CN104698837A - Method and device for identifying operating modal parameters of linear time-varying structure and application of the device - Google Patents
Method and device for identifying operating modal parameters of linear time-varying structure and application of the device Download PDFInfo
- Publication number
- CN104698837A CN104698837A CN201410763308.1A CN201410763308A CN104698837A CN 104698837 A CN104698837 A CN 104698837A CN 201410763308 A CN201410763308 A CN 201410763308A CN 104698837 A CN104698837 A CN 104698837A
- Authority
- CN
- China
- Prior art keywords
- time
- modal
- principal component
- component analysis
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000000513 principal component analysis Methods 0.000 claims abstract description 51
- 230000004044 response Effects 0.000 claims abstract description 44
- 238000004458 analytical method Methods 0.000 claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 13
- 238000003745 diagnosis Methods 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims description 45
- 238000004422 calculation algorithm Methods 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 15
- 230000003750 conditioning effect Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000001186 cumulative effect Effects 0.000 claims description 9
- 230000002596 correlated effect Effects 0.000 claims description 6
- 230000003862 health status Effects 0.000 claims description 6
- 230000001052 transient effect Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 7
- 230000036541 health Effects 0.000 abstract description 4
- 238000002474 experimental method Methods 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 8
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004171 remote diagnosis Methods 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明涉及一种基于限定记忆主成分分析的时变结构工作模态参数识别方法,能对带有时变结构特性的动态系统仅利用非平稳振动响应信号,进行工作模态参数识别,识别出结构的工作模态参数,能实时有效监测系统的动态变化特性,可用于振动控制、设备故障诊断、健康监测以及系统结构分析与优化。该方法仅由实测的响应信号识别系统的参数特性,无需测量载荷信号,并从数学理论分析及实验上给予证明,赋予该方法以物理意义。本发明还涉及一种基于上述方法的工作模态测量装置,测量振动响应信号并进行工作模态参数识别,获得系统结构实时在线的动态特性变化,并将其用于大型复杂工程结构(桥梁、铁轨等)的故障诊断与健康监测分析中。
The invention relates to a time-varying structure working modal parameter identification method based on limited memory principal component analysis, which can only use non-stationary vibration response signals for dynamic systems with time-varying structural characteristics to identify working modal parameters and identify the structure The working mode parameters can effectively monitor the dynamic characteristics of the system in real time, and can be used for vibration control, equipment fault diagnosis, health monitoring, and system structure analysis and optimization. This method only recognizes the parameter characteristics of the system by the measured response signal, without measuring the load signal, and it is proved from mathematical theory analysis and experiment, giving the method a physical meaning. The present invention also relates to a working mode measurement device based on the above method, which measures the vibration response signal and identifies the working mode parameters, obtains the real-time online dynamic characteristic changes of the system structure, and uses it for large complex engineering structures (bridges, Rails, etc.) in fault diagnosis and health monitoring analysis.
Description
技术领域technical field
本发明涉及一种基于限定记忆主成分分析的时变线性结构工作模态参数识别方法,以及该方法在结构故障诊断与健康状态监测中的应用,还涉及一种基于限定记忆主成分分析的时变线性结构工作模态参数识别装置。The present invention relates to a time-varying linear structural working modal parameter identification method based on limited memory principal component analysis, and the application of the method in structural fault diagnosis and health state monitoring, and also relates to a time-varying linear structure based on limited memory principal component analysis. A variable linear structure working mode parameter identification device.
背景技术Background technique
结构的振动特性分析在航空航天飞行器、潜艇、土木建筑、船舶、汽车等领域受到高度重视,尤其是模态分析。模态分析为研究各类振动特性提供了一条有效途径。精确识别模态参数(模态频率、模态振型、阻尼比)是系统结构安全性和可维护性的重要保证,是结构动态设计和故障诊断的重要方法。传统的试验模态分析方法主要基于在实验室里对测量结构施加人工激励,通过测量激励与响应信号,利用模态分析理论求出系统的频响函数曲线,由此来估计模态参数。近年来,随着研究结构的大型化、复杂化,结构的激励载荷难以测量,以往施用人工激励的方法难以实现,因此诞生出了工作模态参数识别方法。譬如,桥梁受到的风载荷,大型海洋结构受到的浪载荷等等。如果要对其建立结构的动力学模型,只能采用工作模态参数识别的方法(仅从实测响应信号中识别系统的模态参数)。工作模态参数识别方法属于工程力学中的第二类逆问题,该方法研究难度较大,是一个重要的研究方向。目前其理论及技术还很不成熟,有待去深入研究和发展。The analysis of vibration characteristics of structures is highly valued in the fields of aerospace vehicles, submarines, civil engineering, ships, automobiles, etc., especially the modal analysis. Modal analysis provides an effective way to study various vibration characteristics. Accurate identification of modal parameters (modal frequency, mode shape, damping ratio) is an important guarantee for the safety and maintainability of the system structure, and an important method for structural dynamic design and fault diagnosis. The traditional experimental modal analysis method is mainly based on applying artificial excitation to the measurement structure in the laboratory. By measuring the excitation and response signals, the modal analysis theory is used to obtain the frequency response function curve of the system, thereby estimating the modal parameters. In recent years, with the increase in size and complexity of the research structure, it is difficult to measure the excitation load of the structure, and it is difficult to realize the method of applying artificial excitation in the past, so the identification method of the working mode parameters was born. For example, wind loads on bridges, wave loads on large marine structures, etc. If you want to establish a dynamic model of the structure, you can only use the method of identifying the working modal parameters (only identify the modal parameters of the system from the measured response signal). The identification method of working modal parameters belongs to the second type of inverse problem in engineering mechanics. This method is difficult to study and is an important research direction. At present, its theory and technology are still immature and need to be further studied and developed.
在实际工程中,系统的结构参数(质量、刚度、阻尼等)不是恒定的,带有时变特性。例如,火箭、导弹等飞行器在飞行过程中,燃料快速消耗,其质量具有时变特性;又如高速列车会引起桥梁的剧烈振动,桥梁和火车的结构系统是时变的。对于这种时变结构,如果仍然采用线性时不变识别模型,将使估计参数严重偏离真实值甚至发散,这会给系统的分析和控制带来了极大难度。因此,对时变结构的研究,迫在眉睫。时变结构的研究,是结构动力学中的前沿问题,特别是逆问题(在激励未知情形下),目前理论技术还很不成熟。对于该问题研究,目前国内外学者也做了大量研究,如McLamore等基于快速傅立叶变换,利用峰值法提取模态频率,但该方法存在不能识别密集模态的问题;Kalman等提出的子空间法,利用矩阵分解等方法提取信号子空间,得到等价系统,该方法适用于线性时变结构在平稳激励下的参数识别,对输出噪声有一定抗干扰能力,但随机子空间模型阶次的确定较为繁琐,计算量大,且易识别虚假模态;还有基于时频分析法的小波变换、Hilbert-Huang变换等方法,从时间域和频率域两方面去分析信号特性,但这些方法是一种局部识别法,难以对系统的整体特性做完整的分析,且对密集模态问题,由于滤波能力限制,识别精度易受到影响。In actual engineering, the structural parameters (mass, stiffness, damping, etc.) of the system are not constant and have time-varying characteristics. For example, during the flight of rockets, missiles and other aircraft, the fuel is consumed rapidly, and its mass has time-varying characteristics; another example is that high-speed trains will cause severe vibration of bridges, and the structural systems of bridges and trains are time-varying. For this time-varying structure, if the linear time-invariant identification model is still used, the estimated parameters will seriously deviate from the real value or even diverge, which will bring great difficulty to the analysis and control of the system. Therefore, the research on the time-varying structure is imminent. The study of time-varying structures is a frontier problem in structural dynamics, especially the inverse problem (in the case of unknown excitation), and the current theory and technology are still very immature. Scholars at home and abroad have also done a lot of research on this problem. For example, McLamore et al. used the peak method to extract the modal frequency based on the fast Fourier transform, but this method has the problem of not being able to identify dense modes; the subspace method proposed by Kalman et al. , using matrix decomposition and other methods to extract the signal subspace to obtain an equivalent system, this method is suitable for parameter identification of linear time-varying structures under stationary excitation, and has a certain anti-interference ability to output noise, but the determination of the order of the stochastic subspace model It is relatively cumbersome, with a large amount of calculation, and it is easy to identify false modes; there are also methods such as wavelet transform and Hilbert-Huang transform based on time-frequency analysis, which analyze signal characteristics from both time domain and frequency domain, but these methods are a This kind of local recognition method is difficult to do a complete analysis of the overall characteristics of the system, and for dense mode problems, the recognition accuracy is easily affected due to the limitation of filtering capabilities.
目前,研究时变结构的参数辨识方法主要是基于“时间冻结”的思想,即假设系统在某一时刻被冻结,在这一段很短的时间范围内,系统被当作线性时不变系统,然后利用时不变结构的理论进行分析。已有的研究主要包括两种:一种是基于限定记忆方法,即将数据划分成各个小的时间段,在每个时间段内把结构参数看成时不变,然后将各数据段内识别的值曲线拟合得到参数时变规律;另一种就是在线或递推技术,各个时刻的数据都要被考虑,老数据逐渐被遗忘,新数据则不断加进来,并且参数值在每个时刻被修正,该方法需要考虑观测数据和遗忘因子的如何选取。At present, the parameter identification method for studying time-varying structures is mainly based on the idea of "time freezing", that is, it is assumed that the system is frozen at a certain moment, and in this short time range, the system is regarded as a linear time-invariant system. Then use the theory of time-invariant structure to analyze. Existing studies mainly include two types: one is based on the limited memory method, that is, the data is divided into small time segments, and the structural parameters are regarded as time-invariant in each time segment, and then the identified data in each data segment The other is the online or recursive technology, the data at each moment must be considered, the old data is gradually forgotten, and the new data is continuously added, and the parameter value is calculated at each moment. Amendment, this method needs to consider how to select the observation data and forgetting factor.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种改进的基于限定记忆主成分分析的时变结构工作模态参数识别方法,以及基于限定记忆主成分分析的时变结构工作模态参数识别装置,还提供基于限定记忆主成分分析的时变结构工作模态参数识别方法在设备故障诊断与健康状态监测上的应用。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide an improved time-varying structural work modal parameter identification method based on limited memory principal component analysis, and time-varying structural work modal parameter identification based on limited memory principal component analysis The device also provides the application of the identification method of time-varying structural operating mode parameters based on limited memory principal component analysis in equipment fault diagnosis and health status monitoring.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种基于限定记忆主成分分析的时变线性结构工作模态参数识别方法,仅利用时变线性结构多个传感器测点的时域振动响应信号,结合限定记忆的思想与主成分分析算法,利用主成分分析算法在各限定记忆时段的统计特性,得到出各时刻的瞬态工作模态参数,然后各时刻求得的工作模态参数连接起来,进行曲线拟合,从而实现时变线性结构工作模态参数识别。A time-varying linear structure operating modal parameter identification method based on limited memory principal component analysis, which only uses the time-domain vibration response signals of multiple sensor measurement points of the time-varying linear structure, combined with the idea of limited memory and principal component analysis algorithm, using The statistical characteristics of the principal component analysis algorithm in each limited memory period can obtain the transient operating mode parameters at each time, and then the operating mode parameters obtained at each time are connected to perform curve fitting, so as to realize the time-varying linear structure. Modal parameter identification.
作为优选,具体步骤如下:Preferably, the specific steps are as follows:
步骤1)设所测得到在白噪声激励下的时变线性结构的原始时域振动响应数据X(t)矩阵为:Step 1) Set the measured original time-domain vibration response data X(t) matrix of the time-varying linear structure under white noise excitation as:
其中,M表示在时变线性结构上布置的振动传感器测点个数,N表示时域采样点个数,1≤j≤M;1≤i≤N,选择的限定记忆数据矩形窗长度为L,初始化i=1;Among them, M represents the number of vibration sensor measuring points arranged on the time-varying linear structure, N represents the number of sampling points in the time domain, 1≤j≤M; 1≤i≤N, the length of the selected limited memory data rectangular window is L , initialize i=1;
步骤2)按照顺序连续截取长度为L的时域振动响应信号 Step 2) Continuously intercept the time-domain vibration response signal of length L in sequence
求其自相关矩阵
步骤3)按照线性代数和矩阵论,实对称方阵唯一分解为其中,V(i)∈RM×M满足V(i)TV(i)=IM×M,IM×M是M维的单位矩阵,Υ(i)∈RM×M是由实对称方阵的特征值按照从大到小顺序排列组成的对角方阵;Step 3) According to linear algebra and matrix theory, the real symmetric square matrix uniquely decomposes into Among them, V (i) ∈ R M×M satisfies V (i)T V (i) =I M×M , I M×M is an M-dimensional identity matrix, and Υ (i) ∈ R M×M is derived from the real Symmetrical square matrix The eigenvalues of are arranged in order from large to small to form a diagonal square matrix;
步骤4)基于主元分析,唯一分解为建立PCA初始化模型,其中,V(i)∈RM×M是主元分析中的变换阵,是截取的长度为L的时域振动响应信号的主成分,各主成分彼此之间不相关;Step 4) Based on principal component analysis, uniquely decomposes into Establish the PCA initialization model, where V (i) ∈ R M × M is the transformation matrix in the principal component analysis, is the intercepted time-domain vibration response signal of length L The principal components of , each principal component is not correlated with each other;
步骤5)对于任意按照顺序连续截取的长度为L的时域振动响应信号在模态坐标下表示为
其中,正则化模态振型矩阵
其中,各阶模态响应相互独立;Among them, the modal responses of each order Independent;
Φ(i)∈RM×M是时变线性结构从采样时刻点i到i+L-1的时段内的统计平均模态;Φ (i) ∈ R M×M is the statistical average mode of the time-varying linear structure from sampling time point i to i+L-1;
是时变线性结构从采样时刻点i到i+L-1的时段内的模态坐标响应,利用单自由度模态识别技术,识别从采样时刻点i到i+L-1的时段内的最中间时刻的瞬时模态固有频率
步骤6)因为相互独立必定不相关,所以基于主元分析,正则化模态振型矩阵Φ(i)∈RM×M对应主元分析中的线性混叠矩阵V(i)∈RM×M,各阶模态响应矩阵为主成分分析中的主成分 Step 6) Because they are independent of each other and must not be correlated, based on the principal component analysis, the regularized mode shape matrix Φ (i) ∈ R M×M corresponds to the linear aliasing matrix V (i) ∈ R M× in the principal component analysis M , the modal response matrix of each order Principal Components in Principal Component Analysis
步骤7)根据主元累积贡献率确定主元个数p,其中,CPVp为前p个主成分的方差累积贡献率;Step 7) Accumulate the contribution rate according to the pivot Determine the number of principal components p, where CPV p is the variance cumulative contribution rate of the first p principal components;
步骤8)采用模态置信参数MAC来定量评价振型识别的准确性,具体为:Step 8) Use the modal confidence parameter MAC to quantitatively evaluate the accuracy of mode shape identification, specifically:
其中,是被识别的i时刻的第j个模态振型,代表真实的i时刻的第j个模态振型,和分别代表与的转置,代表两个向量的内积,表示和的相似程度,如果其值越接近1,则振型识别准确性越高;in, is the identified mode shape of the jth mode at time i, represents the jth mode shape at the real time i, and Representing and the transposition of represents the inner product of two vectors, express and degree of similarity, If its value is closer to 1, the accuracy of mode shape identification is higher;
步骤9)i=i+1,返回步骤2),直到i=N+1-L。Step 9) i=i+1, return to step 2), until i=N+1-L.
作为优选,各时刻的瞬态工作模态参数包括各阶模态固有频率和模态固有振型。Preferably, the transient operating mode parameters at each moment include the natural frequencies and natural mode shapes of modes of each order.
一种设备故障诊断与健康状态监测方法,基于上述的基于限定记忆主成分分析的时变线性结构工作模态参数识别方法,步骤如下:A method for equipment fault diagnosis and health status monitoring, based on the above-mentioned identification method of time-varying linear structure operating mode parameters based on limited memory principal component analysis, the steps are as follows:
步骤a)在线采集一组响应数据,进行归一化处理,建立初始主元模型;Step a) collecting a set of response data online, performing normalization processing, and establishing an initial principal component model;
步骤b)由主元累积贡献率确定主元个数,并进行模态参数识别;Step b) determining the number of pivots by the cumulative contribution rate of the pivots, and identifying the modal parameters;
步骤d)根据测得的工作模态参数与被测设备故障前的模态参数进行分析比较,确定设备是否出现故障,以及故障所在位置;Step d) Analyzing and comparing the measured working modal parameters with the modal parameters of the device under test before failure to determine whether the equipment is faulty and where the fault is located;
步骤d)如没有故障发生,则进行迭代,重新建立主元模型,之后进行模态参数识别分析。Step d) If no fault occurs, iterations are performed to re-establish the principal element model, and then the modal parameter identification analysis is performed.
作为优选,步骤2)中,模态参数包括频率、振型。Preferably, in step 2), the modal parameters include frequency and mode shape.
一种基于限定记忆主成分分析的时变线性结构工作模态参数识别装置,用于实现上述的基于限定记忆主成分分析的时变线性结构工作模态参数识别方法;包括信号输入模块、信号调理模块、数据采集器、A/D数据采集转换模块、DSP、控制模块、存储模块、电源及复位模块;信号输入模块、信号调理模块、A/D数据采集转换模块,DSP、控制模块、上位机进行双向通信连接;数据采集器连接在DSP与信号调理模块之间,存储模块与控制模块连接,电源及复位模块分别与DSP、控制模块连接。A time-varying linear structure operating mode parameter identification device based on limited memory principal component analysis, used to realize the above-mentioned time-varying linear structure operating mode parameter identification method based on limited memory principal component analysis; including a signal input module, a signal conditioning Module, data collector, A/D data acquisition conversion module, DSP, control module, storage module, power supply and reset module; signal input module, signal conditioning module, A/D data acquisition conversion module, DSP, control module, upper computer Two-way communication connection is carried out; the data collector is connected between the DSP and the signal conditioning module, the storage module is connected with the control module, and the power supply and reset module are respectively connected with the DSP and the control module.
作为优选,工作步骤如下:As preferably, the working steps are as follows:
首先,上位机将信息采集参数通过以太网发给控制控制模块;控制模块再将指令通过SPI发送给DSP,DSP驱动数据采集器进行数据采集;First, the host computer sends the information collection parameters to the control module through Ethernet; the control module then sends instructions to the DSP through SPI, and the DSP drives the data collector to collect data;
然后,DSP根据上位机发送的指令对采集的数据进行时频域分析,再将采集的原始数据和经DSP分析的数据通过SPI发送给控制模块,控制模块将数据格式还原并保存起来,并经以太网传输到上位机进行分析与显示。Then, the DSP analyzes the collected data in the time-frequency domain according to the instructions sent by the host computer, and then sends the collected original data and the data analyzed by the DSP to the control module through the SPI, and the control module restores and saves the data format, and passes through Ethernet transmission to the host computer for analysis and display.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明所述的基于限定记忆主成分分析的时变结构工作模态参数识别方法,能对带有时变特性的结构进行实时在线的参数识别,识别出系统的工作模态参数(模态振型,模态频率),实时有效监测系统的动态变化特性,可被用于设备故障诊断、健康监测以及系统结构分析与优化。且该方法是一种工作模态参数识别方法(仅由实测响应信号即可识别出系统的特性),并从数学理论分析及实验上给予证明,赋予了该方法以物理解释,较之于传统的需要同时测量激励与响应信号的试验模态参数识别技术具有较大的优势。该方法主要思想是,首先在线采集一组数据,建立PCA初始化模型,利用主元分析的思想找出模态振型和线性混叠矩阵之间以及各阶模态响应与主成分之间的对应关系,识别系统模态参数,通过主元分解证明了模态参数的存在性、唯一性和确定性,算法物理意义明确;然后每当采集一组新的数据时,数据矩阵及协方差矩阵更新迭代,PCA模型也随之更新迭代,进而在线实时识别系统结构的模态参数。The time-varying structure operating mode parameter identification method based on limited memory principal component analysis described in the present invention can carry out real-time online parameter identification for structures with time-varying characteristics, and identify the operating mode parameters (mode shape) of the system , modal frequency), real-time effective monitoring of the dynamic characteristics of the system, which can be used for equipment fault diagnosis, health monitoring, and system structure analysis and optimization. And this method is a method of identification of working modal parameters (the characteristics of the system can be identified only by the measured response signal), and it is proved from mathematical theoretical analysis and experiments, and the method is given a physical explanation, compared with the traditional The experimental modal parameter identification technology that needs to measure the excitation and response signals at the same time has great advantages. The main idea of this method is to first collect a set of data online, establish a PCA initialization model, and use the idea of principal component analysis to find out the correspondence between the mode shape and the linear aliasing matrix, as well as between the modal responses of each order and the principal components. relationship, identify the modal parameters of the system, prove the existence, uniqueness and certainty of the modal parameters through principal component decomposition, and the physical meaning of the algorithm is clear; then whenever a new set of data is collected, the data matrix and covariance matrix are updated The PCA model is updated and iterated accordingly, and then the modal parameters of the system structure are identified online in real time.
本发明所述的基于限定记忆主成分分析的时变结构工作模态参数识别装置,将多个振动传感器装置布置于测量结构的关键点上,通过对测量得到的振动响应信号进行工作模态参数识别,监测系统结构的动态特性变化,并将其应用于大型工程结构的故障诊断与健康状态监测中。所述的工作模态参数监测装置以ARM和DSP为核心,组成了信号输入模块、信号调理模块、数据采集器、A/D数据采集转换模块、DSP、控制模块、存储模块、电源及复位模块等多个单元。该装置的设计充分利用ARM芯片功耗低、处理速度快、任务调度灵活的方式,以及DSP算法设计及数据处理分析的能力,将二者有效组合以实现振动信号实时在线采集、处理、传输和分析。同时采用以太网进行数据传输,实现数据的快速、高效传输,避免信号在传输中的遗失,做到远程诊断与监控、资源共享,优于传统数据采集离线、延迟等缺点。该装置的设计将信号处理技术、电路设计、计算机技术、算法设计与故障分析技术有效结合起来,实现了诊断系统的数字化、自动化和智能化,具有潜在的应用价值。In the time-varying structure operating mode parameter identification device based on limited memory principal component analysis of the present invention, a plurality of vibration sensor devices are arranged on the key points of the measurement structure, and the operating mode parameters are determined by the vibration response signal obtained from the measurement. Identify and monitor the dynamic characteristic changes of the system structure, and apply it to the fault diagnosis and health status monitoring of large-scale engineering structures. The working mode parameter monitoring device takes ARM and DSP as the core, and forms a signal input module, a signal conditioning module, a data collector, an A/D data acquisition conversion module, DSP, a control module, a storage module, a power supply and a reset module and many other units. The design of the device makes full use of the ARM chip's low power consumption, fast processing speed, and flexible task scheduling, as well as the ability of DSP algorithm design and data processing and analysis, and effectively combines the two to realize real-time online acquisition, processing, transmission and analyze. At the same time, Ethernet is used for data transmission to realize fast and efficient data transmission, avoid signal loss during transmission, achieve remote diagnosis and monitoring, and resource sharing, which is superior to the shortcomings of traditional data collection such as offline and delay. The design of the device effectively combines signal processing technology, circuit design, computer technology, algorithm design and fault analysis technology, realizes the digitization, automation and intelligence of the diagnosis system, and has potential application value.
附图说明Description of drawings
图1是工作模态参数测量装置设计系统框图;Figure 1 is a block diagram of the design system of the working mode parameter measurement device;
图2是上位机功能结构图;Fig. 2 is a functional structure diagram of the upper computer;
图3是模拟环境激励的三自由度振动系统;Figure 3 is a three-degree-of-freedom vibration system for simulating environmental excitation;
图4基于限定记忆数据窗长度L的数据选取模型;Fig. 4 is based on the data selection model of limited memory data window length L;
图5是基于限定记忆主成分分析的算法流程图;Fig. 5 is the algorithm flowchart based on limited memory principal component analysis;
图6是白噪声激励及时域位移响应信号;Fig. 6 is white noise excitation time domain displacement response signal;
图7(1)是三自由度时变结构固有频率变化曲线,图7(2)是PCA识别的三自由度时变结构的频率变换曲线;Fig. 7 (1) is the natural frequency variation curve of the three-degree-of-freedom time-varying structure, and Fig. 7 (2) is the frequency transformation curve of the three-degree-of-freedom time-varying structure identified by PCA;
图8(1)~图8(5)分别是50.025s、500s、950s、1400s、1987.225s时刻的三自由系统固有振型与PCA识别振型的比较,以及每个时刻各主成份所占贡献量图。Figures 8(1) to 8(5) are the comparison of the natural mode shapes of the three-freedom system at the time of 50.025s, 500s, 950s, 1400s, and 1987.225s, respectively, and the PCA identification mode shapes, and the contribution of each principal component at each time volume chart.
具体实施方式Detailed ways
以下结合附图及实施例对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
一种基于限定记忆主成分分析的时变线性结构工作模态参数识别方法,仅利用时变线性结构多个传感器测点的时域振动响应信号,结合限定记忆的思想与主成分分析算法,利用主成分分析算法在各限定记忆时段的统计特性,估计出各时刻的瞬态工作模态参数(包括各阶模态固有频率和模态固有振型),然后各时刻求得的工作模态参数连接起来,进行曲线拟合,从而实现时变线性结构工作模态参数识别。A time-varying linear structure operating modal parameter identification method based on limited memory principal component analysis, which only uses the time-domain vibration response signals of multiple sensor measurement points of the time-varying linear structure, combined with the idea of limited memory and principal component analysis algorithm, using Based on the statistical characteristics of the principal component analysis algorithm in each limited memory period, the transient operating modal parameters (including the natural frequency and mode shape of each order mode) are estimated at each time, and then the operating modal parameters obtained at each time Connect them together and perform curve fitting, so as to realize the identification of time-varying linear structure working mode parameters.
具体步骤如下:Specific steps are as follows:
步骤1)设所测得到在白噪声激励下的时变线性结构的原始时域振动响应数据X(t)矩阵为:Step 1) Set the measured original time-domain vibration response data X(t) matrix of the time-varying linear structure under white noise excitation as:
其中,M表示在时变线性结构上布置的振动传感器测点个数,N表示时域采样点个数,1≤j≤M;1≤i≤N,选择的限定记忆数据矩形窗长度为L,初始化i=1;Among them, M represents the number of vibration sensor measuring points arranged on the time-varying linear structure, N represents the number of sampling points in the time domain, 1≤j≤M; 1≤i≤N, the length of the selected limited memory data rectangular window is L , initialize i=1;
步骤2)按照顺序连续截取长度为L的时域振动响应信号 Step 2) Continuously intercept the time-domain vibration response signal of length L in sequence
求其自相关矩阵
步骤3)按照线性代数和矩阵论,实对称方阵可被唯一分解为其中,V(i)∈RM×M满足V(i)TV(i)=IM×M,IM×M是M维的单位矩阵,Υ(i)∈RM×M是由实对称方阵的特征值按照从大到小顺序排列组成的对角方阵;Step 3) According to linear algebra and matrix theory, the real symmetric square matrix can be uniquely decomposed into Among them, V (i) ∈ R M×M satisfies V (i)T V (i) =I M×M , I M×M is an M-dimensional identity matrix, and Υ (i) ∈ R M×M is derived from the real Symmetrical square matrix The eigenvalues of are arranged in order from large to small to form a diagonal square matrix;
步骤4)基于主元分析,可被唯一分解为建立PCA初始化模型,其中,V(i)∈RM×M是主元分析中的变换阵,是截取的长度为L的时域振动响应信号的主成分,各主成分彼此之间不相关;Step 4) Based on principal component analysis, can be uniquely decomposed into Establish the PCA initialization model, where V (i) ∈ R M × M is the transformation matrix in the principal component analysis, is the intercepted time-domain vibration response signal of length L The principal components of , each principal component is not correlated with each other;
步骤5)对于任意按照顺序连续截取的长度为L的时域振动响应信号在模态坐标下表示为
其中,正则化模态振型矩阵
其中,各阶模态响应相互独立;Among them, the modal responses of each order Independent;
Φ(i)∈RM×M是时变线性结构从采样时刻点i到i+L-1(长度为L)的时段内的统计平均模态,可以认为是在采样时刻点i到i+L-1(长度为L)的时段内的最中间时刻(即i+(L-1)/2时刻)的瞬时模态振型的一个近似估计。Φ (i) ∈ R M×M is the statistical average mode of the time-varying linear structure from sampling time point i to i+L-1 (length L), which can be considered as An approximate estimate of the instantaneous mode shape at the most intermediate moment (i+(L-1)/2 moment) within the period of L-1 (length L).
是时变线性结构从采样时刻点i到i+L-1(长度为L)的时段内的模态坐标响应,利用单自由度模态识别技术(通过傅立叶变换,最高峰值处对应模态频率),可以识别从采样时刻点i到i+L-1(长度为L)的时段内的最中间时刻(即i+(L-1)/2时刻)的瞬时模态固有频率
步骤6)因为相互独立必定不相关,所以基于主元分析,正则化模态振型矩阵Φ(i)∈RM×M对应主元分析中的线性混叠矩阵V(i)∈RM×M,各阶模态响应矩阵为主成分分析中的主成分 Step 6) Because they are independent of each other and must not be correlated, based on the principal component analysis, the regularized mode shape matrix Φ (i) ∈ R M×M corresponds to the linear aliasing matrix V (i) ∈ R M× in the principal component analysis M , the modal response matrix of each order Principal Components in Principal Component Analysis
步骤7)根据主元累积贡献率确定主元个数p,其中,CPVp为前p个主成分的方差累积贡献率;Step 7) Accumulate the contribution rate according to the pivot Determine the number of principal components p, where CPV p is the variance cumulative contribution rate of the first p principal components;
步骤8)采用模态置信参数MAC来定量评价振型识别的准确性,具体为:Step 8) Use the modal confidence parameter MAC to quantitatively evaluate the accuracy of mode shape identification, specifically:
其中,是被识别的i时刻的第j个模态振型,代表真实的i时刻的第j个模态振型,和分别代表与的转置,代表两个向量的内积,表示和的相似程度,如果其值越接近1,则振型识别准确性越高;in, is the identified mode shape of the jth mode at time i, represents the jth mode shape at the real time i, and Representing and the transposition of represents the inner product of two vectors, express and degree of similarity, If its value is closer to 1, the accuracy of mode shape identification is higher;
步骤9)i=i+1,返回步骤2),直到i=N+1-L。Step 9) i=i+1, return to step 2), until i=N+1-L.
一种设备故障诊断与健康状态监测方法,基于限定记忆主成分分析的时变线性结构工作模态参数识别方法,步骤如下:A method for equipment fault diagnosis and health status monitoring, a time-varying linear structure work mode parameter identification method based on limited memory principal component analysis, the steps are as follows:
步骤a)在线采集一组响应数据,进行归一化处理,建立初始主元模型;Step a) collecting a set of response data online, performing normalization processing, and establishing an initial principal component model;
步骤b)由主元累积贡献率确定主元个数,并进行模态参数识别,包括频率、振型;Step b) determining the number of pivots by the cumulative contribution rate of the pivots, and identifying the modal parameters, including frequency and mode shape;
步骤c)根据测得的工作模态参数与被测设备故障前的模态参数进行分析比较,确定设备是否出现故障,以及故障所在位置;Step c) analyzing and comparing the measured working modal parameters with the modal parameters before the failure of the equipment under test to determine whether the equipment fails and the location of the failure;
步骤d)如没有故障发生,则进行迭代,重新建立主元模型,之后进行模态参数识别分析。Step d) If no fault occurs, iterations are performed to re-establish the principal element model, and then the modal parameter identification analysis is performed.
一种基于限定记忆主成分分析的时变结构工作模态参数识别装置,用于实现所述的基于限定记忆主成分分析的时变线性结构工作模态参数识别方法;包括信号输入模块、信号调理模块、数据采集器、A/D数据采集转换模块、DSP、控制模块、存储模块、电源及复位模块;信号输入模块、信号调理模块、A/D数据采集转换模块,DSP、控制模块、上位机进行双向通信连接;数据采集器连接在DSP与信号调理模块之间,存储模块与控制模块连接,电源及复位模块分别与DSP、控制模块连接。A time-varying structure operating mode parameter identification device based on limited memory principal component analysis, used to realize the time-varying linear structure operating mode parameter identification method based on limited memory principal component analysis; including a signal input module, a signal conditioning Module, data collector, A/D data acquisition conversion module, DSP, control module, storage module, power supply and reset module; signal input module, signal conditioning module, A/D data acquisition conversion module, DSP, control module, upper computer Two-way communication connection is carried out; the data collector is connected between the DSP and the signal conditioning module, the storage module is connected with the control module, and the power supply and reset module are respectively connected with the DSP and the control module.
首先,上位机将信息采集参数通过以太网发给控制ARM控制模块;控制模块再将指令通过SPI发送给DSP,DSP驱动数据采集器进行数据采集;First, the upper computer sends the information collection parameters to the control ARM control module through Ethernet; the control module then sends instructions to the DSP through SPI, and the DSP drives the data collector to collect data;
然后,DSP根据上位机发送的指令对采集的数据进行时频域分析,再将采集的原始数据和经DSP分析的数据通过SPI发送给控制模块,控制模块将数据格式还原并保存起来,并经以太网传输到上位机进行分析与显示。Then, the DSP analyzes the collected data in the time-frequency domain according to the instructions sent by the host computer, and then sends the collected original data and the data analyzed by the DSP to the control module through the SPI, and the control module restores and saves the data format, and passes through Ethernet transmission to the host computer for analysis and display.
实施例Example
如图1所示,本发明所述的基于限定记忆主成分分析的时变结构工作模态参数识别装置,包括信号输入模块、信号调理模块、数据采集器、A/D数据采集转换模块、DSP、控制模块、存储模块、电源及复位模块。为实现数据的高速、实时采集与处理,系统设计采用ARM+DSP双核架构,DSP单元实现数据的采集与分析处理,ARM实现多线程工作,负责数据的存储、监控管理、网络传输等任务,充分发挥DSP的信号处理和ARM控制的能力。As shown in Figure 1, the time-varying structure operating mode parameter identification device based on limited memory principal component analysis of the present invention includes a signal input module, a signal conditioning module, a data collector, an A/D data acquisition conversion module, and a DSP , control module, storage module, power supply and reset module. In order to achieve high-speed, real-time data collection and processing, the system design adopts ARM+DSP dual-core architecture, DSP unit realizes data collection, analysis and processing, and ARM realizes multi-thread work, responsible for data storage, monitoring management, network transmission and other tasks, fully Give full play to the ability of DSP signal processing and ARM control.
数据采集由信号输入模块、信号调理模块、数据采集器、A/D数据采集转换模块、DSP等完成,本装置以一定的采样方式、数据组织形式,将采集到的信号进行滤波、放大、采样等处理,并传输到DSP进行处理。数据处理主要由DSP单元来完成,DSP对采集的数据进行时域、频域与基于改进的限定记忆主成分分析的算法分析,然后将数据通过SPI接口发送给ARM控制模块。控制模块主要完成数据的实时存储,并将存储的数据以一定的格式保存起来,再通过以太网将处理的数据和原始数据传输给上位机进行分析与显示。Data acquisition is completed by signal input module, signal conditioning module, data collector, A/D data acquisition conversion module, DSP, etc. This device filters, amplifies, and samples the collected signals with a certain sampling method and data organization form. And so on, and transmitted to DSP for processing. The data processing is mainly done by the DSP unit. The DSP analyzes the collected data in the time domain, frequency domain and algorithm based on the improved limited memory principal component analysis, and then sends the data to the ARM control module through the SPI interface. The control module mainly completes the real-time storage of data, saves the stored data in a certain format, and then transmits the processed data and original data to the host computer for analysis and display through Ethernet.
如图2所示,上位机软件管理主要完成以太网通信设置,采样数据的传输、采样格式、数据封装设置,以及数据的各种波形显示和数据的存储管理。As shown in Figure 2, the host computer software management mainly completes the Ethernet communication settings, the transmission of sampling data, sampling format, data packaging settings, and various waveform displays of data and data storage management.
如图3所示,是一个模拟环境激励的三自由度弹簧振子系统,系统是带有弱阻尼的时变系统,其中物块1的质量m1是时变的,用以模拟时变质量系统;外部激励采用均值为0,方差为1的高斯白噪声(在许多实际问题中,外部难以测量的环境常用白噪声进行模拟,用以解决问题)。As shown in Figure 3, it is a three-degree-of-freedom spring oscillator system that simulates environmental excitation. The system is a time-varying system with weak damping, in which the mass m 1 of the object 1 is time-varying to simulate a time-varying mass system ; Gaussian white noise with a mean value of 0 and a variance of 1 is used for external excitation (in many practical problems, external environments that are difficult to measure are often simulated with white noise to solve problems).
如图4所示,基于限定记忆数据窗长度L的滑动数据模型;如图5所示,是基于改进的限定记忆主成分分析的时变系统工作模态参数识别算法流程:As shown in Figure 4, the sliding data model based on the limited memory data window length L; as shown in Figure 5, it is based on the improved limited memory principal component analysis algorithm flow of the time-varying system working mode parameter identification:
步骤1:利用M个位移传感器实测的小阻尼机械结构的振动响应时域位移信号X(t)=[x1(t) x2(t) … xM(t)]T,并设定主成份阈值为ε;Step 1: Use the vibration response time-domain displacement signal X(t)=[x 1 (t) x 2 (t) … x M (t)] T of the small damping mechanical structure measured by M displacement sensors, and set the main The composition threshold is ε;
步骤2:基于选取的限定记忆长度L的数据数据为初始化PCA模型;Step 2: The data data based on the selected limited memory length L is Initialize the PCA model;
步骤3:计算自相关矩阵的特征值并按降序排列,使
步骤4:设定计数器k=1,第k个主成分方差累计贡献率CPV=0;Step 4: Set the counter k=1, the cumulative contribution rate of variance of the kth principal component CPV=0;
步骤5:计算特征值所对应的特征向量然后通过特征值计算主成分 Step 5: Calculate Eigenvalues The corresponding eigenvector Then pass the eigenvalues Calculate principal components
步骤6:由公式计算,并更新方差累计贡献率CPV=CPV+CPV(k);Step 6: By the formula Calculate and update the variance cumulative contribution rate CPV=CPV+CPV(k);
步骤7:当CPV(k)>ε,第k主成分满足条件,当增加新的数据时,i=i+1,更新PCA模型和数据矩阵返回步骤2计算;不增加新数据时,退出循环;当CPV(k)<ε,k=k+1,返回步骤5重新进行主成份运算。Step 7: When CPV(k)>ε, the kth principal component satisfies the condition, when adding new data, i=i+1, update the PCA model and data matrix Return to step 2 for calculation; if no new data is added, exit the loop; when CPV(k)<ε, k=k+1, return to step 5 and perform principal component calculation again.
本实施例中,所述的基于限定记忆主成分分析的时变结构工作模态参数识别装置采用三自由度弹簧振子模拟时变结构,其中,
如图6所示,为基于三自由度时变弹簧振子(图3)测量的位移响应信号以及给时变系统施加的白噪声激励。As shown in Figure 6, it is the displacement response signal measured based on the three-degree-of-freedom time-varying spring oscillator (Figure 3) and the white noise excitation applied to the time-varying system.
如图7(1)所示,为通过理论计算的三阶时变的固有频率;如图7(2)所示,为通过限定记忆主成分分析(LMPCA)算法识别的时变频率变化曲线;通过图7(1)、图7(2)比较,发现能很好的识别频率变化特性,且通过LMPCA算法识别的第二阶、第三阶频率识别过程中发生交换,这是PCA算法识别的一个特性(当两主成份贡献率相近时发生)。As shown in Figure 7 (1), it is the natural frequency of the third-order time-varying by theoretical calculation; as shown in Figure 7 (2), it is the time-varying frequency curve identified by the limited memory principal component analysis (LMPCA) algorithm; Through the comparison of Figure 7(1) and Figure 7(2), it is found that the frequency change characteristics can be well identified, and the second-order and third-order frequency identification processes identified by the LMPCA algorithm are exchanged, which is identified by the PCA algorithm A characteristic (occurs when the two principal components contribute similarly).
由于时变结构中模态振型时刻变化,难以列举出所有振型,基于此,在2000s仿真时间内,随机选取50.025s、500s、950s、1400s、1987.225s(避免随机振动的影响,选取50s时刻之后的数据进行计算),如图8(1)~图8(5)所示,分别为50.025s、500s、950s、1400s、1987.225s各时刻的各阶振型通过理论计算与LMPCA算法识别的比较以及各主成份累积贡献率;从各图中可以看出,LMPCA算法能很好的识别各振型,且在各时刻第一主成份占主要成分;Because the mode shapes in the time-varying structure change from time to time, it is difficult to list all the mode shapes. Based on this, in the 2000s simulation time, randomly select 50.025s, 500s, 950s, 1400s, 1987.225s (to avoid the influence of random vibration, choose 50s data after time), as shown in Fig. 8(1) to Fig. 8(5), the mode shapes of each order at each time of 50.025s, 500s, 950s, 1400s and 1987.225s are identified through theoretical calculation and LMPCA algorithm The comparison of each principal component and the cumulative contribution rate of each principal component; it can be seen from each figure that the LMPCA algorithm can identify each mode shape very well, and the first principal component is the main component at each moment;
50.025s、500s、950s、1400s、1987.225s各时刻模态置信度(MAC)比较如表1~表5所示。The comparison of modal confidence (MAC) at each time of 50.025s, 500s, 950s, 1400s, and 1987.225s is shown in Table 1 to Table 5.
表1:50.025s时刻的固有振型与PCA识别振型的MCA比较Table 1: MCA comparison between the natural mode shape at 50.025s and the PCA identification mode shape
表2:500s时刻的固有振型与PCA识别振型的MCA比较Table 2: MCA comparison between the natural mode shape at 500s and the PCA identification mode shape
表3:950s时刻的固有振型与PCA识别振型的MCA比较Table 3: MCA comparison between the natural mode shape at 950s and the mode shape identified by PCA
表4:1400s时刻的固有振型与PCA识别振型的MCA比较Table 4: MCA comparison between the natural mode shape at 1400s and the PCA identification mode shape
表5:1987.225s时刻的固有振型与PCA识别振型的MCA比较Table 5: MCA comparison between the natural mode shape at 1987.225s and the PCA identification mode shape
可以发现,各时刻识别效果比较好,振型非常接近;其中表1,4,5中的第二、三识别振型由于第二、三主成份贡献率非常接近而发生交换识别。It can be found that the recognition effect at each moment is relatively good, and the mode shapes are very close; among them, the second and third recognition mode shapes in Tables 1, 4 and 5 are exchanged and recognized because the contribution rates of the second and third principal components are very close.
50.025s与1987.225s时刻的三阶固有频率比较结果,由此发现频率发生了变化,如表6所示。The comparison results of the third-order natural frequency at 50.025s and 1987.225s show that the frequency has changed, as shown in Table 6.
表6:50.025s与1987.225s时刻的固有频率比较Table 6: Comparison of natural frequencies at 50.025s and 1987.225s
根据表6,可得知本发明所述的装置为时变系统结构。According to Table 6, it can be known that the device described in the present invention has a time-varying system structure.
上述实施例仅是用来说明本发明,而并非用作对本发明的限定。只要是依据本发明的技术实质,对上述实施例进行变化、变型等都将落在本发明的权利要求的范围内。The above-mentioned embodiments are only used to illustrate the present invention, but not to limit the present invention. As long as it is based on the technical spirit of the present invention, changes and modifications to the above embodiments will fall within the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410763308.1A CN104698837B (en) | 2014-12-11 | 2014-12-11 | A kind of time-varying linear structure operational modal parameter recognition methods, device and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410763308.1A CN104698837B (en) | 2014-12-11 | 2014-12-11 | A kind of time-varying linear structure operational modal parameter recognition methods, device and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104698837A true CN104698837A (en) | 2015-06-10 |
CN104698837B CN104698837B (en) | 2017-10-20 |
Family
ID=53346081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410763308.1A Active CN104698837B (en) | 2014-12-11 | 2014-12-11 | A kind of time-varying linear structure operational modal parameter recognition methods, device and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104698837B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106156447A (en) * | 2016-08-01 | 2016-11-23 | 北京航空航天大学 | A kind of structural optimization method containing overall situation vibration modal identification and system |
CN106446503A (en) * | 2016-07-21 | 2017-02-22 | 华侨大学 | Method for identifying time-varying working mode of auto-covariance matrix recursive principal component analysis with forgetting factor |
CN106446502A (en) * | 2016-07-21 | 2017-02-22 | 华侨大学 | Online identification method for time-varying working mode of eigenvector recursion with forgetting factor |
CN106647274A (en) * | 2016-12-28 | 2017-05-10 | 中南大学 | Steady-state discrimination method for operation conditions in continuous production process |
CN107220907A (en) * | 2017-06-10 | 2017-09-29 | 福州大学 | A kind of harmonic pollution user stage division of use sum of ranks than overall merit |
CN107271127A (en) * | 2017-06-27 | 2017-10-20 | 华侨大学 | Based on the operational modal parameter recognition methods and device extracted from iteration pivot |
CN107609291A (en) * | 2017-09-22 | 2018-01-19 | 哈尔滨工业大学 | A kind of false mode elimination method based on Density Clustering |
CN107729592A (en) * | 2017-08-14 | 2018-02-23 | 西安理工大学 | Traced back the Time variable structure Modal Parameters Identification of track based on broad sense subspace |
CN107791970A (en) * | 2017-10-17 | 2018-03-13 | 长春工业大学 | Automobile active denoising method based on heuristic dynamic programming |
CN107894943A (en) * | 2017-12-05 | 2018-04-10 | 深圳市东微智能科技股份有限公司 | Data processing monitor method, device, storage medium and its computer equipment in processor |
CN108009566A (en) * | 2017-11-09 | 2018-05-08 | 华南理工大学 | A kind of modified PCA damage detecting methods when under empty window |
CN108107365A (en) * | 2017-10-20 | 2018-06-01 | 开沃新能源汽车集团有限公司 | A kind of battery pack structure health status on-line monitoring and fault prediction method and device |
CN108563158A (en) * | 2018-01-11 | 2018-09-21 | 威海捷诺曼自动化股份有限公司 | Multi-source data acquiring system peculiar to vessel and ships data processing method |
CN108594660A (en) * | 2018-05-07 | 2018-09-28 | 华侨大学 | Not the operational modal parameter recognition methods of structure changes and system when a kind of |
CN110110583A (en) * | 2019-03-14 | 2019-08-09 | 长安大学 | A kind of real-time online integration bridge mode automatic recognition system |
CN111174996A (en) * | 2019-12-31 | 2020-05-19 | 中国航空工业集团公司沈阳飞机设计研究所 | Time-varying modal parameter identification method |
CN111506870A (en) * | 2020-04-27 | 2020-08-07 | 中铁二院工程集团有限责任公司 | Time-varying structure damage identification method based on wavelet transformation |
CN112506058A (en) * | 2020-12-03 | 2021-03-16 | 华侨大学 | Working modal parameter identification method and system of linear time-varying structure |
CN112528849A (en) * | 2020-12-09 | 2021-03-19 | 西北工业大学 | Structure health monitoring method based on inner product matrix and deep learning |
CN112629786A (en) * | 2020-12-03 | 2021-04-09 | 华侨大学 | Working mode parameter identification method and equipment fault diagnosis method |
CN113076879A (en) * | 2021-04-06 | 2021-07-06 | 合肥工业大学 | Asynchronous sampling structure modal parameter identification method based on random subspace |
CN113524235A (en) * | 2021-07-15 | 2021-10-22 | 华中科技大学 | Object limb time-varying stiffness identification method and device for dynamic interaction |
CN113761722A (en) * | 2021-08-18 | 2021-12-07 | 航天科工海鹰集团有限公司 | Spacecraft multi-working-condition service life prediction method based on PCA |
CN115439027A (en) * | 2022-11-08 | 2022-12-06 | 大唐乡城唐电水电开发有限公司 | Load optimization scheduling method, device, equipment and medium for cascade hydropower station |
CN116878801A (en) * | 2023-06-01 | 2023-10-13 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Structure state identification method, device and terminal under random excitation effect |
CN117668597A (en) * | 2023-11-13 | 2024-03-08 | 华南理工大学 | A method and system for identifying structural modal parameters considering excitation non-stationarity |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1570629A (en) * | 2004-05-12 | 2005-01-26 | 浙江大学 | On-line soft measurement modeling method for 4-CBA content based on least square algorithm of restricted memory part |
CN1904581A (en) * | 2006-08-01 | 2007-01-31 | 东北电力大学 | Oil gas water multiphase flow type identification method based on main component analysis and supporting vector machine |
CN103207600A (en) * | 2013-03-07 | 2013-07-17 | 西安交通大学 | Multi-node network vibration abatement device and method |
CN104112072A (en) * | 2014-07-15 | 2014-10-22 | 华侨大学 | Operating modal parameter identification method for principal component analysis on basis of wavelet threshold denoising |
-
2014
- 2014-12-11 CN CN201410763308.1A patent/CN104698837B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1570629A (en) * | 2004-05-12 | 2005-01-26 | 浙江大学 | On-line soft measurement modeling method for 4-CBA content based on least square algorithm of restricted memory part |
CN1904581A (en) * | 2006-08-01 | 2007-01-31 | 东北电力大学 | Oil gas water multiphase flow type identification method based on main component analysis and supporting vector machine |
CN103207600A (en) * | 2013-03-07 | 2013-07-17 | 西安交通大学 | Multi-node network vibration abatement device and method |
CN104112072A (en) * | 2014-07-15 | 2014-10-22 | 华侨大学 | Operating modal parameter identification method for principal component analysis on basis of wavelet threshold denoising |
Non-Patent Citations (2)
Title |
---|
王成等: "利用主成分分析的模态参数识别", 《西安交通大学学报》 * |
高翔等: "基于限定记忆模式的递归PCA故障诊断法", 《仪器仪表学报》 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106446503A (en) * | 2016-07-21 | 2017-02-22 | 华侨大学 | Method for identifying time-varying working mode of auto-covariance matrix recursive principal component analysis with forgetting factor |
CN106446502A (en) * | 2016-07-21 | 2017-02-22 | 华侨大学 | Online identification method for time-varying working mode of eigenvector recursion with forgetting factor |
CN106446502B (en) * | 2016-07-21 | 2019-04-26 | 华侨大学 | On-line identification method of time-varying working mode with eigenvector recursion with forgetting factor |
CN106446503B (en) * | 2016-07-21 | 2019-02-22 | 华侨大学 | A Time-varying Working Mode Recognition Method for Recursive Pivoting Elements of Forgotten Autocovariance Matrix |
CN106156447A (en) * | 2016-08-01 | 2016-11-23 | 北京航空航天大学 | A kind of structural optimization method containing overall situation vibration modal identification and system |
CN106647274B (en) * | 2016-12-28 | 2018-05-18 | 中南大学 | Operating condition stable state method of discrimination in a kind of continuous flow procedure |
CN106647274A (en) * | 2016-12-28 | 2017-05-10 | 中南大学 | Steady-state discrimination method for operation conditions in continuous production process |
CN107220907A (en) * | 2017-06-10 | 2017-09-29 | 福州大学 | A kind of harmonic pollution user stage division of use sum of ranks than overall merit |
CN107271127A (en) * | 2017-06-27 | 2017-10-20 | 华侨大学 | Based on the operational modal parameter recognition methods and device extracted from iteration pivot |
CN107271127B (en) * | 2017-06-27 | 2019-07-09 | 华侨大学 | Method and device for identification of working modal parameters based on self-iteration principal element extraction |
CN107729592B (en) * | 2017-08-14 | 2021-07-09 | 西安理工大学 | A time-varying structure modal parameter identification method based on generalized subspace tracing |
CN107729592A (en) * | 2017-08-14 | 2018-02-23 | 西安理工大学 | Traced back the Time variable structure Modal Parameters Identification of track based on broad sense subspace |
CN107609291B (en) * | 2017-09-22 | 2020-09-01 | 哈尔滨工业大学 | A false mode elimination method based on density clustering |
CN107609291A (en) * | 2017-09-22 | 2018-01-19 | 哈尔滨工业大学 | A kind of false mode elimination method based on Density Clustering |
CN107791970A (en) * | 2017-10-17 | 2018-03-13 | 长春工业大学 | Automobile active denoising method based on heuristic dynamic programming |
CN108107365A (en) * | 2017-10-20 | 2018-06-01 | 开沃新能源汽车集团有限公司 | A kind of battery pack structure health status on-line monitoring and fault prediction method and device |
CN108107365B (en) * | 2017-10-20 | 2022-06-17 | 开沃新能源汽车集团有限公司 | Method and device for online monitoring of health state of battery pack structure and fault prediction |
CN108009566A (en) * | 2017-11-09 | 2018-05-08 | 华南理工大学 | A kind of modified PCA damage detecting methods when under empty window |
CN107894943B (en) * | 2017-12-05 | 2021-02-26 | 深圳市东微智能科技股份有限公司 | Data processing monitoring method and device in processor, storage medium and computer equipment thereof |
CN107894943A (en) * | 2017-12-05 | 2018-04-10 | 深圳市东微智能科技股份有限公司 | Data processing monitor method, device, storage medium and its computer equipment in processor |
CN108563158A (en) * | 2018-01-11 | 2018-09-21 | 威海捷诺曼自动化股份有限公司 | Multi-source data acquiring system peculiar to vessel and ships data processing method |
CN108594660A (en) * | 2018-05-07 | 2018-09-28 | 华侨大学 | Not the operational modal parameter recognition methods of structure changes and system when a kind of |
CN108594660B (en) * | 2018-05-07 | 2021-04-30 | 华侨大学 | Working modal parameter identification method and system of time invariant structure |
CN110110583A (en) * | 2019-03-14 | 2019-08-09 | 长安大学 | A kind of real-time online integration bridge mode automatic recognition system |
CN110110583B (en) * | 2019-03-14 | 2022-10-11 | 长安大学 | Real-time online integrated bridge modal automatic identification system |
CN111174996A (en) * | 2019-12-31 | 2020-05-19 | 中国航空工业集团公司沈阳飞机设计研究所 | Time-varying modal parameter identification method |
CN111506870A (en) * | 2020-04-27 | 2020-08-07 | 中铁二院工程集团有限责任公司 | Time-varying structure damage identification method based on wavelet transformation |
CN111506870B (en) * | 2020-04-27 | 2023-03-31 | 中铁二院工程集团有限责任公司 | Time-varying structure damage identification method based on wavelet transformation |
CN112629786A (en) * | 2020-12-03 | 2021-04-09 | 华侨大学 | Working mode parameter identification method and equipment fault diagnosis method |
CN112506058A (en) * | 2020-12-03 | 2021-03-16 | 华侨大学 | Working modal parameter identification method and system of linear time-varying structure |
CN112528849B (en) * | 2020-12-09 | 2023-03-24 | 西北工业大学 | Structure health monitoring method based on inner product matrix and deep learning |
CN112528849A (en) * | 2020-12-09 | 2021-03-19 | 西北工业大学 | Structure health monitoring method based on inner product matrix and deep learning |
CN113076879A (en) * | 2021-04-06 | 2021-07-06 | 合肥工业大学 | Asynchronous sampling structure modal parameter identification method based on random subspace |
CN113524235A (en) * | 2021-07-15 | 2021-10-22 | 华中科技大学 | Object limb time-varying stiffness identification method and device for dynamic interaction |
CN113524235B (en) * | 2021-07-15 | 2022-03-11 | 华中科技大学 | Object limb time-varying stiffness identification method and device for dynamic interaction |
CN113761722A (en) * | 2021-08-18 | 2021-12-07 | 航天科工海鹰集团有限公司 | Spacecraft multi-working-condition service life prediction method based on PCA |
CN115439027B (en) * | 2022-11-08 | 2023-03-24 | 大唐乡城唐电水电开发有限公司 | Load optimization scheduling method, device, equipment and medium for cascade hydropower station |
CN115439027A (en) * | 2022-11-08 | 2022-12-06 | 大唐乡城唐电水电开发有限公司 | Load optimization scheduling method, device, equipment and medium for cascade hydropower station |
CN116878801A (en) * | 2023-06-01 | 2023-10-13 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Structure state identification method, device and terminal under random excitation effect |
CN116878801B (en) * | 2023-06-01 | 2024-08-30 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | Structure state identification method, device and terminal under random excitation effect |
CN117668597A (en) * | 2023-11-13 | 2024-03-08 | 华南理工大学 | A method and system for identifying structural modal parameters considering excitation non-stationarity |
CN117668597B (en) * | 2023-11-13 | 2024-06-11 | 华南理工大学 | A structural modal parameter identification method and system considering excitation non-stationarity |
Also Published As
Publication number | Publication date |
---|---|
CN104698837B (en) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104698837B (en) | A kind of time-varying linear structure operational modal parameter recognition methods, device and application | |
WO2020168589A1 (en) | Method for automatically detecting free vibration response of high-speed rail bridge to identify mode | |
CN104112072B (en) | Operational modal parameter recognition methods based on the principal component analysis of wavelet threshold denoising | |
CN104792522B (en) | Intelligent gear defect analysis method based on fractional wavelet transform and BP neutral network | |
CN104330471B (en) | Lamb wave time-varying probability model monitoring method for aviation structure damage | |
CN101916241B (en) | Method for identifying time-varying structure modal frequency based on time frequency distribution map | |
CN114912547B (en) | Underdetermined working mode parameter identification method and system of linear time-varying structure | |
CN101901209B (en) | Structural response analysis method based on improved EMD (Empirical Mode Decomposition) and ARMA (Autoregressive Moving-Average) model | |
CN101706355A (en) | NExT/ARMA-based structural response analysis method | |
CN102305891A (en) | On-line monitoring method of low-frequency oscillation of power system | |
CN112417722B (en) | Sliding window NPE-based linear time-varying structure working mode identification method | |
CN107271127B (en) | Method and device for identification of working modal parameters based on self-iteration principal element extraction | |
CN106202977B (en) | A kind of low frequency oscillation mode analysis method based on blind source separation algorithm | |
CN102982196B (en) | Time frequency domain time varying structure modal parameter identification method based on time varying common demominator model | |
CN104048677A (en) | Gyroscope fault diagnosis method based on K-S (Kolmogorov-Smirnov) distribution check and HHT (Hilbert-Huang Transform) | |
CN108181059B (en) | Acoustic Signal Recognition Method of Multiphase Flow Pipeline Leakage Based on Wavelet Signal | |
CN101587007A (en) | Output-only wavelet analytical method for recognizing flexible bridge structure kinetic parameter | |
CN103884421A (en) | Duffing oscillator weak-signal detection method based on united denoising and pseudo Hamiltonian | |
CN104865075A (en) | Marine diesel engine vibration signal analysis system and method thereof | |
CN115524086A (en) | Statistical moment-curvature beam type bridge damage identification method based on axle coupling vibration | |
CN104217112A (en) | Multi-type signal-based power system low-frequency oscillation analysis method | |
CN115630273A (en) | Method and system for real-time identification of working modal parameters of incremental time-varying structures | |
Zhu et al. | An integrated approach for structural damage identification using wavelet neuro-fuzzy model | |
CN106548031A (en) | A kind of Identification of Modal Parameter | |
CN106446502B (en) | On-line identification method of time-varying working mode with eigenvector recursion with forgetting factor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |