CN104725230B - 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 - Google Patents
制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 Download PDFInfo
- Publication number
- CN104725230B CN104725230B CN201310724763.6A CN201310724763A CN104725230B CN 104725230 B CN104725230 B CN 104725230B CN 201310724763 A CN201310724763 A CN 201310724763A CN 104725230 B CN104725230 B CN 104725230B
- Authority
- CN
- China
- Prior art keywords
- reaction
- dimethyl ether
- raw material
- molecular sieve
- polymethoxy dimethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供一种制备作为生产乙二醇的中间体的聚甲氧基二甲醚羰化物和/或甲氧基乙酸甲酯的方法,包括将原料聚甲氧基二甲醚或甲缩醛连同一氧化碳和氢气通过载有脱硅改性的酸性分子筛催化剂的反应器,在不添加其他溶剂的适当反应条件下反应制备相应产物,其中反应过程为气液固三相反应。本发明方法中原料聚甲氧基二甲醚或甲缩醛的转化率高,各产物的选择性高,催化剂寿命长,不需要使用外加溶剂,反应条件比较温和,能够连续生产,具备工业化应用潜力。而且,所获的产物能够通过加氢后水解或者水解后加氢生产乙二醇。
Description
技术领域
本发明涉及一种作为生产乙二醇的中间体的聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的制备方法。
背景技术
乙二醇是国家重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、PET瓶子、薄膜)、炸药、乙二醛,并可作为防冻剂、增塑剂、水力流体和溶剂等。2009年中国的乙二醇进口量超过580万吨,预计2015年我国乙二醇需求将达到1120万吨,生产能力约500万吨,供需缺口仍达620万吨,因此,我国乙二醇生产新技术的开发应用具有很好的市场前景。国际上主要采用石油裂解的乙烯经氧化得到环氧乙烷,环氧乙烷水合得到乙二醇。鉴于我国“富煤缺油少气”的能源资源结构与原油价格长期维持高位运行等现状,煤制乙二醇新型煤化工技术既能保障国家的能源安全,又充分利用了我国的煤炭资源,是未来煤化工产业最现实的选择。
目前,国内比较成熟的技术是由中国科学院福建物构所开发的“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇成套工艺技术。”2009年12月上旬,备受业界瞩目的全球首套工业化示范装置-内蒙古通辽金煤化工公司“煤制乙二醇项目”一期工程、年产20万吨煤制乙二醇项目顺利打通全线工艺流程,生产出合格乙二醇产品。然而工艺单元较多,工业气体纯度要求高,在氧化偶联过程中需要使用贵金属催化剂,需要利用潜在环境污染的氮氧化合物等会制约该流程的经济性、环保性、节能性以及进一步工程放大。
聚甲氧基二甲醚(或叫聚甲氧基甲缩醛,英文名为Polyoxymethylene dimethylethers)的分子式为CH3O(CH2O)nCH3,其中n≥2,一般简称为DMMn(或PODEn)。在制备聚甲氧基二甲醚的过程中,其生成的产物分布不合理,甲缩醛和DMM2较高,而可以用作柴油添加剂的DMM3~4选择性却较低,因此,常常需要对其制备过程中的副产物进行反复分离再反应,这样能耗较大,经济性较差。因此,如果能将作为副产物的DMM2直接加工成经济价值更高的产品将会提高此过程的经济性。
近年来,美国UC,Berkeley的Alexis T.Bell教授课题组提出利用甲缩醛气相羰基化法制备甲氧基乙酸甲酯,然后加氢水解得到乙二醇的一条新路线,其中最关键的一步是气羰基化反应。然而催化剂寿命短、原料气中甲缩醛浓度低、甲缩醛转化率与甲氧基乙酸甲酯选择性都不够理想,离工业化还有相当长的距离[Angew.Chem.Iht.Ed.,2009,48,4813~4815;J.Catal.,2010,270,185~195;J.Catal.,2010,274,150~162;WO2010/048300A1]。
发明内容
本发明的目的在于提供一种通过羰基化制备作为生产乙二醇的中间体的聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法。
为此,本发明提供了一种通过羰基化制备作为生产乙二醇的中间体的聚甲氧基二甲醚羰化物的方法,其特征在于,将原料聚甲氧基二甲醚CH3O(CH2O)nCH3连同一氧化碳和氢气通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa、聚甲氧基二甲醚质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应制备产物聚甲氧基二甲醚羰化物,其中在所述反应条件下,所述原料与所述产物中的至少一种为液相,所述脱硅改性的酸性分子筛催化剂为固相,一氧化碳和氢气为气相以使反应过程为气液固三相反应,并且一氧化碳与所述原料的摩尔比为2∶1~20∶1,氢气与所述原料的摩尔比为1∶1~5∶1,其中n≥2且为整数。
本发明还一种通过羰基化制备作为生产乙二醇的中间体甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物的方法,其特征在于,将原料甲缩醛CH3O-CH2-OCH3连同一氧化碳和氢气通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa、甲缩醛质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应制备产物甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物,其中在所述反应条件下,所述原料与所述产物中的至少一种为液相,所述脱硅改性的酸性分子筛催化剂为固相,一氧化碳和氢气为气相以使反应过程为气液固三相反应,并且一氧化碳与所述原料的摩尔比为2∶1~20∶1,氢气与所述原料的摩尔比为1∶1~5∶1。
在一个优选实施方案中,所述产物聚甲氧基二甲醚羰化物是在聚甲氧基二甲醚CH3O(CH2O)nCH3分子链的-O-CH2-O-结构单元上插入一个或多个羰基-CO-后形成的具有-O-(CO)-CH2-O-或-O-CH2-(CO)-O-结构单元的产物,其中n≥2。
在一个优选实施方案中,所述聚甲氧基二甲醚为二聚甲氧基二甲醚CH3O(CH2O)2CH3。
在一个优选实施方案中,所述聚甲氧基二甲醚羰化物为以下中的一种或多种:
CH3-O-(CO)-CH2-O-CH2-O-CH3,
CH3-O-CH2-(CO)-O-CH2-O-CH3,
CH3-O-(CO)-CH2-O-(CO)-CH2-O-CH3,和
CH3-O-(CO)-CH2-O-CH2-(CO)-O-CH3。
所述脱硅改性的酸性分子筛催化剂通过如下方法制备:将酸性分子筛放入0.05~6.0mol/L,优选0.2~1.5mol/L的氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠或碳酸氢钠中的一种或几种的水溶液中,在15~95℃,优选50~85℃下反应0.5~24h,过滤后的滤饼用0.01~0.5mol/L的选自盐酸、硝酸、硫酸或乙酸的水溶液洗涤并中和至酸性,再用去离子水洗净中和产生的盐溶液,然后经过铵离子交换、过滤、干燥和煅烧,得到所述脱硅改性的酸性分子筛催化剂。
在一个优选实施方案中,所述脱硅改性的酸性分子筛催化剂的结构类型为MWW、FER、MFI、MOR、FAU或BEA。
在一个优选实施方案中,所述脱硅改性的酸性分子筛催化剂为MCM-22分子筛、镁碱沸石、ZSM-5分子筛、丝光沸石、Y沸石或Beta分子筛中的一种或几种。
在一个优选实施方案中,反应温度为60~120℃,反应压力为4~10MPa,所述原料的质量空速为0.5~3.0h-1,一氧化碳与所述原料的摩尔比为2∶1~15∶1,氢气与所述原料的摩尔比为1∶1~3∶1。
在一个优选实施方案中,反应温度为60~90℃,反应压力为5~10MPa,所述原料的质量空速为0.5~1.5h-1,一氧化碳与所述原料的摩尔比为2∶1~10∶1,氢气与所述原料的摩尔比为1∶1~2∶1。
在一个优选实施方案中,所述反应器是实现连续反应的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
本发明方法中原料聚甲氧基二甲醚或甲缩醛的转化率高,各产物的选择性高,催化剂寿命长,不需要使用外加溶剂,反应条件比较温和,能够连续生产,具备工业化应用潜力。而且,所获的产物能够通过加氢后水解或者水解后加氢生产乙二醇。
具体实施方式
本发明提供一种制备聚甲氧基二甲醚羰化物的方法,其特征在于:将含有聚甲氧基二甲醚CH3O(CH2O)nCH3、一氧化碳以及任选的氢气的原料通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa、聚甲氧基二甲醚质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应,制备聚甲氧基二甲醚羰化物;反应条件下原料聚甲氧基二甲醚与产物聚甲氧基二甲醚羰化物至少一种为液相,催化剂为固相,原料一氧化碳和氢气为气相,反应过程为气液固三相反应;原料中,一氧化碳与聚甲氧基二甲醚的摩尔比为2∶1~20∶1,氢气与聚甲氧基二甲醚的摩尔比为1∶1~5∶1。
所述的聚甲氧基二甲醚为单一组分或混合物,分子式为CH3O(CH2O)nCH3,其中n≥2且为整数,优选n=2,即CH3O(CH2O)2CH3。
在一个优选实施方式中,反应过程为气液固三相反应,反应温度为60~120℃,反应压力为4~10MPa,聚甲氧基二甲醚质量空速为0.5~3.0h-1,一氧化碳与聚甲氧基二甲醚的摩尔比为2∶1~15∶1优选的氢气与聚甲氧基二甲醚的摩尔比为1∶1~3∶1。
在一个优选实施方式中,反应过程为气液固三相反应,反应温度为60~90℃,反应压力为5~10MPa,聚甲氧基二甲醚质量空速为0.5~1.5h-1,一氧化碳与聚甲氧基二甲醚的摩尔比为2∶1~10∶1,优选的氢气与聚甲氧基二甲醚的摩尔比为1∶1~2∶1。
在本发明的一些实施例中,聚甲氧基二甲醚的转化率和聚甲氧基二甲醚羰化物的选择性都基于聚甲氧基二甲醚碳摩尔数进行计算:
聚甲氧基二甲醚转化率=[(进料中聚甲氧基二甲醚碳摩尔数)-(出料中聚甲氧基二甲醚碳摩尔数)]÷(进料中聚甲氧基二甲醚碳摩尔数)×(100%)
聚甲氧基二甲醚羰化物选择性=(出料中聚甲氧基二甲醚羰化物除去羰基后的碳摩尔数)÷[(进料中聚甲氧基二甲醚碳摩尔数)-(出料中聚甲氧基二甲醚碳摩尔数)]×(100%)
本发明还提供一种甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物的制备方法,其特征在于,将含有甲缩醛CH3O-CH2-OCH3、一氧化碳和氢气的原料通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa甲缩醛质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应,制备甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物;反应条件下原料甲缩醛与产物甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物至少一种为液相,催化剂为固相,原料一氧化碳和氢气为气相,反应过程为气液固三相反应;原料中,一氧化碳与甲缩醛的摩尔比为2∶1~20∶1,氢气与甲缩醛的摩尔比为1∶1~5∶1。
在一个优选实施方式中,反应过程为气液固三相反应,反应温度为60~120℃,反应压力为4~10MPa,甲缩醛质量空速为0.5~3.0h-1,一氧化碳与甲缩醛的摩尔比为2∶1~15∶1优选的氢气与甲缩醛的摩尔比为1∶1~3∶1。
在一个优选实施方式中,反应过程为气液固三相反应,反应温度为60~90℃,反应压力为5~10MPa,甲缩醛质量空速为0.5~1.5h-1,一氧化碳与甲缩醛的摩尔比为2∶1~10∶1,优选的氢气与甲缩醛的摩尔比为1∶1~2∶1。
在一些实施例中,甲缩醛的转化率和产物的选择性都基于甲缩醛碳摩尔数进行计算:
甲缩醛转化率=[(进料中甲缩醛碳摩尔数)-(出料中甲缩醛碳摩尔数)]÷(进料中甲缩醛碳摩尔数)×(100%)
甲氧基乙酸甲酯选择性=(出料中甲氧基乙酸甲酯除去羰基后的碳摩尔数)÷[(进料中甲缩醛碳摩尔数)-(出料中甲缩醛碳摩尔数)]×(100%)
聚甲氧基二甲醚羰化物选择性=(出料中聚甲氧基二甲醚羰化物除去羰基后的碳摩尔数)÷[(进料中甲缩醛碳摩尔数)-(出料中甲缩醛碳摩尔数)]×(100%)
所述脱硅改性的酸性分子筛催化剂的制备方法包括将分子筛放入任选的0.05~6.0mol/L,优选0.2~1.5mol/L的氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠或碳酸氢钠的一种或几种混合溶液中,在15~95℃,优选50~85℃下反应0.5~24h,过滤后的滤饼用0.01~0.5mol/L的盐酸、硝酸、硫酸或乙酸溶液洗涤,中和滤饼酸性,再用去离子水洗净中和产生的盐溶液,然后经过常规的铵离子交换、过滤、干燥、煅烧程序得到脱硅改性的酸性分子筛催化剂。
所述的酸性分子筛催化剂的结构类型为MWW、FER、MFI、MOR、FAU或BEA。优选地,所述的酸性分子筛催化剂为MCM-22分子筛、镁碱沸石、ZSM-5分子筛、丝光沸石、Y沸石或Beta分子筛中的任意一种或任意几种的混合,硅铝原子比为3∶1~150∶1。
在一个具体实施例中,阳离子型分子筛转换成酸性分子筛的标准操作程序为:将50g干燥后的阳离子型分子筛放入400ml的0.8M NH4NO3溶液中,在80℃下搅拌12h,过滤后用800ml的蒸馏水洗涤。此离子交换过程重复三次得到NH4 +型的分子筛。经过充分干燥后,置于马弗炉中,以2℃/min升高到550℃并保持煅烧4h得到酸性分子筛。
所述的聚甲氧基二甲醚羰化物是在聚甲氧基二甲醚分子链的-O-CH2-O-结构单元上插入羰基-CO-后形成的具有-O-(CO)-CH2-O-或-O-CH2-(CO)-O-结构单元的产物,聚甲氧基二甲醚羰化物含有一个或多个羰基。
实施例中产生的聚甲氧基二甲醚羰化物可以为以下中的一种或多种:
CH3-O-(CO)-CH2-O-CH2-O-CH3简称为C5-1,
CH3-O-CH2-(CO)-O-CH2-O-CH3简称为C5-2,
CH3-O-(CO)-CH2-O-(CO)-CH2-O-CH3简称为C6-1,
CH3-O-(CO)-CH2-O-CH2-(CO)-O-CH3简称为C6-2。
本发明的产物甲氧基乙酸甲酯或聚甲氧基二甲醚羰化物可以通过加氢后水解或水解后加氢得到乙二醇,此外,所述产物还可以用作汽、柴油添加剂。例如,以二聚甲氧基二甲醚(DMM2)CH3O(CH2O)2CH3为例简要表达生成乙二醇的反应过程为:
在一个优选实施方式中,所述反应器是连续流动的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
实施例1
将50g钠型硅铝比为40∶1的MCM-22分子筛利用标准操作程序转换成酸性分子筛,记为催化剂A,见表1。
实施例2
将100g钠型硅铝比为40∶1的MCM-22分子筛加入到500ml浓度为1.5mol/L的氢氧化钙溶液中,在75℃下搅拌反应10h,过滤后,滤饼用0.08ml/L的硝酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂B,见表1。
实施例3
将50g钠型硅铝比为10∶1的镁碱沸石利用标准操作程序转换成酸性分子筛,记为催化剂C,见表1。
实施例4
将100g钠型硅铝比为10∶1的镁碱沸石加入到500ml浓度为0.2mol/L的氢氧化镁溶液中,在50℃下搅拌反应24h,过滤后,滤饼用0.1ml/L的盐酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂D,见表1。
实施例5
将50g钠型硅铝比为150∶1的ZSM-5分子筛利用标准操作程序转换成酸性分子筛,记为催化剂E,见表1。
实施例6
将100g钠型硅铝比为150∶1的ZSM-5分子筛加入到500ml浓度为6.0mol/L的碳酸氢钠溶液中,在85℃下搅拌反应12h,过滤后,滤饼用0.2ml/L的盐酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂F,见表1。
实施例7
将50g钠型硅铝比为3∶1的丝光沸石利用标准操作程序转换成酸性分子筛,记为催化剂G,见表1。
实施例8
将100g钠型硅铝比为3∶1的丝光沸石加入到500ml浓度为1.0mol/L的氢氧化锂溶液中,在95℃下搅拌反应0.5h,过滤后,滤饼用0.5ml/L的醋酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂H,见表1。
实施例9
将50g钠型硅铝比为20∶1的Y分子筛利用标准操作程序转换成酸性分子筛,记为催化剂I,见表1。
实施例10
将100g钠型硅铝比为20∶1的Y分子筛加入到500ml浓度为0.5mol/L的氢氧化钠溶液中,在80℃下搅拌反应4h,过滤后,滤饼用0.1ml/L的硝酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂J,见表1。
实施例11
将50g钠型硅铝比为15∶1的Beta分子筛利用标准操作程序转换成酸性分子筛,记为催化剂K,见表1。
实施例12
将100g钠型硅铝比为15∶1的Beta分子筛加入到500ml浓度为3.5mol/L的碳酸钠与0.05mol/L的氢氧化钾混合溶液中,在15℃下搅拌反应12h,过滤后,滤饼用0.01ml/L的硫酸溶液洗涤到pH为6,过滤后用去离子水反复洗涤至中性,在100℃下烘干后经过标准操作程序转换成酸性分子筛,记为催化剂L,见表1。
表1实施例1~12中催化剂制备方法
实施例13
催化剂A样品压片、粉碎成20~40目,用于活性测试。称取该催化剂A10g,装入内径为8.5mm的不锈钢反应管内,在常压、550℃下用氮气活化4小时,然后降到反应温度(T)=90℃,通入一氧化碳∶二聚甲氧基二甲醚∶氢气(CO∶DMM2∶H2)=7∶1∶1,缓慢升压到反应压力(P)=10MPa,二聚甲氧基二甲醚质量空速(WHSV)=0.2h-1,用气相色谱分析产物,反应基本稳定后,计算二聚甲氧基二甲醚的转化率和聚甲氧基二甲醚羰化物的选择性,反应结果见表2。
实施例14
将实施例13中的催化剂换成催化剂B,其余实验步骤与实施例13一致,反应结果见表2。
实施例15
将实施例13中的催化剂换成催化剂C,T=60℃,CO∶DMM2∶H2=13∶1∶3,P=4MPa,WHSV=1.5h-1,其余实验步骤与实施例13一致,反应结果见表2。
实施例16
将实施例15中的催化剂换成催化剂D,其余实验步骤与实施例15一致,反应结果见表2。
实施例17
将实施例13中的催化剂换成催化剂E,反应条件换为:T=140℃,CO∶DMM2∶H2=2∶1∶5,P=6.5MPa,WHSV=3.0h-1,其余实验步骤与实施例13一致,反应结果见表2。
实施例18
将实施例17中的催化剂换成催化剂F,其余实验步骤与实施例17一致,反应结果见表2。
实施例19
将实施例13中的催化剂换成催化剂G,反应条件换为:T=105℃,CO∶DMM2∶H2=20∶1∶1,P=5.0MPa,WHSV=1.0h-1,其余实验步骤与实施例13一致,反应结果见表2。
实施例20
将实施例19中的催化剂换成催化剂H,其余实验步骤与实施例19一致,反应结果见表2。
实施例21
将实施例13中的催化剂换成催化剂I,反应条件换为:T=73℃,CO∶DMM2∶H2=10∶1∶2,P=2MPa,WHSV=10.0h-1,其余实验步骤与实施例13一致,反应结果见表2。
实施例22
将实施例21中的催化剂换成催化剂J,其余实验步骤与实施例21一致,反应结果见表2。
实施例23
将实施例13中的催化剂换成催化剂K,反应条件换为:T=120℃,CO∶DMM2∶H2=15∶1∶4,P=4.7MPa,WHSV=0.5h-1,其余实验步骤与实施例13一致,反应结果见表2。
实施例24
将实施例23中的催化剂换成催化剂L,其余实验步骤与实施例23一致,反应结果见表2。
实施例25
催化剂E样品压片、粉碎成20~40目,用于活性测试。称取催化剂样品10g,装入内径为8.5mm的不锈钢反应管内,在常压、550℃下用氮气活化4小时,然后降到反应温度(T)=88℃,通入原料一氧化碳∶聚甲氧基二甲醚∶氢气(CO∶DMMn∶H2)=8∶1∶1,其中DMMn各组分的质量比为:DMM2∶DMM3∶DMM4∶DMM5∶DMM6=51.2∶26.6∶12.8∶6.5∶2.9,缓慢升压到反应压力(P)=8MPa,聚甲氧基二甲醚质量空速(WHSV)=1.5h-1,用气相色谱分析产物,反应结果见表2。
实施例26
将实施例25中的催化剂换成催化剂F,其它条件不变,反应结果见表2。
实施例27
催化剂I样品压片、粉碎成20~40目,用于活性测试。称取催化剂样品10g,装入内径为8.5mm的不锈钢反应管内,在常压、550℃下用氮气活化4小时,然后降到反应温度(T)=95℃,通入原料一氧化碳∶聚甲氧基二甲醚∶氢气(CO∶DMMn∶H2)=10∶1∶1,其中DMMn各组分的质量比为:DMM2∶DMM3∶DMM4∶DMM5∶DMM6=47.7∶26.9∶14.0∶7.8∶3.6,缓慢升压到反应压力(P)=7MPa,聚甲氧基二甲醚质量空速(WHSV)=2.0h-1,用气相色谱分析产物,反应基本稳定后,反应结果见表2。
实施例28
将实施例27中的催化剂换成催化剂J,其它条件不变,反应结果见表2。
对比例1
将实施例20中的气体比例换成CO∶DMM2∶H2=20∶1∶0,其余实验步骤与实施例20一致,反应结果见表2。
对比例2
将实施例22中的气体比例换成CO∶DMM2∶H2=10∶1∶0,其余实验步骤与实施例22一致,反应结果见表2。
实施例29
催化剂A样品压片、粉碎成20~40目,用于活性测试。称取该催化剂A10g,装入内径为8.5mm的不锈钢反应管内,在常压、550℃下用氮气活化4小时,然后降到反应温度(T)=90℃,通入一氧化碳∶甲缩醛∶氢气(CO∶DMM∶H2)=7∶1∶1,缓慢升压到反应压力(P)=10MPa,控甲缩醛质量空速(WHSV)=0.2h-1,用气相色谱分析产物,反应基本稳定后,计算甲缩醛的转化率和产物的选择性,反应结果见表3。
实施例30
将实施例29中的催化剂换成催化剂B,其余实验步骤与实施例29一致,反应结果见表3。
实施例31
将实施例29中的催化剂换成催化剂C,T=60℃,CO∶DMM∶H2=13∶1∶3,P=4MPa,WHSV=1.5h-1,其余实验步骤与实施例29一致,反应结果见表3。
实施例32
将实施例31中的催化剂换成催化剂D,其余实验步骤与实施例31一致,反应结果见表3。
实施例33
将实施例29中的催化剂换成催化剂E,反应条件换为:T=140℃,CO∶DMM∶H2=2∶1∶5,P=6.5MPa,WHSV=3.0h-1,其余实验步骤与实施例29一致,反应结果见表3。
实施例34
将实施例33中的催化剂换成催化剂F,其余实验步骤与实施例33一致,反应结果见表3。
实施例35
将实施例29中的催化剂换成催化剂G,反应条件换为:T=105℃,CO∶DMM∶H2=20∶1∶1,P=5.0MPa,WHSV=1.0h-1,其余实验步骤与实施例29一致,反应结果见表3。
实施例36
将实施例35中的催化剂换成催化剂H,其余实验步骤与实施例35一致,反应结果见表3。
实施例37
将实施例29中的催化剂换成催化剂I,反应条件换为:T=73℃,CO∶DMM∶H2=10∶1∶2,P=2MPa,WHSV=10.0h-1,其余实验步骤与实施例29一致,反应结果见表3。
实施例38
将实施例37中的催化剂换成催化剂J,其余实验步骤与实施例37一致,反应结果见表3。
实施例39
将实施例29中的催化剂换成催化剂K,反应条件换为:T=120℃,CO∶DMM∶H2=15∶1∶4,P=4.7MPa,WHSV=0.5h-1,其余实验步骤与实施例29一致,反应结果见表3。
实施例40
将实施例39中的催化剂换成催化剂L,其余实验步骤与实施例39一致,反应结果见表3。
对比例3
将实施例36中的气体比例换为CO∶DMM∶H2=20∶1∶0,其余实验步骤与实施例36一致,反应结果见表3。
对比例4
将实施例38中的气体比例换为CO∶DMM∶H2=10∶1∶0,其余实验步骤与实施例38一致,反应结果见表3。
本发明的有益效果包括但不限于:本发明的方法所采用的催化剂为脱硅改性的酸性分子筛催化剂,原料为聚甲氧基二甲醚或甲缩醛连同一氧化碳和氢气的混合气。在本发明的反应条件下,原料通过催化剂能够稳定高效生产作为生产乙二醇的中间体的产物聚甲氧基二甲醚羰化物或甲氧基乙酸甲酯,反应过程为气液固三相反应。甲氧基二甲醚或甲缩醛羰基化反应为强放热反应,本发明中反应温度比较低,再加上液相热容大与相变潜热,能够很好控制反应温度,防止工业生产过程中飞温的问题。同时本发明采用的气液固三相反应能够在高聚甲氧基二甲醚或甲缩醛浓度下操作,提高了工业生产中单程反应产能,减少了压缩、循环以及分离过程中的能耗,提高经济性能。
本发明中原料聚甲氧基二甲醚或甲缩醛的转化率高,产物聚甲氧基二甲醚羰化物或甲氧基乙酸甲酯选择性高,催化剂单程寿命长。此外,在本发明方法中,液相原料反应物或产物本身就是优良溶剂,不需要使用外加溶剂。另外液相反应物或产物能够溶解催化反应过程中的预积碳物质,有利于提高催化剂的活性和稳定性,反应条件比较温和,能够连续生产,具备工业化应用潜力。
而且,本发明中羰基化反应采用一氧化碳和氢气的混合气作为气相,相对于现有煤化工生产乙二醇技术需要高纯度一氧化碳,本发明不需要高纯度一氧化碳,可以大幅度降低合成气分离能耗,提高生产过程中的经济性。另外反应气中加入氢气还能够提高聚甲氧基二甲醚或甲缩醛转化率和聚甲氧基二甲醚羰化物或甲氧基乙酸甲酯选择性,延长催化剂单程寿命。
本发明中的分子筛脱硅改性方法简单易操作,适合工业大规模生产,经过脱硅改性能够将催化剂的单程寿命延长5~10倍,非常有效地减少了每年催化剂重生的次数,有利于提高年产能力,减少原料浪费,减少废气废水排放,减少催化剂因泄压和烧积碳而造成的损耗,延长生产设备使用周期,提高经济性能。
此外,本发明中生产的聚甲氧基二甲醚羰化物或甲氧基乙酸甲酯能够通过加氢水解或者水解后加氢生产乙二醇。
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。本发明的范围由所附权利要求限定。
Claims (10)
1.一种通过羰基化制备作为生产乙二醇的中间体的聚甲氧基二甲醚羰化物的方法,其特征在于,将原料聚甲氧基二甲醚CH3O(CH2O)nCH3连同一氧化碳和氢气通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa、聚甲氧基二甲醚质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应制备产物聚甲氧基二甲醚羰化物,其中在所述反应条件下,所述原料与所述产物中的至少一种为液相,所述脱硅改性的酸性分子筛催化剂为固相,一氧化碳和氢气为气相以使反应过程为气液固三相反应,并且一氧化碳与所述原料的摩尔比为2∶1~20∶1,氢气与所述原料的摩尔比为1∶1~5∶1,其中n≥2且为整数,所述脱硅改性的酸性分子筛催化剂通过如下方法制备:将酸性分子筛放入0.05~6.0mol/L的氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠或碳酸氢钠中的一种或几种的水溶液中,在15~95℃反应0.5~24h,过滤后的滤饼用0.01~0.5mol/L的选自盐酸、硝酸、硫酸或乙酸的水溶液洗涤并中和至酸性,再用去离子水洗净中和产生的盐溶液,然后经过铵离子交换、过滤、干燥和煅烧,得到所述脱硅改性的酸性分子筛催化剂。
2.一种通过羰基化制备作为生产乙二醇的中间体甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物的方法,其特征在于,将原料甲缩醛CH3O-CH2-OCH3连同一氧化碳和氢气通过载有脱硅改性的酸性分子筛催化剂的反应器,在反应温度60~140℃、反应压力2~10MPa、甲缩醛质量空速为0.2~10.0h-1且不添加其他溶剂的条件下反应制备产物甲氧基乙酸甲酯及聚甲氧基二甲醚羰化物,其中在所述反应条件下,所述原料与所述产物中的至少一种为液相,所述脱硅改性的酸性分子筛催化剂为固相,一氧化碳和氢气为气相以使反应过程为气液固三相反应,并且一氧化碳与所述原料的摩尔比为2∶1~20∶1,氢气与所述原料的摩尔比为1∶1~5∶1,其中所述脱硅改性的酸性分子筛催化剂通过如下方法制备:将酸性分子筛放入0.05~6.0mol/L的氢氧化钠、氢氧化钾、氢氧化锂、氢氧化镁、氢氧化钙、碳酸钠或碳酸氢钠中的一种或几种的水溶液中,在15~95℃反应0.5~24h,过滤后的滤饼用0.01~0.5mol/L的选自盐酸、硝酸、硫酸或乙酸的水溶液洗涤并中和至酸性,再用去离子水洗净中和产生的盐溶液,然后经过铵离子交换、过滤、干燥和煅烧,得到所述脱硅改性的酸性分子筛催化剂。
3.根据权利要求1或2所述的方法,其特征在于,所述产物聚甲氧基二甲醚羰化物是在聚甲氧基二甲醚CH3O(CH2O)nCH3分子链的-O-CH2-O-结构单元中插入一个或多个羰基-CO-后形成的具有-O-(CO)-CH2-O-或-O-CH2-(CO)-O-结构单元的产物,其中n≥2。
4.根据权利要求1所述的方法,其特征在于,所述聚甲氧基二甲醚为二聚甲氧基二甲醚CH3O(CH2O)2CH3。
5.根据权利要求1或2所述的方法,其特征在于,所述聚甲氧基二甲醚羰化物为以下中的一种或多种:
CH3-O-(CO)-CH2-O-CH2-O-CH3,
CH3-O-CH2-(CO)-O-CH2-O-CH3,
CH3-O-(CO)-CH2-O-(CO)-CH2-O-CH3,和
CH3-O-(CO)-CH2-O-CH2-(CO)-O-CH3。
6.根据权利要求1或2所述的方法,其特征在于,所述脱硅改性的酸性分子筛催化剂的结构类型为MWW、FER、MFI、MOR、FAU或BEA。
7.根据权利要求6所述的方法,其特征在于,所述脱硅改性的酸性分子筛催化剂为MCM-22分子筛、镁碱沸石、ZSM-5分子筛、丝光沸石、Y沸石或Beta分子筛中的一种或几种。
8.根据权利要求1或2所述的方法,其特征在于,反应温度为60~120℃,反应压力为4~10MPa,所述原料的质量空速为0.5~3.0h-1,一氧化碳与所述原料的摩尔比为2∶1~15∶1,氢气与所述原料的摩尔比为1∶1~3∶1。
9.根据权利要求1或2所述的方法,其特征在于,反应温度为60~90℃,反应压力为5~10MPa,所述原料的质量空速为0.5~1.5h-1,一氧化碳与所述原料的摩尔比为2∶1~10∶1,氢气与所述原料的摩尔比为1∶1~2∶1。
10.根据权利要求1或2所述的方法,其特征在于,所述反应器是实现连续反应的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310724763.6A CN104725230B (zh) | 2013-12-23 | 2013-12-23 | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310724763.6A CN104725230B (zh) | 2013-12-23 | 2013-12-23 | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104725230A CN104725230A (zh) | 2015-06-24 |
CN104725230B true CN104725230B (zh) | 2017-06-16 |
Family
ID=53449714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310724763.6A Active CN104725230B (zh) | 2013-12-23 | 2013-12-23 | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104725230B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106365999B (zh) * | 2015-07-20 | 2019-01-01 | 中国科学院大连化学物理研究所 | 一种制备缩醛羰化物的方法 |
CN106365994B (zh) * | 2015-07-20 | 2019-01-01 | 中国科学院大连化学物理研究所 | 一种低级脂肪羧酸烷基酯的生产方法 |
CN106365995B (zh) * | 2015-07-20 | 2018-06-05 | 中国科学院大连化学物理研究所 | 一种乙酸甲酯的生产方法 |
CN108097324B (zh) * | 2016-11-25 | 2020-03-31 | 中国科学院大连化学物理研究所 | 一种制备丙烯酸及丙烯酸甲酯的催化剂及其制备方法 |
CN107321686B (zh) * | 2017-06-05 | 2021-03-23 | 深圳市航盛新材料技术有限公司 | 铝空气电池催化剂的清洗方法及其清洗液 |
CN107497479B (zh) * | 2017-07-20 | 2020-06-23 | 沈阳化工大学 | 一种堇青石为载体合成β分子筛制备甲氧基乙酸甲酯方法 |
CN107497473B (zh) * | 2017-07-20 | 2020-06-23 | 沈阳化工大学 | 一种以堇青石为载体的y分子筛催化剂制备方法 |
CN108043169A (zh) * | 2017-12-15 | 2018-05-18 | 山东佳星环保科技有限公司 | 一种增氧净化装置 |
WO2023160805A1 (en) | 2022-02-25 | 2023-08-31 | Symrise Ag | Fragrances with methoxy acetate structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010048300A1 (en) * | 2008-10-23 | 2010-04-29 | The Regents Of The University Of California | Gas-phase catalyzed production of alkyl alkoxyacetates from dialkoxymethanes |
CN102421740A (zh) * | 2009-05-14 | 2012-04-18 | 英国石油化学品有限公司 | 羰基化方法 |
CN103172517A (zh) * | 2011-12-20 | 2013-06-26 | 中国科学院大连化学物理研究所 | 一种生产甲氧基乙酸甲酯的方法 |
-
2013
- 2013-12-23 CN CN201310724763.6A patent/CN104725230B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010048300A1 (en) * | 2008-10-23 | 2010-04-29 | The Regents Of The University Of California | Gas-phase catalyzed production of alkyl alkoxyacetates from dialkoxymethanes |
CN102421740A (zh) * | 2009-05-14 | 2012-04-18 | 英国石油化学品有限公司 | 羰基化方法 |
CN103172517A (zh) * | 2011-12-20 | 2013-06-26 | 中国科学院大连化学物理研究所 | 一种生产甲氧基乙酸甲酯的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104725230A (zh) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104725230B (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN104725229B (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN104725224B (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN102145287A (zh) | 用于二氧化碳加氢合成甲醇的催化剂及其制备方法 | |
CN105585455A (zh) | 连续醚化法制备乙二醇单甲醚的方法 | |
CN104043457A (zh) | 草酸酯加氢制乙二醇的催化剂及其方法 | |
CN105622383A (zh) | 一种丙烯酸的合成方法 | |
CN104725225B (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN102079709A (zh) | 一种co气相氧化偶联及脱羰间接合成碳酸二甲酯的方法 | |
AU2013409375B2 (en) | Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate | |
CN105585484B (zh) | 一种提高甲缩醛羰基化反应催化剂性能的方法 | |
CN101412661B (zh) | 固态腰果酚及其制备方法 | |
CN105646227A (zh) | 一种利用糠醇制备乙酰丙酸酯的方法 | |
CN110078702A (zh) | 一种聚离子液体框架催化剂制备环状碳酸酯的方法 | |
CN104072376B (zh) | 一种由co2和甲醇合成碳酸二甲酯的方法 | |
CN108947758A (zh) | 一种催化二苯并呋喃开环制备联苯的方法 | |
CN103539766A (zh) | 一种糠醛的制备方法 | |
CN103709010B (zh) | 一种由环己烯、羧酸和水反应合成环己醇方法 | |
CN102649057A (zh) | Co偶联反应制备草酸酯的催化剂 | |
CN106365993B (zh) | 一种制备缩醛羰化物的方法 | |
CN106365999B (zh) | 一种制备缩醛羰化物的方法 | |
EP2810928B1 (en) | A method for synthesizing polyoxymethylene dimethyl ethers | |
CN104311394B (zh) | 一种苯酚脱氧的方法 | |
WO2015095999A1 (zh) | 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法 | |
CN101879447A (zh) | 草酸酯加氢制备乙二醇的催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |