CN104841442A - Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst - Google Patents
Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst Download PDFInfo
- Publication number
- CN104841442A CN104841442A CN201510174271.3A CN201510174271A CN104841442A CN 104841442 A CN104841442 A CN 104841442A CN 201510174271 A CN201510174271 A CN 201510174271A CN 104841442 A CN104841442 A CN 104841442A
- Authority
- CN
- China
- Prior art keywords
- mesoporous
- nickel
- reforming catalyst
- methane
- dry reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 239000003054 catalyst Substances 0.000 title claims abstract description 53
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 18
- 238000002407 reforming Methods 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 230000008021 deposition Effects 0.000 title abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 230000009467 reduction Effects 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 230000004048 modification Effects 0.000 claims abstract description 5
- 238000012986 modification Methods 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 9
- 239000010453 quartz Substances 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 7
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012695 Ce precursor Substances 0.000 claims description 3
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 3
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 claims description 2
- 238000002061 vacuum sublimation Methods 0.000 claims description 2
- NQLVCAVEDIGMMW-UHFFFAOYSA-N cyclopenta-1,3-diene;cyclopentane;nickel Chemical compound [Ni].C=1C=C[CH-]C=1.[CH-]1[CH-][CH-][CH-][CH-]1 NQLVCAVEDIGMMW-UHFFFAOYSA-N 0.000 claims 2
- 239000003708 ampul Substances 0.000 claims 1
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 239000013335 mesoporous material Substances 0.000 claims 1
- 239000013528 metallic particle Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 19
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005245 sintering Methods 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004939 coking Methods 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 239000002243 precursor Substances 0.000 abstract description 2
- 230000001476 alcoholic effect Effects 0.000 abstract 1
- 238000003837 high-temperature calcination Methods 0.000 abstract 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract 1
- 239000000376 reactant Substances 0.000 abstract 1
- 238000001291 vacuum drying Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 18
- KZPXREABEBSAQM-UHFFFAOYSA-N cyclopenta-1,3-diene;nickel(2+) Chemical compound [Ni+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KZPXREABEBSAQM-UHFFFAOYSA-N 0.000 description 10
- 239000003345 natural gas Substances 0.000 description 10
- 238000011068 loading method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 230000009849 deactivation Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011943 nanocatalyst Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000000703 Cerium Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005691 oxidative coupling reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种抗积碳介孔限域的高分散镍基甲烷干重整催化剂的制备方法。该甲烷干重整催化剂以具有有序介孔孔道的耐高温氧化物为载体,使镍高度分散在其孔道内。该甲烷干重整催化剂的制备方法是以具有高温稳定性的介孔氧化物作为反应物,搅拌条件下,镍的前驱体盐被醇输运到其介孔孔道内,介孔孔道内表面经过醇羟基的修饰能使镍分散得更好,再通过真空干燥、高温煅烧、H2-TPR(氢气程序升温还原)还原,制得抗积碳和抗烧结性能良好的高活性高稳定性的甲烷干重整催化剂。本发明具有制备工艺简单、成本较低、对环境无污染、催化效率高等优点。
The invention discloses a preparation method of a highly dispersed nickel-based methane dry reforming catalyst resistant to carbon deposition and mesoporous confinement. The methane dry reforming catalyst is supported by a high-temperature-resistant oxide with ordered mesoporous channels, so that nickel is highly dispersed in the channels. The preparation method of the methane dry reforming catalyst uses mesoporous oxides with high temperature stability as reactants. Under stirring conditions, the precursor salt of nickel is transported into the mesoporous channels by alcohol, and the inner surface of the mesoporous channels passes through The modification of alcoholic hydroxyl groups can make nickel better dispersed, and then through vacuum drying, high-temperature calcination, and H 2 -TPR (hydrogen temperature-programmed reduction) reduction, high-activity and high-stability methane with good anti-coking and anti-sintering properties can be obtained Dry reforming catalyst. The invention has the advantages of simple preparation process, low cost, no pollution to the environment, high catalytic efficiency and the like.
Description
技术领域 technical field
本发明涉及一种抗积碳介孔限域甲烷干重整催化剂的制备方法,属纳米催化剂制备工艺和环境保护技术领域。 The invention relates to a method for preparing an anti-carbon deposition mesoporous confined methane dry reforming catalyst, which belongs to the technical fields of nano-catalyst preparation technology and environmental protection.
背景技术 Background technique
随着石油资源日益枯竭和环境污染的日益严重,开发和利用清洁、廉价的燃料资源受到各国的普遍关注。天然气是目前最洁净的燃料,它具有污染小的特点,是最理想的化学工业原料。自然界蕴藏着丰富的天然气资源,天然气(甲烷)是非常丰富的化工燃料资源。从世界能源发展的趋势看,天然气在能源结构中的比例将稳步上升。近年来,天然气化工在工业生产与国民经济中的地位正逐渐得到加强。天然气的化工利用可以分为直接转化和间接转化两种基本途径。天然气的直接转化法包括甲醇与甲醛的直接合成,HCN的制备,芳烃的合成,甲烷氧化偶联等。间接转化法是先把甲烷转化为合成气,进一步合成氨、甲醇,或者利用CO再合成一系列精细化工产品以及燃料和烯烃,这是目前然气化工上应用最广泛的一条技术路线。天然气间接转化利用途径中,甲烷转化为合成气是整个天然气化工的基础和龙头。传统的甲烷转化方法包括水蒸气转化法、部分氧化法和二氧化碳转化法。 With the increasing depletion of petroleum resources and the increasing seriousness of environmental pollution, the development and utilization of clean and cheap fuel resources has attracted widespread attention from all countries. Natural gas is currently the cleanest fuel, it has the characteristics of less pollution, and it is the most ideal chemical industry raw material. There are abundant natural gas resources in nature, and natural gas (methane) is a very rich chemical fuel resource. Judging from the trend of world energy development, the proportion of natural gas in the energy structure will increase steadily. In recent years, the position of natural gas chemical industry in industrial production and national economy is gradually being strengthened. The chemical utilization of natural gas can be divided into two basic ways: direct conversion and indirect conversion. Direct conversion of natural gas includes direct synthesis of methanol and formaldehyde, preparation of HCN, synthesis of aromatics, oxidative coupling of methane, etc. The indirect conversion method is to convert methane into synthesis gas first, then further synthesize ammonia and methanol, or use CO to synthesize a series of fine chemical products, fuels and olefins. This is currently the most widely used technical route in natural gas chemical industry. In the indirect conversion and utilization of natural gas, the conversion of methane into synthesis gas is the basis and leader of the entire natural gas chemical industry. Traditional methane conversion methods include steam reforming, partial oxidation and carbon dioxide reforming.
甲烷干重整的催化剂主要分为贵金属催化剂(Ru、Pd、Pt等)和非贵金属催化剂(Fe、Co、Ni等),贵金属催化剂具有良好的抗积碳性,但由于价格昂贵、资源稀少,并且在高温条件下贵金属活性组分会烧结流失,所以非常有必要对非贵金属催化剂进行研究。非贵金属中以镍的催化活性最好,因此我们主要研究镍基催化剂来进行甲烷重整反应。然而,镍基催化剂存在一个致命的缺点,长时间的高温反应下,镍基催化剂容易积碳和金属镍烧结,从而引起催化剂失活。理论研究证明:只有镍尺寸小到一定程度,才可能抑制碳纤维的成核和生长,从而达到抗积碳的目的。通常将活性组分负载到载体上来加强金属载体之间的相互作用来提高催化剂的催化稳定性和抗积碳抗烧结性能。近来,众多研究通过载体孔道的限域效应,将Ni固定在其中从而达到较好的抗烧结和抗积碳效果。然而,镍纳米粒子很难被输运到载体的介孔孔道内,大部分还是附着在介孔孔道的外表面,因此还不能很好的起到抗烧结和抗积碳作用。 Catalysts for methane dry reforming are mainly divided into noble metal catalysts (Ru, Pd, Pt, etc.) and non-noble metal catalysts (Fe, Co, Ni, etc.). And the noble metal active components will be sintered and lost under high temperature conditions, so it is very necessary to study non-noble metal catalysts. Nickel has the best catalytic activity among non-noble metals, so we mainly study nickel-based catalysts for methane reforming reaction. However, nickel-based catalysts have a fatal shortcoming. Under long-term high-temperature reaction, nickel-based catalysts are prone to carbon deposition and metal nickel sintering, which will cause catalyst deactivation. Theoretical research proves that only when the size of nickel is small to a certain extent, can the nucleation and growth of carbon fibers be inhibited, so as to achieve the purpose of anti-carbon deposition. The active components are usually loaded on the carrier to strengthen the interaction between metal supports to improve the catalytic stability and anti-carbon deposition and anti-sintering performance of the catalyst. Recently, many studies have used the confinement effect of the carrier channels to immobilize Ni in it to achieve better anti-sintering and anti-carbon deposition effects. However, nickel nanoparticles are difficult to be transported into the mesoporous channels of the carrier, and most of them are still attached to the outer surface of the mesoporous channels, so they cannot play a good role in anti-sintering and anti-carbon deposition.
发明内容 Contents of the invention
本发明涉及一种抗积碳的介孔限域甲烷干重整催化剂的制备方法,属纳米催化剂制备工艺和环境保护技术领域。该催化剂中尺寸小且均一的镍颗粒很好得均匀分散在耐高温氧化物载体的介孔孔道内,孔道壁能起到限域的作用,因此可以有效得抑制了金属镍纳米颗粒的长大。通过Ce的添加,进一步降低积碳程度,是甲烷重整中一种催化性能良好,并且制备过程简单的纳米催化剂。 The invention relates to a preparation method of a carbon deposition-resistant mesoporous confined methane dry reforming catalyst, which belongs to the technical fields of nano-catalyst preparation technology and environmental protection. The small and uniform nickel particles in the catalyst are well and evenly dispersed in the mesoporous channels of the high-temperature-resistant oxide carrier, and the channel walls can play a role of confinement, so the growth of metallic nickel nanoparticles can be effectively inhibited . Through the addition of Ce, the degree of carbon deposition is further reduced, and it is a nano-catalyst with good catalytic performance and simple preparation process in methane reforming.
本发明的催化剂制备方法,包含以下步骤: Catalyst preparation method of the present invention, comprises the following steps:
称取适量的铈前驱体盐和介孔氧化物溶于去离子水, 铈的负载量为3wt%~5wt%,混合搅拌7~8h,烘干得Ce修饰的介孔氧化物载体。取适量的二茂镍和Ce修饰的介孔氧化物置于石英管的两端,镍的负载量为8wt%~12wt%。抽真空,真空条件下升温速率为1~2℃/min,110~120℃煅烧20~24h,冷却至室温,将所得样品溶于乙醇中搅拌4~5h,用乙醇离心洗涤3~4次,烘干。空气氛围下升温速率为1~2℃/min,500~600℃煅烧4~6h。然后再对其进行还原,利用H2-TPR(氢气程序升温还原),先通N2在300℃下预处理30min,冷却至室温后以10%(体积百分比)H2/N2混合气(30mL/min)750℃~800℃下还原1h得到抗积碳介孔限域的甲烷干重整催化剂。 Weigh an appropriate amount of cerium precursor salt and mesoporous oxide and dissolve in deionized water, the loading amount of cerium is 3wt%~5wt%, mix and stir for 7~8h, and dry to obtain the Ce-modified mesoporous oxide support. An appropriate amount of nickelocene and Ce-modified mesoporous oxide was placed on both ends of the quartz tube, and the nickel loading was 8wt%~12wt%. Vacuumize, the heating rate is 1~2°C/min under vacuum condition, calcinate at 110~120°C for 20~24h, cool to room temperature, dissolve the obtained sample in ethanol and stir for 4~5h, centrifuge wash with ethanol for 3~4 times, drying. The heating rate is 1~2℃/min in the air atmosphere, and the calcination is performed at 500~600℃ for 4~6h. Then reduce it again, using H 2 -TPR (hydrogen temperature programmed reduction), first pass N 2 at 300 ° C for 30 minutes, cool to room temperature with 10% (volume percentage) H 2 /N 2 mixed gas ( 30mL/min) at 750°C~800°C for 1 hour to obtain a methane dry reforming catalyst that resists carbon deposition and mesoporous confinement.
所述的铈的前驱体盐为硝酸铈、氯化铈、醋酸铈中的一种。不同的铈盐对载体的修饰作用不同,利用本发明中所提到的铈盐修饰介孔氧化物,可以使镍纳米颗粒更好得分散在介孔氧化物载体上。所述的镍金属颗粒的尺寸在3-4nm。 The precursor salt of cerium is one of cerium nitrate, cerium chloride and cerium acetate. Different cerium salts have different modification effects on the carrier. Using the cerium salt mentioned in the present invention to modify the mesoporous oxide can make nickel nanoparticles better dispersed on the mesoporous oxide carrier. The size of the nickel metal particles is 3-4nm.
所述的介孔氧化物载体为介孔硅球,SBA-15,γ-Al2O3,KIT-6,MCM-41中的一种,这些载体耐高温性强,在反应过程中结构不易发生坍塌。它们所具有的介孔孔道均比较有序且孔道壁较厚,能更好得使镍颗粒固定在其中,从而提高抗烧结性能。 The mesoporous oxide carrier is one of mesoporous silicon spheres, SBA-15, γ-Al 2 O 3 , KIT-6, and MCM-41. These supports have high temperature resistance and are not prone to collapse during the reaction process. . The mesoporous channels they have are relatively orderly and the channel walls are thicker, which can better fix nickel particles in them, thereby improving the anti-sintering performance.
本发明中铈的负载量为3wt%~5wt%,Ce含量太少对载体起不到很好的修饰作用,镍颗粒不能很好得分散在介孔氧化物中,并且对催化剂的抗积碳性能有所影响。Ce含量太高则会减小镍与载体之间的相互作用力,从而镍颗粒容易发生团聚,影响催化性能。 In the present invention, the loading capacity of cerium is 3wt%~5wt%, too little Ce content can not play a good modification effect on the carrier, the nickel particles can not be well dispersed in the mesoporous oxide, and the anti-coking effect of the catalyst Performance is impacted. If the Ce content is too high, the interaction force between the nickel and the support will be reduced, so that the nickel particles are likely to agglomerate and affect the catalytic performance.
本发明中涉及的负载镍的煅烧过程需要在真空条件下进行。升温速率为1~2℃/min,煅烧温度为110~120℃,煅烧时间为20~24h。二茂镍在真空条件下可以升华为二茂镍蒸汽进入介孔氧化物载体的孔道内。升温速度太快会影起催化剂结构倒塌,煅烧温度太低二茂镍无法升华,温度太高将导致介孔结构不规则,煅烧时间过短可能二茂镍升华不完全,而时间过长又会使镍颗粒发生团聚。 The calcination process of loaded nickel involved in the present invention needs to be carried out under vacuum conditions. The heating rate is 1~2°C/min, the calcination temperature is 110~120°C, and the calcination time is 20~24h. Nickelocene can be sublimated into nickelocene vapor to enter the pores of the mesoporous oxide carrier under vacuum conditions. If the temperature rise rate is too fast, the structure of the catalyst will collapse. If the calcination temperature is too low, the nickelocene cannot be sublimated. If the temperature is too high, the mesopore structure will be irregular. If the calcination time is too short, the sublimation of the nickelocene may be incomplete. Agglomerates nickel particles.
与现有技术相比,本发明制备的催化剂具有如下优点: Compared with prior art, the catalyst prepared by the present invention has the following advantages:
(1)本发明制备过程简单,易于操作,对实验设备要求低,成本低,对环境也不会造成二次污染。 (1) The preparation process of the present invention is simple, easy to operate, low in requirements for experimental equipment, low in cost, and will not cause secondary pollution to the environment.
(2)本发明方法突破传统的水溶液湿法浸渍的方法将镍负载到载体上,利用二茂镍真空升华的特性,使二茂镍蒸汽进入介孔氧化物载体的孔道内,Ce的加入对载体孔道内壁起到了修饰作用,可以使镍物种更好得分散在载体孔道内,从而提高催化剂的抗积碳抗烧结性能。 (2) The method of the present invention breaks through the traditional aqueous solution wet impregnation method to load nickel on the carrier, and utilizes the characteristics of nickelocene vacuum sublimation to allow the nickelocene vapor to enter the pores of the mesoporous oxide carrier, and the addition of Ce is beneficial to The inner wall of the carrier channel plays a role of modification, which can better disperse the nickel species in the carrier channel, thereby improving the anti-coking and anti-sintering performance of the catalyst.
(3)本发明得到的催化剂的镍纳米晶尺寸在3nm左右,再加上载体介孔孔道的限域效应,能很好的抑制甲烷干重整中镍颗粒的团聚,减少积碳的形成,Ce的加入亦有助于积碳的消除。 (3) The nickel nanocrystal size of the catalyst obtained in the present invention is about 3nm, coupled with the confinement effect of the carrier mesoporous channels, it can well inhibit the agglomeration of nickel particles in the dry reforming of methane and reduce the formation of carbon deposits. The addition of Ce also contributes to the elimination of carbon deposits.
附图说明 Description of drawings
图1 为本发明实施例1 所得甲烷干重整催化剂NiCe/mSiO2的透射电镜(TEM)图像。 Fig. 1 is a transmission electron microscope (TEM) image of the methane dry reforming catalyst NiCe/mSiO 2 obtained in Example 1 of the present invention.
具体实施方式 Detailed ways
以下结合技术方案和附图详细叙述本发明的具体实施例。 Specific embodiments of the present invention will be described in detail below in conjunction with technical solutions and accompanying drawings.
实施例1Example 1
称取0.066g硝酸铈和0.5g介孔硅球溶于去离子水, 铈的负载量为5wt%,混合搅拌8h,烘干得Ce修饰的介孔硅球。取1g二茂镍和0.5g Ce修饰的介孔硅球置于石英管的两端,镍的负载量约为10wt%。抽真空,真空条件下升温速率为1℃/min,110℃煅烧24h,冷却至室温,将所得样品溶于乙醇中搅拌5h,用乙醇离心洗涤3次,烘干。空气氛围下升温速率为1℃/min,500℃煅烧4h。然后再对其进行还原,利用H2-TPR(氢气程序升温还原),先通N2在300℃下预处理30min,冷却至室温后以10%(体积百分比)H2/N2混合气(30mL/min)800℃下还原1h得到NiCe/mSiO2催化剂。 Weigh 0.066g of cerium nitrate and 0.5g of mesoporous silicon spheres and dissolve them in deionized water, the loading amount of cerium is 5wt%, mix and stir for 8h, and dry to obtain Ce-modified mesoporous silicon spheres. Take 1g nickelocene and 0.5g Ce-modified mesoporous silicon spheres and put them on both ends of the quartz tube, and the nickel loading is about 10wt%. Vacuumize, the heating rate is 1°C/min under vacuum, calcined at 110°C for 24h, cooled to room temperature, the obtained sample is dissolved in ethanol and stirred for 5h, centrifuged with ethanol for 3 times, and dried. The heating rate was 1°C/min in the air atmosphere, and calcined at 500°C for 4h. Then reduce it again, using H 2 -TPR (hydrogen temperature programmed reduction), first pass N 2 at 300 ° C for 30 minutes, cool to room temperature with 10% (volume percentage) H 2 /N 2 mixed gas ( 30mL/min) at 800℃ for 1h to obtain NiCe/mSiO 2 catalyst.
测试上述催化剂的催化活性:称取0.15g(40-60 目)制备好的催化剂放入固定床石英管反应器中进行催化剂性能测试,CH4和CO2进样量为 1:1(流量均为15mL/min),活性测试从450℃到800℃,在450℃下催化剂就有一定的活性,800℃下活性最高,CH4和CO2的转化率分别可约达到94%和100%。催化剂稳定性测试在750℃下进行,经过20h的反应后CH4和CO2转化率分别保持在93%和98%左右,催化剂仍保持良好的活性,没有发生失活的现象。 Test the catalytic activity of the above catalyst: Weigh 0.15g (40-60 mesh) of the prepared catalyst and put it into a fixed bed quartz tube reactor for catalyst performance test. The injection volume of CH 4 and CO 2 is 1:1 (flow average 15mL/min), the activity test ranges from 450°C to 800°C, the catalyst has a certain activity at 450°C, the highest activity is at 800°C, and the conversion rates of CH 4 and CO 2 can reach about 94% and 100%, respectively. The catalyst stability test was carried out at 750°C. After 20 hours of reaction, the conversion rates of CH 4 and CO 2 remained at about 93% and 98%, respectively, and the catalyst still maintained good activity without deactivation.
实施例2Example 2
称取0.04g氯化铈和0.5g SBA-15溶于去离子水, 铈的负载量为5wt%,混合搅拌8h,烘干得Ce修饰的SBA-15。取1g二茂镍和0.5g Ce修饰的SBA-15置于石英管的两端,镍的负载量约为10wt%。抽真空,真空条件下升温速率为1℃/min,120℃煅烧24h,冷却至室温,将所得样品溶于乙醇中搅拌4h,用乙醇离心洗涤3次,烘干。空气氛围下升温速率为1℃/min,550℃煅烧4h。然后再对其进行还原,利用H2-TPR,先通N2在300℃下预处理30min,冷却至室温后以10%(体积百分比)H2/N2混合气(30mL/min)800℃下还原1h得到NiCe/SBA-15催化剂。 Weigh 0.04g of cerium chloride and 0.5g of SBA-15 and dissolve them in deionized water, the loading amount of cerium is 5wt%, mix and stir for 8h, and dry to obtain Ce-modified SBA-15. Take 1g of nickelocene and 0.5g of Ce-modified SBA-15 placed at both ends of the quartz tube, and the loading of nickel is about 10wt%. Vacuumize, the heating rate is 1°C/min under vacuum, calcined at 120°C for 24h, cooled to room temperature, the obtained sample is dissolved in ethanol and stirred for 4h, centrifuged with ethanol for 3 times, and dried. The heating rate was 1°C/min in air atmosphere, and calcined at 550°C for 4h. Then reduce it again, using H 2 -TPR, first pass N 2 at 300°C for 30 minutes, cool to room temperature and then use 10% (volume percentage) H 2 /N 2 mixed gas (30mL/min) at 800°C Under reduction for 1h, NiCe/SBA-15 catalyst was obtained.
测试上述催化剂的催化活性:称取0.15g(40-60 目)制备好的催化剂放入固定床石英管反应器中进行催化剂性能测试,CH4和CO2进样量为 1:1(流量均为15mL/min),活性测试从450℃到800℃,在450℃下催化剂就有一定的活性,800℃下活性最高,CH4和CO2的转化率分别可约达到91%和98%。催化剂稳定性测试在750℃下进行,经过20h的反应后CH4和CO2转化率分别保持在88%和94%左右,催化剂仍保持良好的活性,没有发生失活的现象。 Test the catalytic activity of the above catalyst: Weigh 0.15g (40-60 mesh) of the prepared catalyst and put it into a fixed bed quartz tube reactor for catalyst performance test. The injection volume of CH 4 and CO 2 is 1:1 (flow average 15mL/min), the activity test ranges from 450°C to 800°C, the catalyst has a certain activity at 450°C, the highest activity is at 800°C, and the conversion rates of CH 4 and CO 2 can reach about 91% and 98%, respectively. The catalyst stability test was carried out at 750°C. After 20 hours of reaction, the conversion rates of CH 4 and CO 2 remained at about 88% and 94%, respectively, and the catalyst still maintained good activity without deactivation.
实施例3Example 3
称取0.04g硝酸铈和0.5g KIT-6溶于去离子水, 铈的负载量为4wt%,混合搅拌8h,烘干得Ce修饰的KIT-6。取1g二茂镍和0.5g Ce修饰的KIT-6置于石英管的两端,镍的负载量约为10wt%。抽真空,真空条件下升温速率为1℃/min,110℃煅烧24h,冷却至室温,将所得样品溶于乙醇中搅拌5h,用乙醇离心洗涤3次,烘干。空气氛围下升温速率为1℃/min,600℃煅烧4h。然后再对其进行还原,利用H2-TPR,先通N2在300℃下预处理30min,冷却至室温后以10%(体积百分比)H2/N2混合气(30mL/min)800℃下还原1h得到NiCe/ KIT-6催化剂。 Weigh 0.04g of cerium nitrate and 0.5g of KIT-6 and dissolve them in deionized water, the loading amount of cerium is 4wt%, mix and stir for 8h, and dry to obtain Ce-modified KIT-6. Take 1g of nickelocene and 0.5g of Ce-modified KIT-6 and put them on both ends of the quartz tube, and the loading of nickel is about 10wt%. Vacuumize, the heating rate is 1°C/min under vacuum, calcined at 110°C for 24h, cooled to room temperature, the obtained sample is dissolved in ethanol and stirred for 5h, centrifuged with ethanol for 3 times, and dried. The heating rate was 1°C/min in air atmosphere, and the calcination was carried out at 600°C for 4h. Then reduce it again, using H 2 -TPR, first pass N 2 at 300°C for 30 minutes, cool to room temperature and then use 10% (volume percentage) H 2 /N 2 mixed gas (30mL/min) at 800°C NiCe/KIT-6 catalyst was obtained by reduction for 1h.
测试上述催化剂的催化活性:称取0.15g(40-60 目)制备好的催化剂放入固定床石英管反应器中进行催化剂性能测试,CH4和CO2进样量为 1:1(流量均为15mL/min),活性测试从450℃到800℃,在450℃下催化剂就有一定的活性,800℃下活性最高,CH4和CO2的转化率分别可约达到93%和99%。催化剂稳定性测试在750℃下进行,经过20h的反应后CH4和CO2转化率分别保持在91%和97%左右,催化剂仍保持良好的活性,没有发生失活的现象。 Test the catalytic activity of the above catalyst: Weigh 0.15g (40-60 mesh) of the prepared catalyst and put it into a fixed bed quartz tube reactor for catalyst performance test. The injection volume of CH 4 and CO 2 is 1:1 (flow average 15mL/min), the activity test ranges from 450°C to 800°C, the catalyst has a certain activity at 450°C, the highest activity is at 800°C, and the conversion rates of CH 4 and CO 2 can reach about 93% and 99%, respectively. The catalyst stability test was carried out at 750°C. After 20 hours of reaction, the conversion rates of CH 4 and CO 2 remained at about 91% and 97%, respectively. The catalyst still maintained good activity and no deactivation occurred.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510174271.3A CN104841442A (en) | 2015-04-14 | 2015-04-14 | Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510174271.3A CN104841442A (en) | 2015-04-14 | 2015-04-14 | Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104841442A true CN104841442A (en) | 2015-08-19 |
Family
ID=53841654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510174271.3A Pending CN104841442A (en) | 2015-04-14 | 2015-04-14 | Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104841442A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105944730A (en) * | 2016-05-13 | 2016-09-21 | 南昌大学 | Preparation method of mesopore confined nickel-based methane reforming catalyst |
CN105964259A (en) * | 2016-05-13 | 2016-09-28 | 南昌大学 | {0><}0{>Preparation method of polynuclear core-shell structure nickel-based catalyst |
CN110292927A (en) * | 2019-04-30 | 2019-10-01 | 北京氦舶科技有限责任公司 | Monoatomic metal catalyst and its preparation and the application in degradation air pollutants |
CN112403466A (en) * | 2020-11-06 | 2021-02-26 | 上海簇睿低碳能源技术有限公司 | Preparation method of core-shell catalyst for dry reforming of methane and carbon dioxide |
CN113000059A (en) * | 2021-02-04 | 2021-06-22 | 上海大学 | Nickel-based catalyst for dry reforming of methane and carbon dioxide and preparation method and application thereof |
CN115282970A (en) * | 2022-08-03 | 2022-11-04 | 高潞空气化工产品(上海)能源科技有限公司 | Nickel-based catalyst for oxide film limited low-carbon alkane dry reforming and preparation method and application thereof |
CN115518652A (en) * | 2022-06-13 | 2022-12-27 | 安徽理工大学 | Silicon-cerium composite microporous material packaged metal catalyst and preparation method and application thereof |
CN116371451A (en) * | 2023-04-14 | 2023-07-04 | 西安交通大学 | Cerium doped nickel-based catalyst suitable for methane dry reforming and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101352687A (en) * | 2008-08-29 | 2009-01-28 | 同济大学 | Catalyst that can be used for methane carbon dioxide dry reforming, its preparation method and application |
CN103586030A (en) * | 2013-11-19 | 2014-02-19 | 上海大学 | Preparation method of mesoporous confinement nickel-based methane dry reforming catalyst |
-
2015
- 2015-04-14 CN CN201510174271.3A patent/CN104841442A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101352687A (en) * | 2008-08-29 | 2009-01-28 | 同济大学 | Catalyst that can be used for methane carbon dioxide dry reforming, its preparation method and application |
CN103586030A (en) * | 2013-11-19 | 2014-02-19 | 上海大学 | Preparation method of mesoporous confinement nickel-based methane dry reforming catalyst |
Non-Patent Citations (2)
Title |
---|
HITOSHI INOKAWA ET AL.: "Synthesis of nickel nanoparticles with excellent thermal stability in micropores of zeolite", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 * |
MARIE-NOUR KAYDOUH ET AL.: "Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane", 《COMPTES RENDUS CHIMIE》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105944730A (en) * | 2016-05-13 | 2016-09-21 | 南昌大学 | Preparation method of mesopore confined nickel-based methane reforming catalyst |
CN105964259A (en) * | 2016-05-13 | 2016-09-28 | 南昌大学 | {0><}0{>Preparation method of polynuclear core-shell structure nickel-based catalyst |
CN110292927A (en) * | 2019-04-30 | 2019-10-01 | 北京氦舶科技有限责任公司 | Monoatomic metal catalyst and its preparation and the application in degradation air pollutants |
CN112403466A (en) * | 2020-11-06 | 2021-02-26 | 上海簇睿低碳能源技术有限公司 | Preparation method of core-shell catalyst for dry reforming of methane and carbon dioxide |
CN112403466B (en) * | 2020-11-06 | 2023-01-03 | 上海簇睿低碳能源技术有限公司 | Preparation method of core-shell catalyst for dry reforming of methane and carbon dioxide |
CN113000059A (en) * | 2021-02-04 | 2021-06-22 | 上海大学 | Nickel-based catalyst for dry reforming of methane and carbon dioxide and preparation method and application thereof |
CN115518652A (en) * | 2022-06-13 | 2022-12-27 | 安徽理工大学 | Silicon-cerium composite microporous material packaged metal catalyst and preparation method and application thereof |
CN115282970A (en) * | 2022-08-03 | 2022-11-04 | 高潞空气化工产品(上海)能源科技有限公司 | Nickel-based catalyst for oxide film limited low-carbon alkane dry reforming and preparation method and application thereof |
CN115282970B (en) * | 2022-08-03 | 2023-12-08 | 高潞空气化工产品(上海)能源科技有限公司 | Nickel-based catalyst for oxide film limited-area low-carbon alkane dry reforming and preparation method and application thereof |
CN116371451A (en) * | 2023-04-14 | 2023-07-04 | 西安交通大学 | Cerium doped nickel-based catalyst suitable for methane dry reforming and preparation method thereof |
CN116371451B (en) * | 2023-04-14 | 2024-05-17 | 西安交通大学 | A cerium-doped nickel-based catalyst suitable for methane dry reforming and a preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103586030B (en) | The preparation method of the dry reforming catalyst of Ni-based methane of mesoporous confinement | |
CN104841442A (en) | Preparation method of anti-carbon deposition mesoporous confinement methane dry reforming catalyst | |
CN115485233B (en) | Catalyst composition for ammonia decomposition | |
CN104998649B (en) | Preparation method of core-shell structure nickel base methane dry reforming catalyst | |
CN106423161B (en) | A kind of preparation method of hydrogenation catalyst and catalyst | |
CN102836718B (en) | Mesoporous hexaaluminate nickel supported methanation catalyst and preparation method thereof | |
CN102600854A (en) | Catalyst for carbon dioxide methanation and preparation method thereof | |
CN107686120A (en) | A kind of method and its catalyst assembled solar energy and catalyze and synthesize ammonia | |
CN110773218A (en) | A nitrogen-doped biocarbon-supported metal nickel catalyst and its application | |
CN111939907A (en) | A kind of low-temperature ammonia decomposition hydrogen production catalyst and preparation method and application thereof | |
CN110787789A (en) | Preparation and application of a catalyst for hydrogenating carbon dioxide to methanol | |
CN113813963B (en) | Anti-carbon-deposition nickel-based catalyst, and preparation method and application thereof | |
Li et al. | Cobalt doped Fe-Mn@ CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NO x | |
CN105618065A (en) | Applications of catalyst in hydrogen production through hydrazine decomposition | |
CN113019410A (en) | Metal oxide-boron nitride composite catalyst for dry reforming of methane, and preparation method and application thereof | |
CN107321354B (en) | A kind of high temperature and high selectivity carbon dioxide methanation catalyst and preparation method thereof | |
KR20230034166A (en) | METHOD FOR SYNTHESIS Ni/AlMaOx CATALYSTS FOR AMMONIA DECOMPOSITION USING CATION ANION DOUBLE HYDROLYSIS | |
CN105944730A (en) | Preparation method of mesopore confined nickel-based methane reforming catalyst | |
CN113019394B (en) | Ni-Pt/CeO2 catalyst for hydrogen production by decomposition of ammonia and its preparation method and application | |
CN105170156B (en) | The preparation method of the Ni-based methane dry reforming catalyst of aerogel-like structure | |
CN111318296A (en) | A kind of preparation method and application of supported cobalt/carbon nanotube material derived from zeolite imidazole framework material | |
Zhang et al. | Hydrogen production from complete dehydrogenation of hydrazine borane on carbon-doped TiO 2-supported NiCr catalysts | |
CN112058277A (en) | High-activity catalyst for ammonia synthesis and preparation method thereof | |
CN113559836A (en) | A kind of high-efficiency supported bimetallic catalyst, preparation method and application thereof | |
CN116139859B (en) | Ru-based catalyst for producing hydrogen by ammonia decomposition and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150819 |
|
WD01 | Invention patent application deemed withdrawn after publication |