Nothing Special   »   [go: up one dir, main page]

CN104933117B - Processing method for water pumping test data - Google Patents

Processing method for water pumping test data Download PDF

Info

Publication number
CN104933117B
CN104933117B CN201510306815.7A CN201510306815A CN104933117B CN 104933117 B CN104933117 B CN 104933117B CN 201510306815 A CN201510306815 A CN 201510306815A CN 104933117 B CN104933117 B CN 104933117B
Authority
CN
China
Prior art keywords
lgt
coordinate system
data
pumping test
world
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510306815.7A
Other languages
Chinese (zh)
Other versions
CN104933117A (en
Inventor
张夏林
吴冲龙
陈茜
李俊杰
李章林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201510306815.7A priority Critical patent/CN104933117B/en
Publication of CN104933117A publication Critical patent/CN104933117A/en
Application granted granted Critical
Publication of CN104933117B publication Critical patent/CN104933117B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/166Editing, e.g. inserting or deleting
    • G06F40/174Form filling; Merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种抽水试验数据的处理方法,主要包括.mdf格式文件的抽水试验数据转换与加工技术、水文综合柱状图的非目标层地段裁剪技术、用于绘制抽水试验Q、S‑t曲线及恢复水位曲线所需的多时段变比例尺与数据定位联动技术、在单双坐标系内动态且精确显示并绘制特征水文点坐标值的图元属性识别和鼠标动态定位技术、数据动态管理技术等。本发明从数据采集——>数据转换——>数据加工与处理——>数据处理<——>数据应用(制图)的角度出发,研制一套集数据采集、数据加工、数据管理与计算机制图于一体的综合软件模块。本发明总体上解决了抽水试验的集数据采集、数据处理与自动制图一体化综合应用的问题。

The present invention relates to a processing method of pumping test data, mainly including pumping test data conversion and processing technology of .mdf format file, non-target layer segment cutting technology of hydrological comprehensive histogram, used for drawing Q and S-t curves of pumping test And the multi-period variable scale and data positioning linkage technology required to restore the water level curve, the graphic element attribute identification and mouse dynamic positioning technology, dynamic data management technology, etc. . The present invention develops a set of data collection, data processing, data management and computer graphics from the perspective of data collection—>data conversion—>data processing and processing—>data processing<——>data application (drawing) integrated software module. The invention generally solves the problem of integrated application of data collection, data processing and automatic charting in a pumping test.

Description

一种抽水试验数据的处理方法A Processing Method of Pumping Test Data

技术领域technical field

本发明涉及一种抽水试验数据的处理方法,属于地学信息工程中地矿图件的计算机辅助制图领域。The invention relates to a processing method for pumping test data, which belongs to the field of computer-aided drawing of geological and mineral maps in geological information engineering.

背景技术Background technique

抽水试验是资源勘探中获取水文信息的重要手段,水文抽水试验综合成果图是矿山勘查和开采中最重要的水文图件,是抽水试验数据可视化的最直接的体现,它承载着重要的水文信息,对野外地质人员获取含水层水文地质参数、及与其他含水层及地表之间的水力联系,及时评定抽水工作的质量,判断研究区水文情况有着决定性的作用。在将GIS可视化技术、数据库技术以及计算机自动制图技术引入多学科、多途径的地质科研和实际生产工作中的地学发展趋势的推动下,如何利用大规模抽水试验数据批量进行数据制图,得到完整的成果图,是计算机制图专家和地学工作者最为关注的问题,同时也成为衡量地质领域技术水平的重要指标。Pumping test is an important means of obtaining hydrological information in resource exploration. The comprehensive result map of hydrological pumping test is the most important hydrological map file in mine exploration and mining, and it is the most direct embodiment of pumping test data visualization. It carries important hydrological information. , It plays a decisive role in obtaining the hydrogeological parameters of the aquifer, the hydraulic connection with other aquifers and the surface, timely evaluating the quality of pumping work, and judging the hydrological situation in the research area. Driven by the introduction of GIS visualization technology, database technology and computer automatic mapping technology into multi-disciplinary and multi-channel geological scientific research and the development trend of geosciences in actual production work, how to use large-scale pumping test data for batch data mapping to obtain a complete The result map is the most concerned issue of computer cartography experts and geoscientists, and it has also become an important indicator to measure the technical level of the geological field.

目前,对采集数据的预处理和制图大都是分散处理的。针对水文抽水试验的制图技术基本上是基于半手工模式的,如刘叶青(2010年)提出使用Excel绘制抽水试验曲线的方法,但该方法仅仅限于生成曲线,与完成专题图件的制作还相差甚远。部分软件的基本作图模式为:由Excel绘制单一图表,导入到MapGis中,对栅格图形进行矢量化;对曲线的配线采用手动配图和整合绘制,再由MapGis矢量化,水文参数计算采用人工计算,存储在Excel表中等。国内地矿行业软件基本不具有基于数据库管理的抽水试验综合成果图的自动编绘功能,且从采集数据到有效数据提取大部分依然采用人工的复杂操作,抽水试验综合成果图制图模式还半手工化制图,制图流程复杂、工作效率低、计算量大、中间及结果数据不能自动存储与管理,不能形成集数据于一体化的管理、处理和应用,最终无法形成一套集数据采集、数据加工、数据管理与计算机制图于一体的综合软件模块。在数据存储、分析、计算、管理和自动绘制专题图件时给地质人员造成一定的困难。抽水试验综合成果图的制图自动化程度不高,综合自动制图技术不够成熟,存在着效率与质量的矛盾。因此,建立一个从数据采集到数据转换与加工处理,再到基于数据库管理的抽水试验数据自动制图的机制是十分有必要的。At present, the preprocessing and mapping of collected data are mostly decentralized. The drawing technology for hydrological pumping tests is basically based on semi-manual mode. For example, Liu Yeqing (2010) proposed the method of using Excel to draw pumping test curves, but this method is only limited to generating curves, which is far from the completion of thematic maps. Far. The basic drawing mode of some software is: draw a single chart by Excel, import it into MapGis, and vectorize the raster graphics; use manual map and integrated drawing for the wiring of the curve, and then vectorize it by MapGis, and calculate the hydrological parameters Manually calculated, stored in an Excel table, etc. The software of the domestic geology and mining industry basically does not have the automatic compilation function of the comprehensive result map of the pumping test based on database management, and most of the manual complex operations are still used from data collection to effective data extraction, and the drawing mode of the comprehensive result map of the pumping test is still semi-manual The process of drawing is complex, the work efficiency is low, the amount of calculation is large, the intermediate and result data cannot be automatically stored and managed, and the integrated management, processing and application of data cannot be formed, and finally a set of data collection and data processing cannot be formed. , data management and computer graphics in one integrated software module. It will cause certain difficulties for geological personnel in data storage, analysis, calculation, management and automatic drawing of thematic maps. The drawing automation degree of the comprehensive results map of the pumping test is not high, and the comprehensive automatic drawing technology is not mature enough, and there is a contradiction between efficiency and quality. Therefore, it is very necessary to establish a mechanism from data collection to data conversion and processing, and then to automatic drawing of pumping test data based on database management.

发明内容Contents of the invention

为了解决现有技术的不足,本发明提供了一种抽水试验数据的处理方法,快速并高效实现抽水试验综合成果图的计算机自动制图和存储。In order to solve the deficiencies of the prior art, the present invention provides a method for processing pumping test data, which quickly and efficiently realizes the computer automatic drawing and storage of the comprehensive result graph of the pumping test.

本发明为解决其技术问题所采用的技术方案是:提供了一种抽水试验数据的处理方法,包括以下步骤:The technical scheme that the present invention adopts for solving its technical problem is: provide a kind of processing method of pumping test data, comprise the following steps:

(1)采集抽水试验数据,获取由井中流量水位测井仪产生的.mdf格式的抽水试验数据文件;所述抽水试验数据文件包括静止水位观测数据文件、抽水试验数据文件和恢复水位数据文件三类,各类抽水试验数据文件包括所属钻孔抽水试验的基本信息,以及成果数据,成果数据的每行数据包括时间、温度、水位、流速和深度;(1) collect the pumping test data, obtain the pumping test data file produced by the .mdf format of the flow water level logging instrument in the well; the pumping test data file includes static water level observation data file, pumping test data file and recovery water level data file III Class, all kinds of pumping test data files include the basic information of the borehole pumping test and the result data, each line of result data includes time, temperature, water level, flow velocity and depth;

(2)对抽水试验数据文件进行预处理,将预处理后的抽水试验数据文件写入数据库,形成抽水试验数据;(2) the pumping test data file is preprocessed, and the pumping test data file after the pretreatment is written into the database to form the pumping test data;

(3)调取数据库中的抽水试验数据和存储的水文钻孔其他相关数据,根据抽水试验数据在同一工程下按照纵向展布的规则分别绘制以下子图和数据:(3) The pumping test data in the database and other relevant data of the stored hydrological drilling are retrieved, and the following subgraphs and data are respectively drawn according to the rules of longitudinal distribution under the same project according to the pumping test data:

(a)设置柱状图基本参数和非目标层范围,利用裁剪技术绘制省略掉非目标层的水文综合柱状图;(a) Set the basic parameters of the histogram and the range of non-target layers, and use the clipping technique to draw a comprehensive hydrological histogram omitting the non-target layers;

(b)根据抽水试验数据中的每条记录的时间数据构建初始日期时间轴;根据抽水试验数据中的每条记录与第一条记录的时间间隔构建初始累计时间轴;第一条记录的时间数据所在位置的世界坐标为(0,0);(b) Construct the initial date time axis according to the time data of each record in the pumping test data; construct the initial cumulative time axis according to the time interval between each record in the pumping test data and the first record; the time of the first record The world coordinates of the data location are (0, 0);

利用多时段变比例尺和数据联动定位技术,根据变比例尺处的日期,计算日期时间轴和累计时间轴的每个变比例尺分界处的世界坐标以重新规划日期时间轴和累计时间轴的刻度分布,再根据各个时段变比例尺的大小动态计算抽水试验数据中每个数据点的世界坐标;Using multi-period variable scale and data linkage positioning technology, according to the date at the variable scale, calculate the world coordinates of each variable scale boundary between the date time axis and the cumulative time axis to re-plan the scale distribution of the date time axis and the cumulative time axis, Then dynamically calculate the world coordinates of each data point in the pumping test data according to the size of the variable scale in each period;

以日期时间轴和累计时间轴作为横坐标轴,以Q纵坐标轴和S纵坐标轴作为纵坐标轴,绘制抽水试验Q、S-t及恢复水位历时曲线;Take the date and time axis and the cumulative time axis as the abscissa axis, and use the Q and S ordinate axes as the ordinate axis to draw the Q, S-t and restoration water level duration curves of the pumping test;

(c)依据抽水试验数据,由计算机计算并绘制Q-S曲线、S-lgt曲线、S’-lgt’曲线及lgS-lgt曲线;分别在S-lgt、S’-lgt’曲线的单坐标系和lgS-lgt曲线的双坐标系下,结合坐标系下曲线中抽水试验数据的表现特点,利用图元属性识别技术获取曲线坐标系中所存储的首尾刻度的图元属性值,再利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,实时显示在屏幕上,绘制后,获得特征水文点,选择是否将特征水文点的坐标值写入数据库;(c) Calculate and draw Q-S curve, S-lgt curve, S'-lgt' curve and lgS-lgt curve by computer according to pumping test data; Under the dual coordinate system of the lgS-lgt curve, combined with the performance characteristics of the pumping test data in the curve under the coordinate system, use the graphic element attribute recognition technology to obtain the graphic element attribute value of the first and last scale stored in the curve coordinate system, and then use the mouse to dynamically locate The technology dynamically calculates the actual coordinate values of the current mouse movement position in each coordinate system, and displays them on the screen in real time. After drawing, obtain the characteristic hydrological points, and choose whether to write the coordinate values of the characteristic hydrological points into the database;

(d)根据数据库中抽水试验数据和制图过程中得到的特征水文点,利用一般科学计算方法和迭代递归算法自动分析并计算相关水文地质参数和其他综合成果数据,将水文地质参数和其他综合成果数据写入数据库;(d) According to the pumping test data in the database and the characteristic hydrological points obtained during the mapping process, the general scientific calculation method and iterative recursive algorithm are used to automatically analyze and calculate the relevant hydrogeological parameters and other comprehensive results data, and the hydrogeological parameters and other comprehensive results Data is written to the database;

(4)将步骤(3)绘制的各个子图进行图幅移动,得到完整的单孔抽水试验综合成果图和多孔抽水试验综合成果图。(4) Move each sub-graph drawn in step (3) to obtain a complete single-hole pumping test comprehensive result map and multi-hole pumping test comprehensive result map.

步骤(2)所述的预处理,包括对抽水试验数据文件获取、文件及内容有效性检查、抽样数据分析、处理及提取,以及将抽样得到的抽水试验数据自动写入数据库。The preprocessing described in step (2) includes obtaining the pumping test data file, checking the validity of the file and content, analyzing, processing and extracting the sampled data, and automatically writing the pumping test data obtained by sampling into the database.

步骤(3)中所述利用多时段变比例尺和数据联动定位技术,根据变比例尺处的日期,计算日期时间轴和累计时间轴的每个变比例尺分界处的世界坐标以重新规划日期时间轴和累计时间轴的刻度分布,再根据各个时段变比例尺的大小动态计算抽水试验数据中每个数据点的世界坐标,其中第i个变比例尺分界处的世界坐标采用以下公式计算:As described in step (3), use the multi-period variable scale and data linkage positioning technology to calculate the world coordinates of each variable scale boundary between the date time axis and the cumulative time axis according to the date at the variable scale to replan the date time axis and Accumulate the scale distribution of the time axis, and then dynamically calculate the world coordinates of each data point in the pumping test data according to the size of the variable scale in each period. The world coordinates at the boundary of the ith variable scale are calculated using the following formula:

当i=0时,When i=0,

DX分0=0DX points 0 = 0

当i>=1时,When i>=1,

DX分i=DX分i-1+(Ti-Ti-1)×di-1DX points i = DX points i-1 + (T i -T i-1 ) × d i-1 ;

其中,DX分i为当前变比例尺分界处的世界坐标,DX分i-1为上一个变比例尺分界处的世界坐标,Ti为当前变比例尺分界处的日期时间,Ti-1为上一个变比例尺分界处的日期时间,di-1为当前变比例尺分界处以前每个单位小时的图上距离;Ti、Ti-1和di-1均为设置值;Among them, DX point i is the world coordinate of the current variable scale boundary, DX point i-1 is the world coordinate of the previous variable scale boundary, T i is the date and time of the current variable scale boundary, T i-1 is the previous The date and time at the boundary of the variable scale, d i-1 is the distance on the map of each unit hour before the current variable scale boundary; T i , T i-1 and d i-1 are all set values;

所述利用数据联动定位技术计算抽水试验数据中每个数据点的世界坐标,其中第i个数据点的世界坐标采用以下公式计算:The use of data linkage positioning technology to calculate the world coordinates of each data point in the pumping test data, wherein the world coordinates of the i-th data point is calculated using the following formula:

DXi=DX分i+(Tcur-Ti)×di DX i =DX min i +(T cur -T i )×d i

其中i>=1,DXi为当前数据点的世界坐标;Tcur为当前数据点的日期时间;di为当前变比例尺分界处以后每个单位小时的图上距离;Tcur和di为设置值。Where i>=1, DX i is the world coordinate of the current data point; T cur is the date and time of the current data point; d i is the distance on the map of each unit hour after the boundary of the current variable scale; T cur and d i are Settings.

步骤(3)中所述结合坐标系下曲线中抽水试验数据的表现特点,利用图元属性识别技术获取曲线坐标系中所存储的首尾刻度的图元属性值,再利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,包括以下过程:Combined with the performance characteristics of the pumping test data in the curve under the coordinate system described in step (3), use the graphic element attribute recognition technology to obtain the graphic element attribute value of the first and last scale stored in the curve coordinate system, and then use the mouse dynamic positioning technology to dynamically calculate The actual coordinate value of the current mouse movement position in each coordinate system, including the following process:

利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征点的定位范围,在绘制S-lgt、S’-lgt’曲线及其坐标系时,分别向坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY和dTY,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在S-lgt、S’-lgt单坐标系内绘制特征水文点的坐标值,其中在单坐标系S-lgt内特征水文点的坐标(S,t)采用以下公式计算:Use the primitive attribute recognition technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the feature points. Write attribute values at the leftmost and rightmost ends of the abscissa axis and the uppermost and lower ends of the ordinate axis. The attribute values include S max , S min , t max , t min , dLX, dRX, dBY and dTY, and then use The mouse dynamic positioning technology dynamically calculates the actual coordinate values of the current mouse movement position in each coordinate system, and draws the coordinate values of the characteristic hydrological points in the S-lgt and S'-lgt single coordinate systems, among which the single coordinate system S-lgt The coordinates (S, t) of the characteristic hydrological points are calculated by the following formula:

单坐标系S’-lgt’内特征水文点的坐标(S’,t’)采用以下公式计算:The coordinates (S’, t’) of the characteristic hydrological points in the single coordinate system S’-lgt’ are calculated by the following formula:

其中,dY为当前鼠标所在视图区的世界纵坐标,Smax为S-lgt或S’-lgt’坐标系纵坐标轴S的最大刻度,Smin为S-lgt或S’-lgt’坐标系纵坐标轴S的最小刻度,tmax为S-lgt或S’-lgt’坐标系横坐标轴t的最大刻度,tmin为S-lgt或S’-lgt’坐标系横坐标轴t的最小刻度、dLX为S-lgt或S’-lgt’坐标系t横坐标轴最左端的世界横坐标、dRX为S-lgt或S’-lgt’坐标系t横坐标轴最右端的世界横坐标、dBY为S-lgt或S’-lgt’坐标系S纵坐标轴最底端的世界纵坐标,dTY为S-lgt或S’-lgt’坐标系S纵坐标轴最上端的世界纵坐标。Among them, dY is the world ordinate of the view area where the mouse is currently located, S max is the maximum scale of the ordinate axis S of the S-lgt or S'-lgt' coordinate system, and S min is the S-lgt or S'-lgt' coordinate system The minimum scale of the ordinate axis S, t max is the maximum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system, and t min is the minimum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system Scale, dLX is the world abscissa coordinate at the leftmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dRX is the world abscissa coordinate at the rightmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dBY is the world ordinate at the bottom of the S ordinate axis in the S-lgt or S'-lgt' coordinate system, and dTY is the world ordinate at the top of the S ordinate axis in the S-lgt or S'-lgt' coordinate system.

步骤(3)中所述结合坐标系下曲线中抽水试验数据的表现特点,利用图元属性识别技术获取曲线坐标系中所存储的首尾刻度的图元属性值,再利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,包括以下过程:Combined with the performance characteristics of the pumping test data in the curve under the coordinate system described in step (3), use the graphic element attribute recognition technology to obtain the graphic element attribute value of the first and last scale stored in the curve coordinate system, and then use the mouse dynamic positioning technology to dynamically calculate The actual coordinate value of the current mouse movement position in each coordinate system, including the following process:

利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征点的定位范围,在绘制lgS-lgt曲线和lgW(u)-lg(1/u)曲线及其坐标系时,分别向双坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY、dTY、W(u)max、W(u)min、umax、umin、dLX’、dRX’、dBY’和dTY’,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在lgS-lgt和标准曲线的双坐标系内绘制特征水文点的坐标值,其中由lgS-lgt坐标系与lgW(u)-lg(1/u)坐标系组合而成的双坐标系内特征水文点的坐标(S,t,W(u),1/u)采用以下公式计算:Use the primitive attribute identification technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the feature points, and draw the lgS-lgt curve and lgW(u)-lg(1/u) curve and their coordinates In the dual-coordinate system, write attribute values to the leftmost and rightmost ends of the abscissa axis and the uppermost and lowermost ends of the ordinate axis respectively in the dual coordinate system. The attribute values include S max , S min , t max , t min , dLX, dRX, dBY, dTY, W(u) max , W(u) min , u max , u min , dLX', dRX', dBY' and dTY', and then use the mouse dynamic positioning technology to dynamically calculate the current mouse movement position in each The actual coordinate values in the coordinate system, draw the coordinate values of the characteristic hydrological points in the dual coordinate system of lgS-lgt and standard curve, in which the lgS-lgt coordinate system is combined with the lgW(u)-lg(1/u) coordinate system The coordinates (S, t, W(u), 1/u) of the characteristic hydrological points in the resulting dual coordinate system are calculated by the following formula:

其中,Smax为lgS-lgt坐标系纵坐标轴S的最大刻度;Smin为lgS-lgt坐标系纵坐标轴S的最小刻度;dY为当前鼠标所在lgS-lgt坐标系视图区的世界纵坐标;dTY为lgS-lgt坐标系纵坐标轴最上端的世界纵坐标;dBY为lgS-lgt坐标系纵坐标轴最底端的世界纵坐标;Among them, S max is the maximum scale of the ordinate axis S of the lgS-lgt coordinate system; S min is the minimum scale of the ordinate axis S of the lgS-lgt coordinate system; dY is the world ordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dTY is the world ordinate at the top of the ordinate axis of the lgS-lgt coordinate system; dBY is the world ordinate at the bottom of the ordinate axis of the lgS-lgt coordinate system;

其中,tmax为lgS-lgt坐标系横坐标轴t的最大刻度;tmin为lgS-lgt坐标系横坐标轴t的最小刻度;dX为当前鼠标所在lgS-lgt坐标系视图区的世界横坐标;dLX为lgS-lgt坐标系横坐标轴最左端的世界横坐标;dRX为lgS-lgt坐标系横坐标轴最右端的世界横坐标;Among them, t max is the maximum scale of the abscissa axis t in the lgS-lgt coordinate system; t min is the minimum scale of the abscissa axis t in the lgS-lgt coordinate system; dX is the world abscissa coordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dLX is the world abscissa coordinate at the leftmost end of the abscissa axis in the lgS-lgt coordinate system; dRX is the world abscissa coordinate at the rightmost end of the abscissa axis in the lgS-lgt coordinate system;

W(u)max为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最大刻度;W(u)min为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最小刻度;dY’为当前鼠标所在lgW(u)-lg(1/u)坐标系视图区的世界纵坐标;dTY’为lgW(u)-lg(1/u)坐标系纵坐标轴最上端的世界纵坐标;dBY’为lgW(u)-lg(1/u)坐标系纵坐标轴最底端的世界纵坐标;W(u) max is the maximum scale of the ordinate axis W(u) of the lgW(u)-lg(1/u) coordinate system; W(u) min is the ordinate of the lgW(u)-lg(1/u) coordinate system The minimum scale of the coordinate axis W(u); dY' is the world ordinate of the view area of the lgW(u)-lg(1/u) coordinate system where the current mouse is located; dTY' is lgW(u)-lg(1/u) The world ordinate at the top of the ordinate axis of the coordinate system; dBY' is the world ordinate at the bottom of the ordinate axis of the lgW(u)-lg(1/u) coordinate system;

1/u为鼠标实时定位显示的1/u值;(1/u)max为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最大刻度;(1/u)min为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最小刻度;dX’为当前鼠标所在lg W(u)-lg(1/u)坐标系视图区的世界横坐标;dLX’为lg W(u)-lg(1/u)坐标系横坐标轴最左端的世界横坐标;dRX’为lg W(u)-lg(1/u)坐标系横坐标轴最右端的世界横坐标。1/u is the 1/u value displayed by the real-time positioning of the mouse; (1/u) max is the maximum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; (1/u) min is the minimum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; dX' is the world of the view area of the lg W(u)-lg(1/u) coordinate system where the current mouse is located Abscissa; dLX' is the world abscissa at the leftmost end of the abscissa axis of the lg W(u)-lg(1/u) coordinate system; dRX' is the abscissa axis of the lg W(u)-lg(1/u) coordinate system The rightmost world abscissa.

步骤(3)中所述相关水文地质参数和其他综合成果数据,包括S-lgt直线图解法数据表、S’-lgt’直线图解法数据表、lgS-lgt直线图解法数据表、单双孔抽水试验综合成果表、水化学分析表和施工技术参数表。Relevant hydrogeological parameters and other comprehensive result data described in step (3), including S-lgt line diagram method data table, S'-lgt' line diagram method data table, lgS-lgt line diagram method data table, single and double hole Comprehensive result table of pumping test, water chemical analysis table and construction technical parameter table.

本发明基于其技术方案所具有的有益效果在于:The beneficial effect that the present invention has based on its technical scheme is:

(1)利用本发明提供的抽水试验数据的处理方法,能够利用计算机实现数据自动化处理和重绘,实时地将数据入库;(1) Utilize the processing method of pumping test data provided by the present invention, can utilize computer to realize data automatic processing and redrawing, real-time data storage;

(2)本发明攻克包括多项关键技术,利用裁剪技术绘制省略掉非目标层的水文综合柱状图,利用多时段变比例尺技术和数据联动定位技术将时间轴进行统一,得到精确且易于存储的时间戳,利用图元属性识别和鼠标动态定位技术获取特征水文点的坐标值从而进行存储,能够实现计算机智能地依据抽水实验数据特点和约束条件,模拟传统人工制图工作,进行抽水试验综合成果图的计算机自动制图,从而快速且准确地得到最终的综合成果图,用于指导水文地质人员的工作;(2) The present invention overcomes a number of key technologies, uses cutting technology to draw a comprehensive hydrological histogram that omits non-target layers, uses multi-period variable scale technology and data linkage positioning technology to unify the time axis, and obtains accurate and easy-to-store data. Timestamp, using primitive attribute identification and mouse dynamic positioning technology to obtain the coordinates of characteristic hydrological points for storage, which can realize the computer intelligently according to the characteristics and constraints of the pumping experiment data, simulate the traditional manual drawing work, and carry out the comprehensive result map of the pumping experiment Automatic drawing by computer, so as to quickly and accurately obtain the final comprehensive result map, which is used to guide the work of hydrogeological personnel;

(3)通过本发明提供的抽水试验数据的处理方法,能够实现实施制图-实时存储的模式数据存储,代替人工与数据库的交互,提高了生产精度与效率;(3) By the processing method of the pumping test data provided by the present invention, it is possible to implement the pattern data storage of drawing-real-time storage, replace the interaction between manual labor and database, and improve the production accuracy and efficiency;

(4)对抽水试验综合成果图中的子图重绘操作灵活,对重绘产生的新数据能够动态实时更新到数据库中。(4) The operation of redrawing the subgraphs in the comprehensive results graph of the pumping test is flexible, and the new data generated by the redrawing can be dynamically updated to the database in real time.

附图说明Description of drawings

图1是本发明中多时段变比例尺与数据联动定位技术处理示意图。Fig. 1 is a schematic diagram of multi-period variable scale and data linkage positioning technology processing in the present invention.

图2是本发明中图元属性识别与鼠标动态定位模拟图。Fig. 2 is a simulation diagram of graphic entity attribute identification and mouse dynamic positioning in the present invention.

图3是本发明的流程示意图。Fig. 3 is a schematic flow chart of the present invention.

具体实施方式detailed description

下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.

本发明提供了一种抽水试验数据的处理方法,参照图3,包括以下步骤:The present invention provides a kind of processing method of pumping test data, with reference to Fig. 3, comprises the following steps:

(1)采集抽水试验数据,获取由井中流量水位测井仪产生的.mdf格式的抽水试验数据文件;所述抽水试验数据文件包括静止水位观测数据文件、抽水试验数据文件和恢复水位数据文件三类,各类抽水试验数据文件包括所属钻孔抽水试验的基本信息,以及成果数据,成果数据的每行数据包括时间、温度、水位、流速和深度;(1) collect the pumping test data, obtain the pumping test data file produced by the .mdf format of the flow water level logging instrument in the well; the pumping test data file includes static water level observation data file, pumping test data file and recovery water level data file III Class, all kinds of pumping test data files include the basic information of the borehole pumping test and the result data, each line of result data includes time, temperature, water level, flow velocity and depth;

(2)通过界面可视化的方式,由用户自定义选取抽水试验数据文件以及文件类型,计算机自动对抽水试验数据文件进行预处理,将预处理后的抽水试验数据文件写入数据库,形成抽水试验数据;包括对抽水试验数据文件获取、文件及内容有效性检查、抽样数据分析、处理及提取,以及将抽样得到的抽水试验数据自动写入经过规范化和代码化处理的具有不同数据模型的数据库;(2) Through the visualization of the interface, the pumping test data file and file type are selected by the user, and the computer automatically preprocesses the pumping test data file, and writes the preprocessed pumping test data file into the database to form the pumping test data ;Including the acquisition of pumping test data files, checking the validity of files and contents, sampling data analysis, processing and extraction, and automatically writing the pumping test data obtained by sampling into standardized and coded databases with different data models;

文件内容的遍历方式采用按行遍历,行内容以字符串的方式进行读取,根据.mdf文件的数据特点,依次检查模块标识“【基本信息】”、“【成果数据开始】”,内容“测量日期=XX-XX-XX”、“起始时间XX:XX:XX”、“时间,温度,水位,流速”,对于格式为“测量日期=XX-XX-XX”采取逐项检查的方式。The traversal method of the file content adopts line-by-line traversal, and the line content is read in the form of a string. According to the data characteristics of the .mdf file, check the module identification "[Basic Information]", "[Result Data Start]", and the content " Measurement date = XX-XX-XX", "Start time XX: XX: XX", "time, temperature, water level, flow rate", for the format of "measurement date = XX-XX-XX", take an item-by-item inspection method .

在基本信息中读取的原始时间数据格式为:The raw time data format read in the basic information is:

测量日期=2013-08-04Measurement Date = 2013-08-04

起始时间=18:53:23start_time = 18:53:23

数据区的数据格式为:The data format of the data area is:

时间,温度,水位,流速,(深度)Time, temperature, water level, velocity, (depth)

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

99.50,20.06,169.29,32.69,355.7699.50, 20.06, 169.29, 32.69, 355.76

104.44,20.06,169.31,32.64,355.76104.44, 20.06, 169.31, 32.64, 355.76

109.34,20.06,169.33,32.58,355.76109.34, 20.06, 169.33, 32.58, 355.76

114.50,20.06,169.36,32.51,355.76114.50, 20.06, 169.36, 32.51, 355.76

目标数据库的观测时间为时间类型,其格式为:The observation time of the target database is a time type, and its format is:

年-月-日时:分:秒Year-Month-Day Hour:Minute:Second

数据区中的时间为数字类型,单位为秒(s),需作时间计算和转换。根据用户需求,一般测量开始时间以分钟为30或者00处开始,以上述数据为例,处理后的第一条时间记录为:The time in the data area is a number type, and the unit is second (s), which needs to be calculated and converted. According to user needs, the general measurement start time starts at 30 or 00 minutes. Taking the above data as an example, the first time record after processing is:

2013-08-0419:00:232013-08-04 19:00:23

抽样数据隔规则为:5个1分钟,5个2分钟,9个是5分钟,若干30分钟,处理的时间若大于2小时,则保留同一行的记录。最终处理的每一条记录的时间均为Data类型,即为年-月-日时:分:秒。The sampling data interval rule is: 5 pieces of 1 minute, 5 pieces of 2 minutes, 9 pieces of 5 minutes, and some 30 minutes. If the processing time is longer than 2 hours, the records of the same row will be kept. The time of each record finally processed is Data type, which is year-month-day hour:minute:second.

将预处理后的抽水试验数据文件写入数据库;Write the preprocessed pumping test data files into the database;

(3)调取数据库中的抽水试验数据和存储的水文钻孔其他相关数据,水文钻孔其他相关数据是野外采集的水文钻孔原始数据,还可以包括部分经过预处理的数据,包括钻孔概况信息、地质分层信息、含水层信息、测井信息,根据抽水试验数据在同一工程下按照纵向展布的规则分别绘制以下子图和数据:(3) Retrieve the pumping test data in the database and other relevant data of the stored hydrological boreholes. Other relevant data of hydrological boreholes are the original data of hydrological boreholes collected in the field, and may also include some preprocessed data, including borehole General situation information, geological stratification information, aquifer information, and well logging information, according to the pumping test data, draw the following sub-graphs and data according to the rules of longitudinal distribution under the same project:

(a)设置柱状图基本参数和非目标层范围,利用裁剪技术绘制省略掉非目标层的水文综合柱状图;(a) Set the basic parameters of the histogram and the range of non-target layers, and use the clipping technique to draw a comprehensive hydrological histogram omitting the non-target layers;

例如省略100-300m内的数据,则省略部分在图上的高度均采用一个刻度标尺在图纸上的表现值(同水位高出地表的处理方法一致)。省略部分中间用波浪号“≈≈”标识,其深度为dSignDepth。当前要绘制的柱状区起深为dbeginDepth,止深为dendDepth,则其在省略部分的处理方法为:For example, if the data within 100-300m is omitted, the height of the omitted part on the map shall be the value represented by a scale scale on the map (the same as the treatment method for the water level above the surface). The omitted part is marked with a tilde "≈≈" in the middle, and its depth is dSignDepth. The starting depth of the columnar area to be drawn is dbeginDepth, and the ending depth is dendDepth, so the processing method for the omitted part is as follows:

1、denddepth<100m时,正常绘制;1. When denddepth<100m, draw normally;

2、否则denddepth>100m时,分五种情况,2. Otherwise, when denddepth>100m, there are five situations,

2-1、dbeginDepth<100m且denddepth<300m,则当前柱状区域在图纸上绘制时取起深dbeginDepth,止深dSignDepth,花纹代号取当前区域的花纹代号;2-1. If dbeginDepth<100m and denddepth<300m, when the current columnar area is drawn on the drawing, take the depth dbeginDepth, stop depth dSignDepth, and the pattern code is the pattern code of the current area;

2-2、dbeginDepth<100m且denddepth>300m,省去部分分布在同一个柱状区,直接减去该区域内的省略厚度;2-2. dbeginDepth<100m and denddepth>300m, the omitted part is distributed in the same columnar area, and the omitted thickness in this area is directly subtracted;

2-3、dbeginDepth>100m且denddepth<300m,此柱状区分布在省略部分,不绘制;2-3. dbeginDepth>100m and denddepth<300m, this columnar area is distributed in the omitted part and is not drawn;

2-4、100m<dbeginDepth<300m且denddepth>300m,则当前柱状区域在图纸上绘制时取起深dSignDepth,止深dendDepth,花纹代号取当前区域的花纹代号;2-4, 100m<dbeginDepth<300m and denddepth>300m, then the current columnar area is drawn on the drawing with the depth dSignDepth, the stop depth dendDepth, and the pattern code is the pattern code of the current area;

2-5、dbeginDepth>300m且denddepth>300m,起止深度不变,同时减去省略部分的厚度。2-5. dbeginDepth>300m and denddepth>300m, the starting and ending depths remain unchanged, and the thickness of the omitted part is subtracted at the same time.

(b)根据抽水试验数据中的每条记录的时间数据构建初始日期时间轴;根据抽水试验数据中的每条记录与第一条记录的时间间隔构建初始累计时间轴;第一条记录的时间数据所在位置的世界坐标为(0,0);(b) Construct the initial date time axis according to the time data of each record in the pumping test data; construct the initial cumulative time axis according to the time interval between each record in the pumping test data and the first record; the time of the first record The world coordinates of the data location are (0, 0);

利用多时段变比例尺和数据联动定位技术,根据变比例尺处的日期,计算日期时间轴和累计时间轴的每个变比例尺分界处的世界坐标以重新规划日期时间轴和累计时间轴的刻度分布,再根据各个时段变比例尺的大小动态计算抽水试验数据中每个数据点的世界坐标;Using multi-period variable scale and data linkage positioning technology, according to the date at the variable scale, calculate the world coordinates of each variable scale boundary between the date time axis and the cumulative time axis to re-plan the scale distribution of the date time axis and the cumulative time axis, Then dynamically calculate the world coordinates of each data point in the pumping test data according to the size of the variable scale in each period;

参照图1,假设累计时间轴的第一个变比例尺为4h一个单位,第二个变比例尺为12h一个单位;日期时间轴变比例尺的绘制,第一个变比例尺采用1h一个单位,第二段变比例尺24h一个单位,第三段变比例尺48h一个单位。若在2日变比例尺,则累计时间轴对应的变比例尺累计时间为18,18处之前采用第一变比例尺4h,18后采用第二变比例尺12h;Referring to Figure 1, assume that the first variable scale of the cumulative time axis is a unit of 4h, and the second variable scale is a unit of 12h; for the drawing of the variable scale of the date and time axis, the first variable scale uses a unit of 1h, and the second paragraph The variable scale is 24h one unit, and the third section variable scale is 48h one unit. If the scale is changed on the 2nd, the cumulative time of the scale change corresponding to the cumulative time axis is 18, and the first scale change is 4h before the 18th point, and the second scale change is 12h after 18;

利用多时段变比例尺和数据联动定位技术,根据变比例尺处的日期,计算日期时间轴和累计时间轴的每个变比例尺分界处的世界坐标以重新规划日期时间轴和累计时间轴的刻度分布,再根据各个时段变比例尺的大小动态计算抽水试验数据中每个数据点的世界坐标,其中第i个变比例尺分界处的世界坐标采用以下公式计算:Using multi-period variable scale and data linkage positioning technology, according to the date at the variable scale, calculate the world coordinates of each variable scale boundary between the date time axis and the cumulative time axis to re-plan the scale distribution of the date time axis and the cumulative time axis, Then dynamically calculate the world coordinates of each data point in the pumping test data according to the size of the variable scale in each period, and the world coordinates at the boundary of the ith variable scale are calculated using the following formula:

当i=0时,When i=0,

DX分0=0DX points 0 = 0

当i>=1时,When i>=1,

DX分i=DX分i-1+(Ti-Ti-1)×di-1DX points i = DX points i-1 + (T i -T i-1 ) × d i-1 ;

其中,DX分i为当前变比例尺分界处的世界坐标,DX分i-1为上一个变比例尺分界处的世界坐标,Ti为当前变比例尺分界处的日期时间,Ti-1为上一个变比例尺分界处的日期时间,di-1为当前变比例尺分界处以前每个单位小时的图上距离;Ti、Ti-1和di-1均为设置值;Among them, DX point i is the world coordinate of the current variable scale boundary, DX point i-1 is the world coordinate of the previous variable scale boundary, T i is the date and time of the current variable scale boundary, T i-1 is the previous The date and time at the boundary of the variable scale, d i-1 is the distance on the map of each unit hour before the current variable scale boundary; T i , T i-1 and d i-1 are all set values;

所述利用数据联动定位技术计算抽水试验数据中每个数据点的世界坐标,其中第i个数据点的世界坐标采用以下公式计算:The use of data linkage positioning technology to calculate the world coordinates of each data point in the pumping test data, wherein the world coordinates of the i-th data point is calculated using the following formula:

DXi=DX分i+(Tcur-Ti)×di DX i =DX min i +(T cur -T i )×d i

其中i>=1,DXi为当前数据点的世界坐标;Tcur为当前数据点的日期时间;di为当前变比例尺分界处以后每个单位小时的图上距离;Tcur和di为设置值;Where i>=1, DX i is the world coordinate of the current data point; T cur is the date and time of the current data point; d i is the distance on the map of each unit hour after the boundary of the current variable scale; T cur and d i are Settings;

以日期时间轴和累计时间轴作为横坐标轴,以Q纵坐标轴和S纵坐标轴作为纵坐标轴,绘制抽水试验Q、S-t及恢复水位历时曲线;Take the date and time axis and the cumulative time axis as the abscissa axis, and use the Q and S ordinate axes as the ordinate axis to draw the Q, S-t and restoration water level duration curves of the pumping test;

(c)依据抽水试验数据,由计算机计算并绘制Q-S曲线、S-lgt曲线、S’-lgt’曲线及lgS-lgt曲线;分别在S-lgt、S’-lgt’曲线的单坐标系和lgS-lgt曲线的双坐标系下,结合坐标系下曲线中抽水试验数据的表现特点,利用图元属性识别技术获取曲线坐标系中所存储的首尾刻度的图元属性值,再利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,实时显示在屏幕上,绘制后,获得特征水文点,选择是否将特征水文点的坐标值写入数据库;(c) Calculate and draw Q-S curve, S-lgt curve, S'-lgt' curve and lgS-lgt curve by computer according to pumping test data; Under the dual coordinate system of the lgS-lgt curve, combined with the performance characteristics of the pumping test data in the curve under the coordinate system, use the graphic element attribute recognition technology to obtain the graphic element attribute value of the first and last scale stored in the curve coordinate system, and then use the mouse to dynamically locate The technology dynamically calculates the actual coordinate values of the current mouse movement position in each coordinate system, and displays them on the screen in real time. After drawing, obtain the characteristic hydrological points, and choose whether to write the coordinate values of the characteristic hydrological points into the database;

其中,S-lgt和S’-lgt’坐标系均为单坐标系,在绘制曲线坐标系的过程中,记录下曲线横纵坐标轴刻度的最值及其在视图窗口的世界坐标,作为坐标系的属性值进行存储,这里分别以Smax、Smin、tmax、tmin、dLX、dRX、dBY和dTY表示(一般Smin=0,tmin=1),通过鼠标移动动态显示并定位(S,t)坐标值。鼠标定位需要进行鼠标视图逻辑坐标与世界坐标的实时转换。Among them, the S-lgt and S'-lgt' coordinate systems are both single coordinate systems. In the process of drawing the curve coordinate system, record the maximum value of the scale of the horizontal and vertical axes of the curve and its world coordinates in the view window as the coordinates Store the attribute values of the system, which are respectively represented by S max , S min , t max , t min , dLX, dRX, dBY and dTY (generally S min = 0, t min = 1), and are dynamically displayed and positioned by moving the mouse (S,t) coordinate value. Mouse positioning requires real-time conversion between mouse view logical coordinates and world coordinates.

利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征点的定位范围,在绘制S-lgt、S’-lgt’曲线及其坐标系时,分别向坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY和dTY,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在S-lgt、S’-lgt单坐标系内绘制特征水文点的坐标值,其中在单坐标系S-lgt内特征水文点的坐标(S,t)采用以下公式计算:Use the primitive attribute recognition technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the feature points. Write attribute values at the leftmost and rightmost ends of the abscissa axis and the uppermost and lower ends of the ordinate axis. The attribute values include S max , S min , t max , t min , dLX, dRX, dBY and dTY, and then use The mouse dynamic positioning technology dynamically calculates the actual coordinate values of the current mouse movement position in each coordinate system, and draws the coordinate values of the characteristic hydrological points in the S-lgt and S'-lgt single coordinate systems, among which the single coordinate system S-lgt The coordinates (S, t) of the characteristic hydrological points are calculated by the following formula:

单坐标系S’-lgt’内特征水文点的坐标(S’,t’)采用以下公式计算:The coordinates (S’, t’) of the characteristic hydrological points in the single coordinate system S’-lgt’ are calculated by the following formula:

其中,dY为当前鼠标所在视图区的世界纵坐标,Smax为S-lgt或S’-lgt’坐标系纵坐标轴S的最大刻度,Smin为S-lgt或S’-lgt’坐标系纵坐标轴S的最小刻度,tmax为S-lgt或S’-lgt’坐标系横坐标轴t的最大刻度,tmin为S-lgt或S’-lgt’坐标系横坐标轴t的最小刻度、dLX为S-lgt或S’-lgt’坐标系t横坐标轴最左端的世界横坐标、dRX为S-lgt或S’-lgt’坐标系t横坐标轴最右端的世界横坐标、dBY为S-lgt或S’-lgt’坐标系S纵坐标轴最底端的世界纵坐标,dTY为S-lgt或S’-lgt’坐标系S纵坐标轴最上端的世界纵坐标。Among them, dY is the world ordinate of the view area where the mouse is currently located, S max is the maximum scale of the ordinate axis S of the S-lgt or S'-lgt' coordinate system, and S min is the S-lgt or S'-lgt' coordinate system The minimum scale of the ordinate axis S, t max is the maximum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system, and t min is the minimum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system Scale, dLX is the world abscissa coordinate at the leftmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dRX is the world abscissa coordinate at the rightmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dBY is the world ordinate at the bottom of the S ordinate axis in the S-lgt or S'-lgt' coordinate system, and dTY is the world ordinate at the top of the S ordinate axis in the S-lgt or S'-lgt' coordinate system.

利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征点的定位范围,在绘制lgS-lgt曲线和lgW(u)-lg(1/u)曲线及其坐标系时,分别向双坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY、dTY、W(u)max、W(u)min、umax、umin、dLX’、dRX’、dBY’和dTY’,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在lgS-lgt和标准曲线的双坐标系内绘制特征水文点的坐标值,其中由lgS-lgt坐标系与lgW(u)-lg(1/u)坐标系组合而成的双坐标系内特征水文点的坐标(S,t,W(u),1/u)采用以下公式计算:Use the primitive attribute identification technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the feature points, and draw the lgS-lgt curve and lgW(u)-lg(1/u) curve and their coordinates In the dual-coordinate system, write attribute values to the leftmost and rightmost ends of the abscissa axis and the uppermost and lowermost ends of the ordinate axis respectively in the dual coordinate system. The attribute values include S max , S min , t max , t min , dLX, dRX, dBY, dTY, W(u) max , W(u) min , u max , u min , dLX', dRX', dBY' and dTY', and then use the mouse dynamic positioning technology to dynamically calculate the current mouse movement position in each The actual coordinate values in the coordinate system, draw the coordinate values of the characteristic hydrological points in the dual coordinate system of lgS-lgt and standard curve, in which the lgS-lgt coordinate system is combined with the lgW(u)-lg(1/u) coordinate system The coordinates (S, t, W(u), 1/u) of the characteristic hydrological points in the resulting dual coordinate system are calculated by the following formula:

其中,Smax为lgS-lgt坐标系纵坐标轴S的最大刻度;Smin为lgS-lgt坐标系纵坐标轴S的最小刻度;dY为当前鼠标所在lgS-lgt坐标系视图区的世界纵坐标;dTY为lgS-lgt坐标系纵坐标轴最上端的世界纵坐标;dBY为lgS-lgt坐标系纵坐标轴最底端的世界纵坐标;Among them, S max is the maximum scale of the ordinate axis S of the lgS-lgt coordinate system; S min is the minimum scale of the ordinate axis S of the lgS-lgt coordinate system; dY is the world ordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dTY is the world ordinate at the top of the ordinate axis of the lgS-lgt coordinate system; dBY is the world ordinate at the bottom of the ordinate axis of the lgS-lgt coordinate system;

其中,tmax为lgS-lgt坐标系横坐标轴t的最大刻度;tmin为lgS-lgt坐标系横坐标轴t的最小刻度;dX为当前鼠标所在lgS-lgt坐标系视图区的世界横坐标;dLX为lgS-lgt坐标系横坐标轴最左端的世界横坐标;dRX为lgS-lgt坐标系横坐标轴最右端的世界横坐标;Among them, t max is the maximum scale of the abscissa axis t in the lgS-lgt coordinate system; t min is the minimum scale of the abscissa axis t in the lgS-lgt coordinate system; dX is the world abscissa coordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dLX is the world abscissa coordinate at the leftmost end of the abscissa axis in the lgS-lgt coordinate system; dRX is the world abscissa coordinate at the rightmost end of the abscissa axis in the lgS-lgt coordinate system;

W(u)max为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最大刻度;W(u)min为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最小刻度;dY’为当前鼠标所在lgW(u)-lg(1/u)坐标系视图区的世界纵坐标;dTY’为lgW(u)-lg(1/u)坐标系纵坐标轴最上端的世界纵坐标;dBY’为lgW(u)-lg(1/u)坐标系纵坐标轴最底端的世界纵坐标;W(u) max is the maximum scale of the ordinate axis W(u) of the lgW(u)-lg(1/u) coordinate system; W(u) min is the ordinate of the lgW(u)-lg(1/u) coordinate system The minimum scale of the coordinate axis W(u); dY' is the world ordinate of the view area of the lgW(u)-lg(1/u) coordinate system where the current mouse is located; dTY' is lgW(u)-lg(1/u) The world ordinate at the top of the ordinate axis of the coordinate system; dBY' is the world ordinate at the bottom of the ordinate axis of the lgW(u)-lg(1/u) coordinate system;

1/u为鼠标实时定位显示的1/u值;(1/u)max为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最大刻度;(1/u)min为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最小刻度;dX’为当前鼠标所在lg W(u)-lg(1/u)坐标系视图区的世界横坐标;dLX’为lg W(u)-lg(1/u)坐标系横坐标轴最左端的世界横坐标;dRX’为lg W(u)-lg(1/u)坐标系横坐标轴最右端的世界横坐标。1/u is the 1/u value displayed by the real-time positioning of the mouse; (1/u) max is the maximum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; (1/u) min is the minimum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; dX' is the world of the view area of the lg W(u)-lg(1/u) coordinate system where the current mouse is located Abscissa; dLX' is the world abscissa at the leftmost end of the abscissa axis of the lg W(u)-lg(1/u) coordinate system; dRX' is the abscissa axis of the lg W(u)-lg(1/u) coordinate system The rightmost world abscissa.

图元属性识别与鼠标动态定位模拟图如图2所示。Figure 2 shows the simulation diagram of primitive attribute recognition and mouse dynamic positioning.

(d)根据数据库中抽水试验数据和制图过程中得到的特征水文点,利用一般科学计算方法和迭代递归算法自动分析并计算相关水文地质参数和其他综合成果数据,包括S-lgt直线图解法数据表、S’-lgt’直线图解法数据表、lgS-lgt直线图解法数据表、单双孔抽水试验综合成果表、水化学分析表和施工技术参数表,将水文地质参数和其他综合成果数据写入数据库;(d) According to the pumping test data in the database and the characteristic hydrological points obtained during the mapping process, use general scientific calculation methods and iterative recursive algorithms to automatically analyze and calculate relevant hydrogeological parameters and other comprehensive result data, including S-lgt line diagram method data table, S'-lgt' straight line graphical method data table, lgS-lgt straight line graphical method data table, single and double hole pumping test comprehensive result table, water chemical analysis table and construction technical parameter table, hydrogeological parameters and other comprehensive result data write to the database;

(4)由于各子图在工程视图中是按照纵向垂直规则自动排列生成的,将步骤(3)绘制的各个子图进行图幅移动,即图形在工程视图中位置的微调,得到符合行业标准的完整的单孔抽水试验综合成果图和多孔抽水试验综合成果图。(4) Since each sub-graph is automatically arranged and generated according to the vertical and vertical rules in the engineering view, each sub-graph drawn in step (3) is moved to the frame, that is, the fine-tuning of the position of the graph in the engineering view is obtained to meet the industry standard The complete single-hole pumping test comprehensive result graph and multi-hole pumping test comprehensive result graph.

Claims (3)

1.一种抽水试验数据的处理方法,其特征在于包括以下步骤:1. a processing method of pumping test data, is characterized in that comprising the following steps: (1)采集抽水试验数据,获取由井中流量水位测井仪产生的.mdf格式的抽水试验数据文件;所述抽水试验数据文件包括静止水位观测数据文件、抽水试验数据文件和恢复水位数据文件三类,各类抽水试验数据文件包括所属钻孔抽水试验的基本信息,以及成果数据,成果数据的每行数据包括时间、温度、水位、流速和深度;(1) collect the pumping test data, obtain the pumping test data file produced by the .mdf format of the flow water level logging instrument in the well; the pumping test data file includes static water level observation data file, pumping test data file and recovery water level data file III Class, all kinds of pumping test data files include the basic information of the borehole pumping test and the result data, each line of result data includes time, temperature, water level, flow velocity and depth; (2)对抽水试验数据文件进行预处理,将预处理后的抽水试验数据文件写入数据库,形成抽水试验数据;(2) the pumping test data file is preprocessed, and the pumping test data file after the pretreatment is written into the database to form the pumping test data; (3)调取数据库中的抽水试验数据和存储的水文钻孔其他相关数据,根据抽水试验数据在同一工程下按照纵向展布的规则分别绘制以下子图和数据:(3) The pumping test data in the database and other relevant data of the stored hydrological drilling are retrieved, and the following subgraphs and data are respectively drawn according to the rules of longitudinal distribution under the same project according to the pumping test data: (a)设置柱状图基本参数和非目标层范围,利用裁剪技术绘制省略掉非目标层的水文综合柱状图;(a) Set the basic parameters of the histogram and the range of non-target layers, and use the clipping technique to draw a comprehensive hydrological histogram omitting the non-target layers; (b)根据抽水试验数据中的每条记录的时间数据构建初始日期时间轴;根据抽水试验数据中的每条记录与第一条记录的时间间隔构建初始累计时间轴;第一条记录的时间数据所在位置的世界坐标为(0,0);(b) Construct the initial date time axis according to the time data of each record in the pumping test data; construct the initial cumulative time axis according to the time interval between each record in the pumping test data and the first record; the time of the first record The world coordinates of the data location are (0, 0); 利用多时段变比例尺和数据联动定位技术,根据变比例尺处的日期,计算日期时间轴和累计时间轴的每个变比例尺分界处的世界坐标以重新规划日期时间轴和累计时间轴的刻度分布,再根据各个时段变比例尺的大小动态计算抽水试验数据中每个数据点的世界坐标,其中第i个变比例尺分界处的世界坐标采用以下公式计算:Using multi-period variable scale and data linkage positioning technology, according to the date at the variable scale, calculate the world coordinates of each variable scale boundary between the date time axis and the cumulative time axis to re-plan the scale distribution of the date time axis and the cumulative time axis, Then dynamically calculate the world coordinates of each data point in the pumping test data according to the size of the variable scale in each period, and the world coordinates at the boundary of the ith variable scale are calculated using the following formula: 当i=0时,When i=0, DX分0=0DX points 0 = 0 当i>=1时,When i>=1, DX分i=DX分i-1+(Ti-Ti-1)×di-1DX points i = DX points i-1 + (T i -T i-1 ) × d i-1 ; 其中,DX分i为当前变比例尺分界处的世界坐标,DX分i-1为上一个变比例尺分界处的世界坐标,Ti为当前变比例尺分界处的日期时间,Ti-1为上一个变比例尺分界处的日期时间,di-1为当前变比例尺分界处以前每个单位小时的图上距离;Ti、Ti-1和di-1均为设置值;Among them, DX point i is the world coordinate of the current variable scale boundary, DX point i-1 is the world coordinate of the previous variable scale boundary, T i is the date and time of the current variable scale boundary, T i-1 is the previous The date and time at the boundary of the variable scale, d i-1 is the distance on the map of each unit hour before the current variable scale boundary; T i , T i-1 and d i-1 are all set values; 所述利用数据联动定位技术计算抽水试验数据中每个数据点的世界坐标,其中第i个数据点的世界坐标采用以下公式计算:The use of data linkage positioning technology to calculate the world coordinates of each data point in the pumping test data, wherein the world coordinates of the i-th data point is calculated using the following formula: DXi=DX分i+(Tcur-Ti)×di DX i =DX min i +(T cur -T i )×d i 其中i>=1,DXi为当前数据点的世界坐标;Tcur为当前数据点的日期时间;di为当前变比例尺分界处以后每个单位小时的图上距离;Tcur和di为设置值;Where i>=1, DX i is the world coordinate of the current data point; T cur is the date and time of the current data point; d i is the distance on the map of each unit hour after the boundary of the current variable scale; T cur and d i are Settings; 以日期时间轴和累计时间轴作为横坐标轴,以Q纵坐标轴和S纵坐标轴作为纵坐标轴,绘制抽水试验Q、S-t及恢复水位历时曲线;Take the date and time axis and the cumulative time axis as the abscissa axis, and use the Q and S ordinate axes as the ordinate axis to draw the Q, S-t and restoration water level duration curves of the pumping test; (c)依据抽水试验数据,由计算机计算并绘制Q-S曲线、S-lgt曲线、S’-lgt’曲线及lgS-lgt曲线;分别在S-lgt、S’-lgt’曲线的单坐标系和lgS-lgt曲线的双坐标系下,结合坐标系下曲线中抽水试验数据的表现特点,利用图元属性识别技术获取曲线坐标系中所存储的首尾刻度的图元属性值,再利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,实时显示在屏幕上,绘制后,获得特征水文点,选择是否将特征水文点的坐标值写入数据库;(c) Calculate and draw Q-S curve, S-lgt curve, S'-lgt' curve and lgS-lgt curve by computer according to pumping test data; Under the dual coordinate system of the lgS-lgt curve, combined with the performance characteristics of the pumping test data in the curve under the coordinate system, use the graphic element attribute recognition technology to obtain the graphic element attribute value of the first and last scale stored in the curve coordinate system, and then use the mouse to dynamically locate The technology dynamically calculates the actual coordinate values of the current mouse movement position in each coordinate system, and displays them on the screen in real time. After drawing, obtain the characteristic hydrological points, and choose whether to write the coordinate values of the characteristic hydrological points into the database; 利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征水文点的定位范围,在绘制S-lgt、S’-lgt’曲线及其坐标系时,分别向坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY和dTY,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在S-lgt、S’-lgt’单坐标系内绘制特征水文点的坐标值,其中在单坐标系S-lgt内特征水文点的坐标(S,t)采用以下公式计算:Use the primitive attribute recognition technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the characteristic hydrological points. When drawing the S-lgt, S'-lgt' curves and their coordinate systems, respectively Write attribute values at the leftmost and rightmost ends of the abscissa axis and the uppermost and lower ends of the ordinate axis. The attribute values include S max , S min , t max , t min , dLX, dRX, dBY and dTY, and then Use the mouse dynamic positioning technology to dynamically calculate the actual coordinate values of the current mouse movement position in each coordinate system, and draw the coordinate values of the characteristic hydrological points in the S-lgt, S'-lgt' single coordinate system, among which in the single coordinate system S- The coordinates (S, t) of the characteristic hydrological points in lgt are calculated by the following formula: SS == dd TT YY -- dd YY dd TT YY -- dd BB YY &times;&times; (( SS mm aa xx -- SS mm ii nno )) ++ SS mm ii nno tt == 1010 (( dd Xx -- dd LL Xx dd RR Xx -- dd LL Xx &times;&times; (( lgtlgt maxmax -- lgtlgt minmin )) ++ lgtlgt minmin )) 单坐标系S’-lgt’内特征水文点的坐标(S’,t’)采用以下公式计算:The coordinates (S’, t’) of the characteristic hydrological points in the single coordinate system S’-lgt’ are calculated by the following formula: SS ,, == SS maxmax -- dd TT YY -- dd YY dd TT YY -- dd BB YY &times;&times; (( SS maxmax -- SS minmin )) tt ,, == 1010 (( dd Xx -- dd LL Xx dd RR Xx -- dd LL Xx &times;&times; (( lgtlgt mm aa xx -- lgtlgt mm ii nno )) ++ lgtlgt minmin )) 其中,dY为当前鼠标所在视图区的世界纵坐标,Smax为S-lgt或S’-lgt’坐标系纵坐标轴S的最大刻度,Smin为S-lgt或S’-lgt’坐标系纵坐标轴S的最小刻度,tmax为S-lgt或S’-lgt’坐标系横坐标轴t的最大刻度,tmin为S-lgt或S’-lgt’坐标系横坐标轴t的最小刻度、dLX为S-lgt或S’-lgt’坐标系t横坐标轴最左端的世界横坐标、dRX为S-lgt或S’-lgt’坐标系t横坐标轴最右端的世界横坐标、dBY为S-lgt或S’-lgt’坐标系S纵坐标轴最底端的世界纵坐标,dTY为S-lgt或S’-lgt’坐标系S纵坐标轴最上端的世界纵坐标;Among them, dY is the world ordinate of the view area where the mouse is currently located, S max is the maximum scale of the ordinate axis S of the S-lgt or S'-lgt' coordinate system, and S min is the S-lgt or S'-lgt' coordinate system The minimum scale of the ordinate axis S, t max is the maximum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system, and t min is the minimum scale of the abscissa axis t in the S-lgt or S'-lgt' coordinate system Scale, dLX is the world abscissa coordinate at the leftmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dRX is the world abscissa coordinate at the rightmost end of the t abscissa axis in the S-lgt or S'-lgt' coordinate system, dBY is the world ordinate at the bottom of the S ordinate axis in the S-lgt or S'-lgt' coordinate system, dTY is the world ordinate at the top of the S ordinate axis in the S-lgt or S'-lgt' coordinate system; 利用图元属性识别技术,获取坐标系的横纵坐标轴首尾刻度的属性值来确定特征水文点的定位范围,在绘制lgS-lgt曲线和lgW(u)-lg(1/u)曲线及其坐标系时,分别向双坐标系的横坐标轴的最左端与最右端和纵坐标轴的最上端和最下端写入属性值,属性值包括Smax、Smin、tmax、tmin、dLX、dRX、dBY、dTY、W(u)max、W(u)min、umax、umin、dLX’、dRX’、dBY’和dTY’,然后利用鼠标动态定位技术动态计算当前鼠标移动位置在各坐标系下的实际坐标值,在lgS-lgt和标准曲线的双坐标系内绘制特征水文点的坐标值,其中由lgS-lgt坐标系与lgW(u)-lg(1/u)坐标系组合而成的双坐标系内特征水文点的坐标(S,t,W(u),1/u)采用以下公式计算:Utilize the primitive attribute identification technology to obtain the attribute values of the first and last scales of the horizontal and vertical coordinate axes of the coordinate system to determine the positioning range of the characteristic hydrological points, and draw the lgS-lgt curve and lgW(u)-lg(1/u) curve and its In the coordinate system, write attribute values to the leftmost and rightmost ends of the abscissa axis and the uppermost and lowermost ends of the ordinate axis in the dual coordinate system respectively. The attribute values include S max , S min , t max , t min , dLX , dRX, dBY, dTY, W(u) max , W(u) min , u max , u min , dLX', dRX', dBY' and dTY', and then use the mouse dynamic positioning technology to dynamically calculate the current mouse movement position in The actual coordinate values in each coordinate system, draw the coordinate values of the characteristic hydrological points in the double coordinate system of lgS-lgt and standard curve, in which the lgS-lgt coordinate system and the lgW(u)-lg(1/u) coordinate system The coordinates (S,t,W(u),1/u) of the characteristic hydrological points in the combined dual coordinate system are calculated by the following formula: SS == 1010 (( lgSlm w maxmax -- dd TT YY -- dd YY dd TT YY -- dd BB YY &times;&times; (( lgSlm w maxmax -- lgSlm w minmin )) )) 其中,Smax为lgS-lgt坐标系纵坐标轴S的最大刻度;Smin为lgS-lgt坐标系纵坐标轴S的最小刻度;dY为当前鼠标所在lgS-lgt坐标系视图区的世界纵坐标;dTY为lgS-lgt坐标系纵坐标轴最上端的世界纵坐标;dBY为lgS-lgt坐标系纵坐标轴最底端的世界纵坐标;Among them, S max is the maximum scale of the ordinate axis S of the lgS-lgt coordinate system; S min is the minimum scale of the ordinate axis S of the lgS-lgt coordinate system; dY is the world ordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dTY is the world ordinate at the top of the ordinate axis of the lgS-lgt coordinate system; dBY is the world ordinate at the bottom of the ordinate axis of the lgS-lgt coordinate system; tt == 1010 (( dd Xx -- dd LL Xx dd RR Xx -- dd LL Xx &times;&times; (( lgtlgt maxmax -- lgtlgt minmin )) ++ lgtlgt minmin )) 其中,tmax为lgS-lgt坐标系横坐标轴t的最大刻度;tmin为lgS-lgt坐标系横坐标轴t的最小刻度;dX为当前鼠标所在lgS-lgt坐标系视图区的世界横坐标;dLX为lgS-lgt坐标系横坐标轴最左端的世界横坐标;dRX为lgS-lgt坐标系横坐标轴最右端的世界横坐标;Among them, t max is the maximum scale of the abscissa axis t in the lgS-lgt coordinate system; t min is the minimum scale of the abscissa axis t in the lgS-lgt coordinate system; dX is the world abscissa coordinate of the view area of the lgS-lgt coordinate system where the current mouse is located ;dLX is the world abscissa coordinate at the leftmost end of the abscissa axis in the lgS-lgt coordinate system; dRX is the world abscissa coordinate at the rightmost end of the abscissa axis in the lgS-lgt coordinate system; WW (( uu )) == 1010 (( lglg WW (( uu )) maxmax -- dTYwxya ,, -- dYwxya ,, dTYwxya ,, -- dBYdBY ,, &times;&times; (( lglg WW (( uu )) maxmax -- lglg WW (( uu )) minmin )) )) W(u)max为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最大刻度;W(u)min为lgW(u)-lg(1/u)坐标系纵坐标轴W(u)的最小刻度;dY’为当前鼠标所在lgW(u)-lg(1/u)坐标系视图区的世界纵坐标;dTY’为lgW(u)-lg(1/u)坐标系纵坐标轴最上端的世界纵坐标;dBY’为lgW(u)-lg(1/u)坐标系纵坐标轴最底端的世界纵坐标;W(u) max is the maximum scale of the ordinate axis W(u) of the lgW(u)-lg(1/u) coordinate system; W(u) min is the ordinate of the lgW(u)-lg(1/u) coordinate system The minimum scale of the coordinate axis W(u); dY' is the world ordinate of the view area of the lgW(u)-lg(1/u) coordinate system where the current mouse is located; dTY' is lgW(u)-lg(1/u) The world ordinate at the top of the ordinate axis of the coordinate system; dBY' is the world ordinate at the bottom of the ordinate axis of the lgW(u)-lg(1/u) coordinate system; 11 // uu == 1010 (( dXwxya ,, -- dLXwxya ,, dRXwxya ,, -- dLXwxya ,, &times;&times; (( lglg (( 11 uu )) maxmax -- lglg (( 11 uu )) minmin )) ++ lglg (( 11 uu )) minmin )) 1/u为鼠标实时定位显示的1/u值;(1/u)max为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最大刻度;(1/u)min为lg W(u)-lg(1/u)坐标系横坐标轴1/u的最小刻度;dX’为当前鼠标所在lg W(u)-lg(1/u)坐标系视图区的世界横坐标;dLX’为lg W(u)-lg(1/u)坐标系横坐标轴最左端的世界横坐标;dRX’为lg W(u)-lg(1/u)坐标系横坐标轴最右端的世界横坐标;1/u is the 1/u value displayed by the real-time positioning of the mouse; (1/u) max is the maximum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; (1/u) min is the minimum scale of the abscissa axis 1/u of the lg W(u)-lg(1/u) coordinate system; dX' is the world of the view area of the lg W(u)-lg(1/u) coordinate system where the current mouse is located Abscissa; dLX' is the world abscissa at the leftmost end of the abscissa axis of the lg W(u)-lg(1/u) coordinate system; dRX' is the abscissa axis of the lg W(u)-lg(1/u) coordinate system The world abscissa at the far right; (d)根据数据库中抽水试验数据和制图过程中得到的特征水文点,利用一般科学计算方法和迭代递归算法自动分析并计算相关水文地质参数和其他综合成果数据,将水文地质参数和其他综合成果数据写入数据库;(d) According to the pumping test data in the database and the characteristic hydrological points obtained during the mapping process, the general scientific calculation method and iterative recursive algorithm are used to automatically analyze and calculate the relevant hydrogeological parameters and other comprehensive results data, and the hydrogeological parameters and other comprehensive results Data is written to the database; (4)将步骤(3)绘制的各个子图进行图幅移动,得到完整的单孔抽水试验综合成果图和多孔抽水试验综合成果图。(4) Move each sub-graph drawn in step (3) to obtain a complete single-hole pumping test comprehensive result map and multi-hole pumping test comprehensive result map. 2.根据权利要求1所述的抽水试验数据的处理方法,其特征在于:步骤(2)所述的预处理,包括对抽水试验数据文件获取、文件及内容有效性检查、抽样数据分析、处理及提取,以及将抽样得到的抽水试验数据自动写入数据库。2. the processing method of pumping test data according to claim 1, is characterized in that: the described pretreatment of step (2), comprises to pumping test data file acquisition, file and content validity inspection, sampling data analysis, processing And extract, and automatically write the pumping test data obtained by sampling into the database. 3.根据权利要求1所述的抽水试验数据的处理方法,其特征在于:步骤(3)中所述相关水文地质参数和其他综合成果数据,包括S-lgt直线图解法数据表、S’-lgt’直线图解法数据表、lgS-lgt直线图解法数据表、单双孔抽水试验综合成果表、水化学分析表和施工技术参数表。3. the processing method of pumping test data according to claim 1, is characterized in that: relevant hydrogeological parameter and other comprehensive achievement data described in step (3), comprise S-lgt linear graph method data table, S'- lgt' straight line graphical method data table, lgS-lgt straight line graphical method data table, single and double hole pumping test comprehensive results table, water chemical analysis table and construction technical parameter table.
CN201510306815.7A 2015-06-05 2015-06-05 Processing method for water pumping test data Active CN104933117B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510306815.7A CN104933117B (en) 2015-06-05 2015-06-05 Processing method for water pumping test data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510306815.7A CN104933117B (en) 2015-06-05 2015-06-05 Processing method for water pumping test data

Publications (2)

Publication Number Publication Date
CN104933117A CN104933117A (en) 2015-09-23
CN104933117B true CN104933117B (en) 2017-02-22

Family

ID=54120284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510306815.7A Active CN104933117B (en) 2015-06-05 2015-06-05 Processing method for water pumping test data

Country Status (1)

Country Link
CN (1) CN104933117B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107766635A (en) * 2017-10-12 2018-03-06 中国煤炭地质总局九勘探队 A kind of Excel is in bailing test curve drawing drawing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149600B (en) * 2013-02-06 2015-06-17 河海大学 Automatic wiring method for determining hydrogeological parameters based on optimization control point

Also Published As

Publication number Publication date
CN104933117A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
CN104915521B (en) Log sheet compilation method based on field catalog data and automated cartographic generalization
CN103245971B (en) Well break point guided seismic minor fault interpretation method and device
CN111339691A (en) Intelligent geotechnical engineering parameter three-dimensional analysis and evaluation system and method based on voxler software
CN110886604B (en) An Efficient Geothermal Resource Exploration Method Based on Computer Simulation Technology
CN104504047B (en) A kind of SOLID MINERAL RESOURCES reserve estimate system based on dual-layer data storehouse
CN112241711A (en) Intelligent method for identifying RQD from borehole core photo
CN106682377A (en) Method for extracting and quantitatively estimating hyperspectra of drilling rock core altered mineral
CN108665543A (en) Data supervision system is surveyed in coal Digital Mine mountainous region
CN106709987B (en) Dynamic construction method of three-dimensional geological profile model
CN113420348A (en) Method for rapidly drawing uranium mine exploration line profile map
CN102539194B (en) Gradient geochemical exploration method
CN114511240A (en) Mine excavation plan generation method and storage medium
CN113627657A (en) Sandstone-type uranium mineralization interest area prediction method using machine learning model
CN105069162A (en) Informatized exploratory adit catalog data acquisition system and method
CN115661290A (en) Method and system for drawing ground settlement histogram
CN115131486A (en) Engineering exploration data acquisition system and method
CN110968840A (en) Method for judging grade of tunnel surrounding rock based on magnetotelluric sounding resistivity
CN104933117B (en) Processing method for water pumping test data
CN103310061B (en) Coal seismic prospecting drafting system
CN111813977A (en) A method for intelligent interpretation of underground engineering rock mass structure information and cloud remote surrounding rock classification
CN113592823B (en) A method for calculating the porosity distribution of rock formations
CN117132784A (en) Image recognition-based drilling rock core digital cataloging method
CN105204066A (en) Spectral decomposition-based method for directly indicating intrusion position of igneous rock into coal seam
CN116104470A (en) Geosteering formation identification and prediction method, system, equipment and storage medium
Yuan et al. Joint investigation and 3D visual evaluation of rock mass quality

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant