CN104907568B - Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology - Google Patents
Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology Download PDFInfo
- Publication number
- CN104907568B CN104907568B CN201510356570.9A CN201510356570A CN104907568B CN 104907568 B CN104907568 B CN 104907568B CN 201510356570 A CN201510356570 A CN 201510356570A CN 104907568 B CN104907568 B CN 104907568B
- Authority
- CN
- China
- Prior art keywords
- laser
- layer
- thick film
- femtosecond laser
- film pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005516 engineering process Methods 0.000 title abstract description 17
- 239000002131 composite material Substances 0.000 title abstract description 8
- 238000004519 manufacturing process Methods 0.000 title description 7
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 122
- 229920001971 elastomer Polymers 0.000 claims description 25
- 239000000806 elastomer Substances 0.000 claims description 25
- 239000000523 sample Substances 0.000 claims description 19
- 239000011241 protective layer Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 238000003754 machining Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 claims 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 229910001928 zirconium oxide Inorganic materials 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 13
- 238000010146 3D printing Methods 0.000 abstract description 5
- 238000007664 blowing Methods 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000004140 cleaning Methods 0.000 abstract description 2
- 238000005498 polishing Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 9
- 229920001967 Metal rubber Polymers 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000012671 ceramic insulating material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010223 real-time analysis Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
本发明公开了一种基于飞秒激光复合技术的压阻式厚膜压力传感器制备方法,包括:首先,根据压阻式厚膜压力传感器各层的精度要求,选择纳秒、皮秒或飞秒激光作为原始激光进行扫描烧结熔化。然后,根据实时监测反馈选择对特定区域使用皮秒或飞秒激光进行精加工。根据压阻式厚膜压力传感器加工的实际需要,实时监测可以为尺寸检测、晶相结构检测、表面形貌检测、成分检测等。本发明可实现更精确的尺寸控制和电阻阻值控制,省去了后续修阻等过程,可以达到不补偿即可使用的精度。同时,还省去了传统3D打印完成后所需的清理、抛光等工序,有效解决了吹粉、残余应力高、强度低等问题。
The invention discloses a preparation method of a piezoresistive thick film pressure sensor based on femtosecond laser composite technology. The laser is used as the original laser for scanning sintering and melting. Then, according to the real-time monitoring feedback, choose to use picosecond or femtosecond laser to finish the specific area. According to the actual needs of piezoresistive thick film pressure sensor processing, real-time monitoring can be dimension detection, crystal phase structure detection, surface morphology detection, composition detection, etc. The invention can realize more precise size control and resistance value control, saves the subsequent process of repairing resistance, and can achieve the precision that can be used without compensation. At the same time, it also saves the cleaning, polishing and other processes required after the completion of traditional 3D printing, effectively solving the problems of powder blowing, high residual stress, and low strength.
Description
技术领域 technical field
本发明属于压力传感器芯片技术领域,具体涉及一种基于飞秒激光复合技术的压阻式厚膜压力传感器制备方法。 The invention belongs to the technical field of pressure sensor chips, and in particular relates to a preparation method of a piezoresistive thick film pressure sensor based on femtosecond laser composite technology.
背景技术 Background technique
厚膜压力传感器是厚膜技术和传感器技术相结合的产物,集成了厚膜技术和压力传感器技术,具有对温度不敏感、工艺简单、重复性好、适用于恶劣环境、可靠性高、成本低等优点。压阻式厚膜压力传感器是厚膜压力传感器应用最广的一种,其一般采用陶瓷(如氧化铝)、金属(如不锈钢)等作为弹性体,采用含金属氧化物的玻璃釉作为电阻,通过丝网印刷工艺层层印制后烧结而成。由于丝网制作工艺的烧结电阻膜厚在10微米左右,烧结后电阻阻值难以精确控制,误差经常在5-10%之间,造成批量调理和补偿非常困难,导致厚膜压力传感器的精度偏低,往往需要修阻。 Thick film pressure sensor is the product of the combination of thick film technology and sensor technology. It integrates thick film technology and pressure sensor technology. It is insensitive to temperature, simple in process, good in repeatability, suitable for harsh environments, high in reliability and low in cost. Etc. The piezoresistive thick-film pressure sensor is the most widely used thick-film pressure sensor. It generally uses ceramics (such as alumina) and metals (such as stainless steel) as elastomers, and glass glaze containing metal oxides as resistors. It is printed layer by layer by screen printing process and then sintered. Since the thickness of the sintered resistance film in the silk screen manufacturing process is about 10 microns, it is difficult to accurately control the resistance value after sintering, and the error is often between 5-10%, which makes it very difficult to adjust and compensate in batches, resulting in deviation of the accuracy of the thick film pressure sensor. Low, often need to repair resistance.
3D打印技术是一种运用粉末状材料通过选择性激光烧结或熔化逐层堆积出制造产品的增材制造方法。相对传统制造技术而言,它可以轻松地制造出传统技术难以生产的复杂、高难度的产品。但是,3D打印出的零件表面往往显现出强度不高、吹粉、球化、残余应力高及表面粗糙高等缺点,需要对成型零件进行除渣和抛光处理。当前的3D打印过程中仅有利用视觉监控来控制尺寸,没有微观结构及成分的实时监控功能,我们无从知道零部件的微观结构,也就不能对其机械性能进行更好地控制。 3D printing technology is an additive manufacturing method that uses powder materials to build up products layer by layer through selective laser sintering or melting. Compared with traditional manufacturing technology, it can easily manufacture complex and difficult products that are difficult to produce with traditional technology. However, the surface of 3D printed parts often shows shortcomings such as low strength, powder blowing, spheroidization, high residual stress, and high surface roughness. It is necessary to remove slag and polish the molded parts. In the current 3D printing process, only visual monitoring is used to control the size. Without the real-time monitoring function of microstructure and composition, we have no way of knowing the microstructure of parts, and we cannot better control their mechanical properties.
近些年,短脉冲激光(如纳秒激光、皮秒激光和飞秒激光)由于热影响小,加工精度高,因而在精密加工领域备受关注。纳秒激光的脉冲宽度为纳秒(10-9秒)级,其重复频率一般为数百kHz,最高可达10MHz,因此可以达到很高的加工效率。皮秒(10-12秒)激光足以避免能量发生热扩散并达到这些消融临界过程所需要的峰值能量密度,可以提供较高的平均功率(10 W)和良好的光束质量(M2 < 1.5),可以在有效工作距离内聚焦成一个10μm或更小的光点。飞秒激光(10-15秒)在每一个激光脉冲与物质相互作用的持续期内,避免了热扩散的存在,在根本上消除了类似于长脉冲加工过程中的熔融区,热影响区,冲击波等多种效应对周围材料造成的影响和热损伤,将加工过程所涉及的空间范围大大缩小,从而提高了准确程度,其光束直径可以聚焦到1μm以内,其精度可达100nm以内,最高可以达到0.1nm。 In recent years, short-pulse lasers (such as nanosecond lasers, picosecond lasers, and femtosecond lasers) have attracted much attention in the field of precision processing due to their small thermal influence and high processing accuracy. The pulse width of nanosecond laser is nanosecond (10 -9 seconds) level, and its repetition frequency is generally hundreds of kHz, up to 10MHz, so it can achieve high processing efficiency. Picosecond (10 -12 seconds) lasers are sufficient to avoid thermal diffusion of energy and achieve the peak energy density required for these ablation critical processes, which can provide high average power (10 W) and good beam quality (M2 < 1.5), Can be focused into a 10μm or smaller spot within the effective working distance. Femtosecond laser (10 -15 seconds) avoids the existence of thermal diffusion during the duration of each laser pulse interacting with matter, and fundamentally eliminates the melting zone and heat affected zone similar to long pulse processing. The impact of shock waves and other effects on surrounding materials and thermal damage greatly reduces the space involved in the processing process, thereby improving the accuracy. The beam diameter can be focused to within 1 μm, and the accuracy can reach within 100nm. up to 0.1nm.
纳秒/皮秒/飞秒激光复合技术可以集成加工速度、精度和成本等方面的优点,将其运用于传感器的烧结和微加工,可以快速、有效避免现今激光烧结过程中出现的吹粉,残余应力等复杂问题,可以省去补偿步骤。目前还没有出现使用该技术的3D打印传感器产品。 Nanosecond/picosecond/femtosecond laser composite technology can integrate the advantages of processing speed, precision and cost, and apply it to the sintering and micromachining of sensors, which can quickly and effectively avoid the powder blowing that occurs in the current laser sintering process, For complex problems such as residual stress, the compensation step can be omitted. There are no 3D printed sensor products using this technology yet.
发明内容 Contents of the invention
针对压阻式厚膜压力传感器制作工艺中存在的精度不高、粘接材料过多导致界面强度下降等缺陷,本发明结合纳秒-皮秒-飞秒激光复合技术,提出了一种基于飞秒激光复合技术的压阻式厚膜压力传感器制备方法。 Aiming at the defects in the manufacturing process of the piezoresistive thick film pressure sensor, such as low precision and the decrease of interface strength due to excessive bonding materials, the present invention combines nanosecond-picosecond-femtosecond laser composite technology to propose a femtosecond-based Preparation method of piezoresistive thick film pressure sensor with second laser composite technology.
为解决上述技术问题,本发明采用如下的技术方案: In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
基于飞秒激光复合技术的压阻式厚膜压力传感器制备方法,按照从上到下或从下到上逐层制备压阻式厚膜压力传感器,当弹性体为金属弹性体时,压阻式厚膜压力传感器从下到上依次为弹性体层、介质层、电阻层、保护层,保护层有与电阻层相连的电极穿过;当弹性体为绝缘陶瓷弹性体时,压阻式厚膜压力传感器从下到上依次为弹性体层、电阻层、保护层,保护层有与电阻层相连的电极穿过; The piezoresistive thick-film pressure sensor preparation method based on femtosecond laser composite technology is to prepare the piezoresistive thick-film pressure sensor layer by layer from top to bottom or from bottom to top. When the elastomer is a metal elastomer, the piezoresistive The thick-film pressure sensor consists of an elastomer layer, a dielectric layer, a resistive layer, and a protective layer from bottom to top. The protective layer is passed through by electrodes connected to the resistive layer; when the elastomer is an insulating ceramic elastomer, piezoresistive thick-film The pressure sensor consists of an elastomer layer, a resistive layer, and a protective layer from bottom to top, and the protective layer is passed through by electrodes connected to the resistive layer;
各层的制作步骤如下: The production steps of each layer are as follows:
(1)真空环境中,在工作台上加载当前层原材料粉末并预热; (1) In a vacuum environment, load the current layer of raw material powder on the workbench and preheat it;
(2)根据当前层的精度要求确定原始激光,采用原始激光对原材料进行扫描烧结熔化及固化;原始激光的选择原则是:对精度要求高的当前层选用脉冲较短的激光,对精度要求低的当前层则选用脉冲较长的激光;基于上述选择原则并结合经验、试验验证在纳秒激光、皮秒激光和飞秒激光中确定制作当前层所采用的原始激光; (2) Determine the original laser according to the accuracy requirements of the current layer, and use the original laser to scan, sinter, melt and solidify the raw materials; the selection principle of the original laser is: choose a laser with a shorter pulse for the current layer with high precision requirements, and use a laser with a lower precision requirement The current layer of the current layer uses a laser with a longer pulse; based on the above selection principles combined with experience and experimental verification, the original laser used to make the current layer is determined among nanosecond lasers, picosecond lasers and femtosecond lasers;
(3)实时检测和分析已成型当前层的尺寸、晶相结构、表面形貌和成分中的一项或多项,并将分析结果反馈至控制中心; (3) Real-time detection and analysis of one or more of the size, crystal phase structure, surface morphology and composition of the currently formed layer, and feedback the analysis results to the control center;
(4)将控制中心接收的分析结果与预设目标比对,若分析结果达到预设目标,则结束并开始制作下一层;否则,执行步骤(5); (4) Compare the analysis result received by the control center with the preset target, if the analysis result reaches the preset target, end and start to make the next layer; otherwise, execute step (5);
(5)使用精加工激光对已成型当前层的特定区域进行精加工,然后执行步骤(3);所述的特定区域指分析结果未达到预设目标的区域,所述的精加工激光选择原则为:(a)为皮秒激光或飞秒激光;同时,(b)其加工精度高于原始激光。 (5) Use the finishing laser to finish the specific area of the formed current layer, and then perform step (3); the specific area refers to the area where the analysis result does not reach the preset target, and the selection principle of the finishing laser It is: (a) picosecond laser or femtosecond laser; at the same time, (b) its processing accuracy is higher than that of the original laser.
上述原始激光和精加工激光均由多波长集成光纤激光器提供,所述的多波长集成光纤激光器包括控制器、纳秒激光探头、皮秒激光探头和飞秒激光探头,纳秒激光探头、皮秒激光探头和飞秒激光探头均与控制器相连,控制器用来控制纳秒激光、皮秒激光和飞秒激光的发射和关闭。 The above-mentioned original laser and finishing laser are all provided by multi-wavelength integrated fiber lasers. The multi-wavelength integrated fiber lasers include controllers, nanosecond laser probes, picosecond laser probes and femtosecond laser probes, nanosecond laser probes, picosecond laser probes, and picosecond laser probes. Both the laser probe and the femtosecond laser probe are connected with the controller, and the controller is used to control the emission and shutdown of the nanosecond laser, the picosecond laser and the femtosecond laser.
步骤(3)中采用实时监测系统进行实时检测和分析,所述的实时监测系统包括控制驱动系统和检测仪器,检测仪器与控制驱动系统相连,所述的检测仪器包括尺寸检测仪器、晶相结构检测仪器、表面形貌检测仪器、成分检测仪器中的一种或多种。 In step (3), a real-time monitoring system is used for real-time detection and analysis. The real-time monitoring system includes a control drive system and a detection instrument. The detection instrument is connected to the control drive system. The detection instrument includes a size detection instrument, a crystal phase structure One or more of testing instruments, surface morphology testing instruments, and component testing instruments.
所述的检测仪器包括扫描电镜、X射线衍射仪、红外摄像仪和质谱仪中的一种或多种。 The detection instrument includes one or more of a scanning electron microscope, an X-ray diffractometer, an infrared camera and a mass spectrometer.
作为优选:弹性体层的原材料为不锈钢、氧化锆或氧化铝;介质层的原材料为氧化铝;电阻层的原材料为以氧化钌或钌酸盐为基的玻璃秞;电极的原材料为金、铂、银、钯、铜或镍。 As preferred: the raw material of the elastomer layer is stainless steel, zirconia or aluminum oxide; the raw material of the dielectric layer is aluminum oxide; the raw material of the resistance layer is glass based on ruthenium oxide or ruthenate; the raw material of the electrode is gold, platinum , silver, palladium, copper or nickel.
本发明所采用的纳秒-皮秒-飞秒激光复合技术,是采用可同时提供纳秒激光、皮秒激光和飞秒激光的多波长集成光纤激光器实现。首先,根据压阻式压力传感器各层的精度要求,选择纳秒、皮秒或飞秒激光作为原始激光进行扫描烧结熔化。然后,根据实时监测反馈选择对特定区域使用皮秒或飞秒激光进行精加工。根据压阻式压力传感器加工的实际需要,实时监测可以为尺寸检测、晶相结构检测、表面形貌检测、成分检测等。 The nanosecond-picosecond-femtosecond laser composite technology adopted in the present invention is realized by using a multi-wavelength integrated fiber laser that can provide nanosecond laser, picosecond laser and femtosecond laser at the same time. First, according to the accuracy requirements of each layer of the piezoresistive pressure sensor, a nanosecond, picosecond or femtosecond laser is selected as the original laser for scanning sintering and melting. Then, according to the real-time monitoring feedback, choose to use picosecond or femtosecond laser to finish the specific area. According to the actual needs of piezoresistive pressure sensor processing, real-time monitoring can be size detection, crystal phase structure detection, surface morphology detection, composition detection, etc.
和现有技术相比,本发明具有如下优点和有益效果: Compared with the prior art, the present invention has the following advantages and beneficial effects:
可实现更精确的尺寸控制和电阻阻值控制,省去了后续修阻等过程,可以达到不补偿即可使用的精度。同时,还省去了传统3D打印完成后所需的清理、抛光等工序,有效解决了吹粉、残余应力高、强度低等问题。 It can achieve more precise size control and resistance value control, eliminating the need for subsequent repair and other processes, and can achieve the accuracy that can be used without compensation. At the same time, it also saves the cleaning, polishing and other processes required after the completion of traditional 3D printing, effectively solving the problems of powder blowing, high residual stress, and low strength.
附图说明 Description of drawings
为了更清楚地说明本发明方法,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅为本发明实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 In order to illustrate the method of the present invention more clearly, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only the embodiments of the present invention. For those of ordinary skill in the art, In other words, other drawings can also be obtained from these drawings on the premise of not paying creative work.
图1为金属弹性体压阻式厚膜压力传感器的剖面正视图,图中,101-支撑环,102-感知膜片,103-介质层,104-保护层,105-电阻层,106-导电层,107-空腔; Fig. 1 is a sectional front view of a metal elastomer piezoresistive thick film pressure sensor. In the figure, 101-support ring, 102-sensing diaphragm, 103-dielectric layer, 104-protective layer, 105-resistive layer, 106-conductive layer, 107 - cavity;
图2为绝缘弹性体压阻式厚膜压力传感器的剖面正视图,图中,201-支撑环,202-感知膜片,204-电阻层,205-保护层,206-导电层,207-空腔; Fig. 2 is the cross-sectional front view of the insulating elastomer piezoresistive thick film pressure sensor, in the figure, 201-support ring, 202-sensing diaphragm, 204-resistive layer, 205-protective layer, 206-conductive layer, 207-empty Cavity;
图3为本发明方法具体实施方式的流程图。 Fig. 3 is a flowchart of a specific embodiment of the method of the present invention.
具体实施方式 detailed description
压阻式厚膜压力传感器包括一体化成型的弹性体,弹性体分为金属弹性体和绝缘弹性体,金属弹性体的感知膜片上先制作介电层后再制作电阻层,见图1。绝缘弹性体的感知膜片上则直接制作电阻层来监测应变,见图2。 The piezoresistive thick film pressure sensor includes an integrated elastic body, which is divided into metal elastic body and insulating elastic body. The sensing diaphragm of the metal elastic body is made of a dielectric layer and then a resistive layer, as shown in Figure 1. On the sensing diaphragm of the insulating elastomer, a resistive layer is directly made to monitor the strain, as shown in Figure 2.
见图1,该金属弹性体压力传感器主要包括保护层(104)、导电层(106)、电阻层(105)、介质层(103)和弹性体。介质层(103)设置于弹性体上,电阻层(105)和导电层(106)均设置在介质层(103)上,保护层(104)设于电阻层(105)和导电层(106)上方用来保护电阻层(105)和导电层(106)。导电层(106)连通电阻层(105),并将电阻层(105)信号引出到保护层(104)外。 As shown in Fig. 1, the metal elastic body pressure sensor mainly includes a protective layer (104), a conductive layer (106), a resistive layer (105), a dielectric layer (103) and an elastic body. The dielectric layer (103) is disposed on the elastic body, the resistance layer (105) and the conductive layer (106) are disposed on the dielectric layer (103), and the protective layer (104) is disposed on the resistance layer (105) and the conductive layer (106) The upper part is used to protect the resistance layer (105) and the conductive layer (106). The conductive layer (106) communicates with the resistance layer (105), and leads the signal of the resistance layer (105) out of the protection layer (104).
弹性体为压力传感器主体,由支撑环(101)和感知膜片(102)构成,支撑环(101)上端由感知膜片(102)密封,下端则开放,即支撑环(101)和感知膜片(102)形成空腔(107)。支撑环(101)用来支撑感知膜片(102)、保护层(104)、导电层(106)和电阻层(105),感知膜片(102)是用来感受外界压力的时应变层,其厚度由压力传感器的量程和灵敏度等性能指标确定。支撑环(101)和感知膜片(102)材料相同,可以为不锈钢或其他金属材料。 The elastic body is the main body of the pressure sensor, which is composed of a supporting ring (101) and a sensing diaphragm (102). The upper end of the supporting ring (101) is sealed by the sensing diaphragm (102), and the lower end is open, that is, the supporting ring (101) and the sensing diaphragm The sheet (102) forms a cavity (107). The support ring (101) is used to support the sensing diaphragm (102), the protective layer (104), the conductive layer (106) and the resistance layer (105), and the sensing diaphragm (102) is a time-strained layer for sensing external pressure, Its thickness is determined by performance indicators such as the range and sensitivity of the pressure sensor. The supporting ring (101) and the sensing diaphragm (102) are made of the same material, which can be stainless steel or other metal materials.
介质层(103)用作电阻层(105)和弹性体的绝缘层,其材料可以为氧化铝,且连通。电阻层(105)由四个电阻组成,通过布置在感知膜片(102)上不同位置,构成压力传感器的惠斯通电桥,其材料是以氧化钌或钌酸盐为基的玻璃秞。导电层(106)与电阻层(105)的四个电阻均相连,导电层(106)材料可以为金、铂、银、钯、铜、镍等金属。 The dielectric layer (103) is used as the insulating layer of the resistance layer (105) and the elastic body, and its material may be aluminum oxide, and is connected. The resistive layer (105) is composed of four resistors arranged at different positions on the sensing diaphragm (102) to form a Wheatstone bridge of the pressure sensor, and its material is glass ruthenium oxide or ruthenate-based. The conductive layer (106) is connected to the four resistors of the resistance layer (105), and the material of the conductive layer (106) can be gold, platinum, silver, palladium, copper, nickel and other metals.
见图2,该绝缘弹性体压力传感器中弹性体为陶瓷绝缘材料,主要包括保护层(205)、导电层(206)、电阻层(204)和弹性体,导电层(206)和电阻层(204)直接打印于弹性体上,保护层(205)设于导电层(206)和电阻层(204)上方用来保护导电层(206)和电阻层(204)。导电层(206)连通电阻层(204),并将电阻层(204)信号引出到保护层(205)外。 As shown in Figure 2, the elastomer in the insulated elastomer pressure sensor is a ceramic insulating material, mainly including a protective layer (205), a conductive layer (206), a resistive layer (204) and an elastomer, a conductive layer (206) and a resistive layer ( 204) is directly printed on the elastic body, and the protective layer (205) is arranged on the conductive layer (206) and the resistive layer (204) to protect the conductive layer (206) and the resistive layer (204). The conductive layer (206) communicates with the resistance layer (204), and leads the signal of the resistance layer (204) out of the protection layer (205).
弹性体由支撑环(201)和感知膜片(202)构成,支撑环(201)上端由感知膜片(202)密封,下端则开放,即支撑环(201)和感知膜片(202)形成空腔(207)。支撑环(201)用来支撑感知膜片(202)、保护层(205)、导电层(206)和电阻层(204),感知膜片(202)是用来感受外界压力的时应变层,其厚度由压力传感器的量程和灵敏度等性能指标确定。支撑环(201)和感知膜片(202)材料相同,可以为氧化铝、氧化锆等陶瓷绝缘材料。 The elastic body is composed of a supporting ring (201) and a sensing diaphragm (202), the upper end of the supporting ring (201) is sealed by the sensing diaphragm (202), and the lower end is open, that is, the supporting ring (201) and the sensing diaphragm (202) form cavity (207). The support ring (201) is used to support the sensing diaphragm (202), the protective layer (205), the conductive layer (206) and the resistance layer (204), and the sensing diaphragm (202) is a time-strained layer for sensing external pressure, Its thickness is determined by performance indicators such as the range and sensitivity of the pressure sensor. The supporting ring (201) and the sensing diaphragm (202) are made of the same material, which can be ceramic insulating materials such as alumina and zirconia.
绝缘弹性体压力传感器和金属弹性体压力传感器具有如下区别:(1)弹性体材料不同,绝缘弹性体压力传感器中弹性体为绝缘陶瓷,金属弹性体压力传感器中弹性体则为金属;(2)绝缘弹性体压力传感器中无介质层,导电层和电阻层直接打印于弹性体上;金属弹性体压力传感器中,弹性体上设置有介质层,导电层和电阻层则打印于介质层上。除了上述区别,绝缘弹性体压力传感器和金属弹性体压力传感器的其他特征均相同。 The insulated elastomer pressure sensor and the metal elastomer pressure sensor have the following differences: (1) The elastomer materials are different, the elastomer in the insulated elastomer pressure sensor is insulating ceramics, and the elastomer in the metal elastomer pressure sensor is metal; (2) There is no dielectric layer in the insulating elastic body pressure sensor, and the conductive layer and the resistive layer are printed directly on the elastic body; in the metal elastic body pressure sensor, the dielectric layer is arranged on the elastic body, and the conductive layer and the resistive layer are printed on the dielectric layer. Apart from the above differences, other features of the insulating elastomer pressure sensor and the metal elastomer pressure sensor are the same.
图3为本发明方法的具体流程图,本发明逐层执行以下步骤: Fig. 3 is the concrete flowchart of the method of the present invention, and the present invention carries out following steps layer by layer:
(1)真空环境中,在工作台上加载当前层原材料粉末并预热。 (1) In a vacuum environment, load the current layer of raw material powder on the workbench and preheat it.
(2)根据当前层的精度要求确定原始激光,并采用该原始激光对原材料进行扫描烧结熔化及固化,所述的原始激光为纳秒激光、皮秒激光或飞秒激光。 (2) Determine the original laser according to the accuracy requirements of the current layer, and use the original laser to scan, sinter, melt and solidify the raw materials. The original laser is a nanosecond laser, picosecond laser or femtosecond laser.
本发明根据压阻式压力传感器结构逐层进行成型以制作压阻式压力传感器,不同层的精度要求可能不同,所以,不同层所选择的原始激光也不同。原始激光的选择原则为:对精度要求高的当前层可选用脉冲较短的激光作为原始激光,例如皮秒激光或飞秒激光;对精度要求低的当前层则选用脉冲较长的激光作为原始激光。本步骤基于上述选择原则并结合经验、试验验证确定制备当前层所采用的原始激光。 According to the piezoresistive pressure sensor structure of the present invention, the piezoresistive pressure sensor is molded layer by layer to make the piezoresistive pressure sensor. The accuracy requirements of different layers may be different, so the original lasers selected for different layers are also different. The selection principle of the original laser is: the current layer that requires high precision can choose a laser with a shorter pulse as the original laser, such as picosecond laser or femtosecond laser; the current layer that requires low precision can choose a laser with a longer pulse as the original laser. laser. This step is based on the above selection principles combined with experience and experimental verification to determine the original laser used to prepare the current layer.
(3)采用实时监测系统实时检测和分析已成型当前层的尺寸、晶相结构、表面形貌、成分中的一项或多项,并将分析结果反馈至控制中心。 (3) Use a real-time monitoring system to detect and analyze one or more of the size, crystal phase structure, surface morphology, and composition of the currently formed layer in real time, and feed back the analysis results to the control center.
实时监测系统包括控制驱动系统和检测仪器,检测仪器与控制驱动系统相连,所述的检测仪器包括尺寸检测仪器、晶相结构检测仪器、表面形貌检测仪器、成分检测仪器中的一种或多种。具体实施中,检测仪器包括扫描电镜、X射线衍射仪、红外摄像仪和质谱仪。 The real-time monitoring system includes a control drive system and a detection instrument. The detection instrument is connected to the control drive system. The detection instrument includes one or more of a size detection instrument, a crystal phase structure detection instrument, a surface morphology detection instrument, and a component detection instrument. kind. In a specific implementation, the detection instrument includes a scanning electron microscope, an X-ray diffractometer, an infrared camera and a mass spectrometer.
(4)将控制中心接收的分析结果与预设目标比对,若分析结果达到预设目标,则继续步骤(6);否则,执行步骤(5)。 (4) Compare the analysis result received by the control center with the preset target, if the analysis result reaches the preset target, proceed to step (6); otherwise, execute step (5).
(5)使用精加工激光对已成型当前层的特定区域进行精加工,然后执行步骤(3)。所述的特定区域指分析结果未达到预设目标的区域。精加工激光一般选择比原始激光脉冲更短的激光。 (5) Use the finishing laser to finish the specific area of the formed current layer, and then perform step (3). The specific area refers to the area where the analysis result does not reach the preset target. Finishing lasers are generally chosen with shorter pulses than the original laser.
(6)重复步骤(1)~(5)以完成下一层的成型。 (6) Repeat steps (1)~(5) to complete the molding of the next layer.
根据压阻式厚膜压力传感器的分层结构,3D打印的顺序可以是从上到下,也可以是从下到上。 According to the layered structure of the piezoresistive thick film pressure sensor, the order of 3D printing can be from top to bottom or from bottom to top.
具体实施中,原始激光和精加工激光均由多波长集成光纤激光器提供,所述的多波长集成光纤激光器包括控制器、纳秒激光探头、皮秒激光探头和飞秒激光探头,纳秒激光探头、皮秒激光探头和飞秒激光探头均与控制器相连,控制器用来控制纳秒激光、皮秒激光和飞秒激光的发射和关闭。 In specific implementation, both the original laser and the finishing laser are provided by a multi-wavelength integrated fiber laser, and the multi-wavelength integrated fiber laser includes a controller, a nanosecond laser probe, a picosecond laser probe and a femtosecond laser probe, and the nanosecond laser probe , the picosecond laser probe and the femtosecond laser probe are all connected to the controller, and the controller is used to control the emission and shutdown of the nanosecond laser, the picosecond laser and the femtosecond laser.
因为压力传感器是多层结构,包括感保护层、导电层、电阻层、弹性体层等,不同层对精度要求也是不同的,所以,不同层所选择的激光也不同。一般,对精度要求较高的层可选用皮秒激光或飞秒激光等秒冲较短的激光。此外,实际加工效果和预设效果也是有差别的,所以通过实时监测系统实时获得实际加工效果,并根据实际加工效果进一步调整所使用的激光,从而实现产品的精确加工。 Because the pressure sensor is a multi-layer structure, including a protective layer, a conductive layer, a resistive layer, an elastomer layer, etc., different layers have different requirements for accuracy, so the lasers selected for different layers are also different. Generally, lasers with shorter second pulses such as picosecond lasers or femtosecond lasers can be used for layers that require higher precision. In addition, the actual processing effect is also different from the preset effect, so the actual processing effect can be obtained in real time through the real-time monitoring system, and the laser used can be further adjusted according to the actual processing effect, so as to realize the precise processing of the product.
每次成型中,多波长集成光纤激光器的三种激光和实时监控系统的多种检测手段并非均需要使用,一般根据压力传感器要求选择合适的原始激光、精加工激光和检测手段。但多种激光和多种检测手段使得本发明具有通用性,可实现压力传感器的逐点控制,实现任意尺度、形状、成分和微观组织的在线控制。 In each molding process, the three lasers of the multi-wavelength integrated fiber laser and the multiple detection methods of the real-time monitoring system are not all required. Generally, the appropriate original laser, finishing laser and detection methods are selected according to the requirements of the pressure sensor. However, a variety of lasers and a variety of detection means make the present invention versatile, and can realize point-by-point control of the pressure sensor, and realize online control of any scale, shape, composition and microstructure.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510356570.9A CN104907568B (en) | 2015-06-25 | 2015-06-25 | Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510356570.9A CN104907568B (en) | 2015-06-25 | 2015-06-25 | Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104907568A CN104907568A (en) | 2015-09-16 |
CN104907568B true CN104907568B (en) | 2017-01-11 |
Family
ID=54077244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510356570.9A Active CN104907568B (en) | 2015-06-25 | 2015-06-25 | Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104907568B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105618739A (en) * | 2015-12-24 | 2016-06-01 | 中国电子科技集团公司第四十九研究所 | Fast manufacturing method for sensor sensitive core |
CN106756989B (en) * | 2016-11-22 | 2021-02-02 | 昆明七零五所科技发展有限责任公司 | Laser composite manufacturing technology of part |
DE102016124410A1 (en) * | 2016-12-14 | 2018-06-14 | Trafag Ag | Method for producing a pressure sensor element as well as pressure sensor measuring element available therewith |
CN108031844B (en) * | 2017-12-05 | 2020-05-19 | 华中科技大学 | Material increasing and decreasing composite manufacturing method for online layer-by-layer detection |
CN109211444A (en) * | 2018-09-25 | 2019-01-15 | 中国电子科技集团公司第十三研究所 | pressure sensor and preparation method thereof |
CN109580080A (en) * | 2018-12-29 | 2019-04-05 | 天津大学 | A kind of device and method measuring fluid field pressure at silk based on femtosecond laser |
CN110076339A (en) * | 2019-03-06 | 2019-08-02 | 上海工程技术大学 | A kind of complexity cavity increases the polishing method of material product surfaces externally and internally |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0730362B2 (en) * | 1987-03-20 | 1995-04-05 | 株式会社日立製作所 | Electronic component and manufacturing method thereof |
CN1297808C (en) * | 2003-09-09 | 2007-01-31 | 电子科技大学 | Multiple array copper-manganese thin film super high pressure transducer and method for making same |
CN100462181C (en) * | 2006-10-30 | 2009-02-18 | 西安交通大学 | Femtosecond laser true three-dimensional micro-nano machining center |
CN101028670A (en) * | 2007-04-09 | 2007-09-05 | 中国科学院西安光学精密机械研究所 | Method and equipment for manufacturing optical fiber F-P sensor by ultra-short pulse laser micromachining |
CN102059451A (en) * | 2010-11-08 | 2011-05-18 | 北京理工大学 | Nano-femtosecond dual-laser composite machining system |
CN104062045B (en) * | 2014-06-13 | 2017-09-15 | 江苏英特神斯科技有限公司 | A kind of piezoresistive pressure sensor and its manufacture method |
-
2015
- 2015-06-25 CN CN201510356570.9A patent/CN104907568B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104907568A (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104907568B (en) | Piezoresistive thick film pressure sensor manufacturing method based on femtosecond laser composite technology | |
US7360437B2 (en) | Devices for evaluating material properties, and related processes | |
CN104959600B (en) | Fabrication method of planar oxygen sensor based on nanosecond-picosecond-femtosecond laser composite technology | |
CN106825574B (en) | Laser impact forging composite additive manufacturing method and device for metal gradient material | |
CN108802165B (en) | Additive processing system and method with spectral ultrasonic composite online detection function | |
US9816887B2 (en) | Ceramic pressure measuring cell and method for its manufacture | |
CN107598163A (en) | A kind of quality lossless audio coding equipment and method suitable for powdering formula increasing material manufacturing | |
WO2020062341A1 (en) | Laser additive apparatus and additive manufacturing method therefor | |
US20170216917A1 (en) | Sensors and process for producing sensors | |
CN104889395A (en) | Nanosecond-picosecond-femtosecond laser technology based metal product 3D printing method | |
CN104972124B (en) | Real-time monitoring rapid prototyping device and method based on femtosecond laser composite technology | |
CN109269985B (en) | High-frequency ultrasonic online monitoring method for internal defects of metal moving molten pool | |
CN107764798A (en) | A kind of metal increasing material manufacturing quality on-line detection system | |
CN106513675A (en) | Laser additive manufacturing forming method of titanium alloy thin-walled component | |
CN108444921B (en) | An online detection method for additive manufacturing components based on signal correlation analysis | |
CN105424231B (en) | A kind of high-precision ceramic pressure sensor | |
Cheng et al. | Additive manufacturing of lithium aluminosilicate glass-ceramic/metal 3D electronic components via multiple material laser powder bed fusion | |
Stein et al. | A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures | |
CN112393744A (en) | MEMS gyroscope online laser trimming system and method with frequency measurement function | |
JP4938399B2 (en) | Apparatus and associated method for evaluating material properties | |
CN104942288B (en) | Capacitance thick film pressure sensor manufacturing method based on nanosecond- picosecond-femtosecond laser hybrid technology | |
Kulkarni | Electrochemical discharge machining process | |
EP1906161A1 (en) | Devices for evaluating material properties, and related processes | |
CN115728244B (en) | Online detection method and device for metal additive manufacturing | |
Stein et al. | High temperature laser based drop on demand micro joining of thin metallic layers or foils using bronze braze preforms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211231 Address after: 430075 No. 2, floor 3, building 12, zone B, high tech medical device Park, No. 818, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, Hubei (Wuhan area of free trade zone) Patentee after: WUHAN FINE MEMS Inc. Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan Patentee before: WUHAN University Patentee before: Wuhan feien Microelectronics Co., Ltd |