普株式会社 | Head mounted display for generating holographic images using spatial light modulator |
CN107870427A (en) * | 2016-09-26 | 2018-04-03 | 精工爱普生株式会社 | head mounted display |
CN107870427B (en) * | 2016-09-26 | 2021-05-28 | 精工爱普生株式会社 | head mounted display |
CN110709772B (en) * | 2017-03-21 | 2022-06-21 | 奇跃公司 | Methods, apparatus and systems for illuminating spatial light modulators |
US11835723B2 (en) | 2017-03-21 | 2023-12-05 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
US11567320B2 (en) | 2017-03-21 | 2023-01-31 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
US11480861B2 (en) | 2017-03-21 | 2022-10-25 | Magic Leap, Inc. | Low-profile beam splitter |
CN110709772A (en) * | 2017-03-21 | 2020-01-17 | 奇跃公司 | Method, apparatus and system for illuminating a spatial light modulator |
US11187900B2 (en) | 2017-03-21 | 2021-11-30 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
CN110832383A (en) * | 2017-07-12 | 2020-02-21 | 罗伯特·博世有限公司 | Projection device for data glasses, data glasses and method for improving the symmetry and/or reducing the diameter of a light beam |
CN112219152B (en) * | 2018-06-08 | 2023-10-03 | 索尼公司 | image display device |
CN112219152A (en) * | 2018-06-08 | 2021-01-12 | 索尼公司 | Image display device |
CN110658628A (en) * | 2018-06-29 | 2020-01-07 | 精工爱普生株式会社 | head mounted display |
CN110658628B (en) * | 2018-06-29 | 2021-12-03 | 精工爱普生株式会社 | Head-mounted display device |
CN111123514B (en) * | 2018-10-30 | 2022-03-29 | 精工爱普生株式会社 | Head-mounted display device |
CN111123514A (en) * | 2018-10-30 | 2020-05-08 | 精工爱普生株式会社 | Head-mounted display device |
CN111258064A (en) * | 2018-11-30 | 2020-06-09 | 精工爱普生株式会社 | Light guide device and virtual image display device |
CN111628099A (en) * | 2019-02-28 | 2020-09-04 | 精工爱普生株式会社 | Image display device and virtual image display device |
CN111665622A (en) * | 2019-03-06 | 2020-09-15 | 株式会社理光 | Optical device, retina projection display device, and head-mounted display device |
CN111665622B (en) * | 2019-03-06 | 2022-07-08 | 株式会社理光 | Optical device, retina projection display device, and head-mounted display device |
US11803057B2 (en) | 2019-03-06 | 2023-10-31 | Ricoh Company, Ltd. | Optical device, retinal projection display, head-mounted display, and optometric apparatus |
TWI691735B (en) * | 2019-03-26 | 2020-04-21 | 宏碁股份有限公司 | Near-eye display device |
Also Published As
Publication number | Publication date |
---|---|
US20150279114A1 (en) | 2015-10-01 |
EP2947503A1 (en) | 2015-11-25 |
KR20150112852A (en) | 2015-10-07 |
TW201602639A (en) | 2016-01-16 |
US10282906B2 (en) | 2019-05-07 |
CN104950445B (en) | 2019-01-15 |
JP6413291B2 (en) | 2018-10-31 |
EP2947503B1 (en) | 2018-06-27 |
JP2015191026A (en) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6413291B2 (en) | Virtual image display device and head mounted display | |
US11500205B2 (en) | Wearable AR system, AR display device and its projection source module | |
US10001655B2 (en) | Image display device | |
CN105676454B (en) | Image display device | |
CN110068927B (en) | Optical device | |
CN108700750B (en) | Display device | |
CN103592762A (en) | Image display device and head-mounted image display device | |
US20160252726A1 (en) | Image display device | |
CN103837987B (en) | Virtual image display apparatus | |
JP4372891B2 (en) | Video display device | |
JP2020020858A (en) | Virtual image display | |
US10539798B2 (en) | Optics of wearable display devices | |
JP2011524995A (en) | Composite image generation system | |
JP2015145973A (en) | Virtual image display device and optical element | |
US20240255769A1 (en) | Method and system for projection display with polarization selective reflectors | |
US20210063750A1 (en) | Head-mounted display | |
JP2020020859A (en) | Virtual image display device | |
JP2021124527A (en) | Image light generation module and image display device | |
JP2020020857A (en) | Virtual image display | |
JP2014228817A (en) | Image display device and head-mounted display | |
KR102366662B1 (en) | Optical mocule for head mounted display | |
JP2004138748A (en) | Two-dimensional scanner | |
US20240248308A1 (en) | Virtual image display device and head-mounted display apparatus | |
US20250004276A1 (en) | Virtual image display device and optical unit | |
US20240248307A1 (en) | Head-mounted display apparatus and optical unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |