CN104647760A - 一种短纤维增强热固性树脂复合产品的3d打印制造方法 - Google Patents
一种短纤维增强热固性树脂复合产品的3d打印制造方法 Download PDFInfo
- Publication number
- CN104647760A CN104647760A CN201510075179.1A CN201510075179A CN104647760A CN 104647760 A CN104647760 A CN 104647760A CN 201510075179 A CN201510075179 A CN 201510075179A CN 104647760 A CN104647760 A CN 104647760A
- Authority
- CN
- China
- Prior art keywords
- thermosetting resin
- shape base
- fiber reinforced
- short fiber
- manufacture method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/02—Moulding by agglomerating
- B29C67/04—Sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
- B29B11/16—Making preforms characterised by structure or composition comprising fillers or reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/071—Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/02—Combined thermoforming and manufacture of the preform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/12—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/302—Water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3271—Hydroxyamines
- C08G18/3278—Hydroxyamines containing at least three hydroxy groups
- C08G18/3281—Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6681—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
- C08G18/6688—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C2059/027—Grinding; Polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/10—Thermosetting resins
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Geometry (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本发明公开了一种短纤维增强热固性树脂复合产品的3D打印制造方法,包括以下步骤:1)制备适用于选择性激光烧结3D打印技术的复合粉末;2)采用选择性激光烧结技术成形具有孔隙的形坯;3)将形坯放入液态热固性树脂前驱体中进行浸渗后处理:3.1)配制粘度在100mPa·s以下的液态热固性树脂前驱体;3.2)将形坯浸入液态热固性树脂前驱体中,让形坯的上端露出液面,以使形坯孔隙中的气体排出;4)从液态热固性树脂前驱体中取出形坯,清除多余树脂后进行固化处理;5)对固化处理后的形坯进行打磨处理,即得到成品。本发明可以快速制造形状结构复杂的、轻质高强度、高耐热的纤维增强热固性树脂复合产品。
Description
技术领域
本发明属于快速成形领域,更具体地,涉及一种3D打印制造方法。
背景技术
纤维增强热固性树脂复合材料作为一种重要的轻质材料,以其优良的物理、化学和机械性能,在航空航天、汽车等领域获得广泛应用。如采用高强度、轻质热固性环氧树脂/碳纤维复合产品来替代目前大量使用的金属材料是实现飞机、汽车等交通运输工具轻量化的重要途径,波音最新的787型飞机大面积采用热固性环氧树脂/碳纤维复合产品,大大降低飞机重量,从而节省大量燃料、扩大飞行范围。为了提高产品性能,航空航天、汽车等领域的功能零件结构日益复杂,造成传统成形方法的制造周期、成本日益提高,某些优化设计结构甚至无法成形。3D打印(也称为增材制造或快速成形制造)技术利用逐层制造并叠加原理,可直接从CAD模型制造三维实体零件。随着技术的发展和工业需求的推动,3D打印技术已由原型制造发展到直接产品或近产品制造,而快速成形复杂结构正是3D打印技术的最大优势。
目前3D打印制造的纤维增强树脂复合产品中所用树脂主要是热塑性树脂和紫外光固化树脂,采用的工艺方法有:1)热塑性树脂粉末(如尼龙、聚醚醚酮等)和增强纤维粉末混合,利用选择性激光烧结(选择性激光烧结)进行3D打印制造;2)将增强纤维与热塑性树脂制成复合丝材或预浸丝束,利用熔融沉积(FDM)技术进行3D打印制造;3)将增强纤维与紫外光固化树脂均匀混合,利用光固化(SLA)技术进行3D打印制造。但是,方法1)制造的产品的强度较低,方法2)、3)均难以成形具有悬臂结构的复杂产品。
热固性树脂为反应性树脂,需要在特定的固化温度和压力下与固化剂进行数小时的固化反应(化学交联),形成稳定的网状交联,交联后的产物具有刚性大、硬度高、耐热性好等优点。热固性树脂初始粘度较低,随着固化反应进行粘度逐渐增大,根据3D打印原理可知,粘度过低则形状不易保持,但若粘度过大,则材料不易从喷嘴挤出或激光加热熔融。近日,哈佛大学研制出了一种适用于3D打印的环氧树脂并通过三维挤出的方式首次实现了热固性树脂复合产品的3D打印(Compton,B.G.&Lewis,J.A.,AdvMater,2014,26,34)。但是该方法由于其自身原理的限制,难以直接成形具有悬臂结构等的复杂结构。因此,目前利用3D打印技术成形热固性树脂及其复合产品仍面临着诸多问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种短纤维增强热固性树脂复合产品的3D打印制造方法,可以快速制造形状结构复杂的、轻质高强度、高耐热的纤维增强热固性树脂复合产品。
为实现上述目的,按照本发明的一个方面,提供了一种短纤维增强热固性树脂复合产品的3D打印制造方法,包括以下步骤:
1)制备适用于选择性激光烧结3D打印技术的复合粉末,所述复合粉末按体积比包括以下原料:高分子粘结剂10%~50%,短纤维90%~50%;
2)采用选择性激光烧结技术成形具有孔隙的形坯,成形的形坯的孔隙率为10%~60%,弯曲强度在0.3MPa以上;
3)将形坯放入液态热固性树脂前驱体中进行浸渗后处理,后处理过程如下:
3.1)配制粘度在100mPa·s以下的液态热固性树脂前驱体;
3.2)将形坯浸入液态热固性树脂前驱体中以使液态热固性树脂浸渗到形坯的孔隙中,并将形坯的上端露出液面以使形坯孔隙中的气体排出;
4)从液态热固性树脂前驱体中取出形坯后进行固化处理;
5)对固化处理后的形坯进行打磨处理,即得到成品。
优选地,步骤1)中所述的复合粉末的粒径分布在10~150微米。
优选地,步骤1)中所述的短纤维的直径为6~10微米,长度为10~150微米。
优选地,步骤2)中选择性激光烧结技术成形的工艺参数如下:激光功率5~15W,扫描速率1500~3000mm/s,扫描间距0.08~0.15mm,铺粉层厚0.1~0.2mm,预热温度50~200℃。
优选地,步骤3.2)中将形坯和液态热固性树脂前驱体放入真空烘箱中,抽真空,以加速液态热固性树脂浸渗到形坯的孔隙中。
优选地,步骤4)中固化处理的温度为50~200℃,固化时间为3~48小时。
优选地,步骤1)中所述的高分子粘接剂为尼龙12、尼龙6、尼龙11、聚丙烯、环氧树脂和/或酚醛树脂。
优选地,步骤1)中所述的短纤维为碳纤维、玻璃纤维、硼纤维、碳化硅晶须和/或芳纶纤维。
优选地,步骤3.1)中所述液态热固性树脂前驱体中采用的热固性树脂为环氧树脂、酚醛树脂、聚氨酯、脲醛树脂或不饱和聚酯树脂。
优选地,步骤4)中将形坯从液态热固性树脂前驱体中取出后先清理树脂,然后再进行固化处理。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)本发明采用选择性激光烧结技术是3D打印技术的一种,该工艺能够直接根据CAD模型,通过逐层有选择地烧结所需要区域的粉末并叠加来成形零件,可以直接制造形状结构复杂的零件,譬如具有悬臂结构等的复杂结构。相对于传统的热固性树脂复合产品的加工成型方法,如手糊成型、模压成型、树脂传递模塑成型、喷射成型和连续缠绕成型等而言,该工艺具有设计制造周期短,无需模具,可整体制造复杂结构零件等优点。
2)相对于目前通过3D打印方法制造的热塑性树脂复合材料而言,由本发明制造的热固性树脂复合材料的力学性能更优,耐热性能更好;
3)本发明的方法应用范围广泛,可以适用于不同的增强纤维以及不同的热固性树脂体系。
附图说明
图1是本发明的工作流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种短纤维增强热固性树脂复合产品的3D打印制造方法,包括以下步骤:
1)制备适用于选择性激光烧结3D打印技术的复合粉末,所述复合粉末按体积比包括以下原料:高分子粘结剂10%~50%,短纤维90%~50%;其中,所述高分子粘接剂/短纤维复合粉末的粒径分布在10~150微米之间,优选范围为10~100微米,一般地,纤维长度越长,增强效果越好,但是当纤维长度超过150微米以后,将影响铺粉的质量,最终影响零件的精度;纤维过短将导致表面积增大,容易粘辊;高分子粘接剂的体积含量进一步优选为10~30%,因为在保证形坯基本强度的前提下,高分子粘接剂的含量越少,形坯的孔隙率越大,后期渗入的树脂越多,最终强度越高。
另外,所采用的高分子粘接剂为尼龙12、尼龙6、尼龙11、聚丙烯、环氧树脂和/或酚醛树脂等具有一定耐热性能的高分子材料中的一种或几种的组合。
此外,所采用的短纤维可以是碳纤维、玻璃纤维、硼纤维、碳化硅晶须和/或芳纶纤维等高强纤维,其中纤维直径为6~10微米,长度分布范围为10~150微米,优选为50~100微米。一般地,纤维长度越长,增强效果越好,但是当纤维长度超过150微米以后,将影响铺粉的质量。
2)采用选择性激光烧结技术成形具有孔隙的形坯,选用优化的选择性激光烧结技术的工艺参数成形零件的形坯,该形坯为既能满足后续处理强度要求,又存在大量连通孔隙的多孔结构;
其中,为了满足后续处理的强度要求,形坯的弯曲强度在0.3MPa以上,如果强度太低,一些薄壁部分将容易被破坏;同时,形坯中需要存在连通的孔隙,以使树脂能够浸渗入形坯中,且孔隙率越高,渗入的树脂越多,最终的性能也会越好,一般要求孔隙率为10~60%。孔隙率太低,渗入树脂少,最终零件强度低;孔隙率太高,初始形坯强度低,无法满足后处理要求。
另外,选择性激光烧结技术成形的工艺参数如下:激光功率5~15W,扫描速率1500~3000mm/s,扫描间距0.08~0.15mm,铺粉层厚0.1~0.2mm,预热温度50~200℃,具体的工艺参数根据实际加工时所选用的高分子粘接剂和短纤维的种类而定。
3)将形坯放入液态热固性树脂前驱体中进行浸渗后处理,后处理过程如下:
3.1)通过提高温度或者添加稀释剂的方法调节粘度,配制粘度在100mPa·s以下的液态热固性树脂前驱体,因为如果粘度太大,液体流动的阻力增大,树脂渗入受阻;液态热固性树脂前驱体在树脂箱内配制;其中,液态热固性树脂前驱体中所采用的热固性树脂可以为环氧树脂、酚醛树脂、聚氨酯、脲醛树脂或不饱和聚酯树脂等可配制成低粘度液态前驱体的热固性树脂,浸渗粘度进一步优选控制为50mPa·s以下,此时液态树脂的流动性较好,能够顺利地渗入初始形坯的孔隙当中。
3.2)将形坯浸入液态热固性树脂前驱体中以使液态热固性树脂浸渗到形坯的孔隙中,并将形坯的上端露出液面以使形坯孔隙中的气体排出;浸渗过程可以在空气中进行;作为优选,可以选择在真空环境下进行:将其内有形坯和液态热固性树脂前驱体的树脂箱一起放入到真空烘箱中,抽真空,以加速液态热固性树脂浸渗到形坯的孔隙中。
4)待完全浸透后,从液态热固性树脂前驱体中取出形坯后,先进行清洁,可以用毛刷刷掉多余树脂或者用板刮掉多余树脂,然后再进行固化处理;优选地,固化处理的温度为50~200℃,固化时间为3~48小时。
5)对固化处理后的形坯进行打磨处理,即得到成品。
综上所述,本发明的总体思路主要包括两个方面,一是利用选择性激光烧结技术成形由高分子粘接的,具有较高孔隙率的增强相骨架形坯;二是在对形坯浸渗热固性树脂,再经高温固化交联后就可以得到由短切纤维增强的热固性树脂基复合产品。
实施例1
(1)采用溶剂沉淀法制备尼龙12和短切碳纤维的复合粉末。其中尼龙12的体积百分比为20%,筛选得到粉末粒径为10~100微米的复合粉末以备选择性激光烧结成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率5W,扫描速率2000mm/s,扫描间距0.1mm,铺粉层厚0.1mm,预热温度168℃,成形得到尼龙12/碳纤维复合产品的形坯,经测试其弯曲强度为1.5MPa,开口孔隙率为58%。
(3)将酚醛环氧树脂F~51和固化剂甲基纳迪克酸酐按照100:91混合,并加入重量为环氧树脂0.1%的固化促进剂2,4,6~三(二甲氨基甲基)苯酚(简称DMP~30)加热到130℃并剧烈搅拌至混合均匀,调节浸渗体系的粘度至20mPa·s。其中F~51酚醛环氧为岳阳巴陵石化产品,甲基纳迪克酸酐和DMP~30为上海成谊高新科技发展有限公司产品。
(4)将树脂箱放入真空烘箱中,再将形坯直接浸入前驱液中,但将形坯的上端露出液面,以便在浸渗过程中形坯中的气体可以从其上端排出;抽真空,这样更有利于树脂浸渗到毛坯里面;将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化;固化条件为先150℃固化5小时,再200℃固化5小时;待零件随炉冷却后取出,经表面打磨处理即可得到碳纤维增强的酚醛环氧树脂基复合产品零件。
实施例2
(1)采用溶剂沉淀法制备尼龙12和短切玻璃纤维的复合粉末。其中尼龙12的体积百分比为25%,筛选得到粉末粒径为20~150微米的复合粉末以备选择性激光烧结成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率8W,扫描速率2500mm/s,扫描间距0.1mm,铺粉层厚0.15mm,预热温度168℃,成形得到尼龙12/玻璃纤维复合产品的形坯,经测试,其弯曲强度为2.0MPa,开口孔隙率为53%。
(3)将环氧树脂CYD~128和固化剂甲基四氢邻苯二甲酸酐按照100:85混合,并加入重量为环氧树脂0.1%的固化促进剂2,4,6~三(二甲氨基甲基)苯酚(简称DMP~30)加热到110℃并剧烈搅拌至混合均匀,调节浸渗体系的粘度至30mPa·s以下。其中环氧树脂CYD~128为岳阳巴陵石化产品,甲基四氢邻苯二甲酸酐和DMP~30为上海成谊高新科技发展有限公司产品。
(4)将树脂箱放入真空烘箱中,再将形坯直接浸入前驱液中,但将形坯的上端露出液面,以便在浸渗过程中形坯中的气体可以从其上端排出;抽真空,这样更有利于树脂浸渗到毛坯里面;将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化;固化条件为130℃固化3小时,再150℃固化5小时,然后200℃固化10小时;待零件随炉冷却后取出,经表面打磨处理即可得到玻璃纤维增强的环氧树脂基复合产品零件。
实施例3
(1)采用机械混合法制备聚丙烯与短切芳纶纤维均匀混合的复合粉末,其中聚丙烯的体积百分比为30%,筛选得到粉末粒径为10~80微米的复合粉末以备选择性激光烧结成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率11W,扫描速率2500mm/s,扫描间距0.1mm,铺粉层厚0.1mm,预热温度105℃,成形得到聚丙烯/芳纶纤维复合产品的形坯。经测试其弯曲强度为1.3MPa,开口孔隙率为43%.
(3)将不饱和聚酯树脂和固化剂过氧化甲乙酮按照100:1混合,并加入重量比0.1%的固化促进剂环烷酸钴,加热到45℃并剧烈搅拌至混合均匀,调节浸渗体系粘度为30~40mPa·s。其中不饱和聚酯树脂为金陵帝斯曼产品Synolite 4082~G~33N,过氧化甲乙酮为江阴市前进化工有限公司产品,环烷酸钴为市售。
(4)将树脂箱放入真空烘箱中,再将形坯直接浸入前驱液中,但将形坯的上端露出液面,以便在浸渗过程中形坯中的气体可以从其上端排出;抽真空,这样更有利于树脂浸渗到毛坯里面;将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化;固化条件为100℃固化24小时;待零件随炉冷却后取出,经表面打磨处理即可得到芳纶纤维增强的不饱和聚酯树脂基复合产品零件。
实施例4
(1)采用机械混合法制备尼龙11与短切硼纤维均匀混合的复合材料粉末,其中尼龙11的体积百分比为25%,筛选得到粉末粒径为10微米~100微米的复合粉末以备SLS成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率11W,扫描速率2000mm/s,扫描间距0.1mm,铺粉层厚0.15mm,预热温度190℃,成形得到尼龙11/硼纤维复合材料的初始形坯,经测试其弯曲强度为0.8MPa,开口孔隙率为48%。
(3)将酚醛树脂与酒精按照1:1的质量比配成酚醛树脂溶液,将溶液置于恒温水浴锅中加热至40~60℃调节浸渗体系的粘度至50mpa·s以下。所用酚醛树脂为西安太航阻燃有限公司的硼改性酚醛树脂产品,其型号为THC~400,酒精为市售。
(4)再将形坯直接浸入酚醛树脂溶液中,但将其上表面露出液面,以便在浸渗过程中形坯中的气体可以从其上表面排出;反复浸渗几次至多孔结构完全被填充,将树脂槽放入真空烘箱中,抽真空,这样更有利于树脂浸渗到毛坯里面。将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化。固化条件为180℃固化24小时,待零件随炉冷却后取出,经表面打磨处理即可得到硼纤维增强的酚醛树脂基复合材料零件。
实施例5
(1)采用机械混合法法制备尼龙6与碳化硅晶须均匀混合的复合粉末,其中尼龙6的体积百分比为50%,筛选得到粉末粒径为10~100微米的复合粉末以备选择性激光烧结成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率15W,扫描速率1500mm/s,扫描间距0.08mm,铺粉层厚0.2mm,预热温度200℃,成形得到尼龙6/碳化硅晶须复合产品的形坯,经测试其弯曲强度为1.6MPa,开口孔隙率为60%。
(3)异氰酸酯和多元醇是聚氨酯热固性树脂的两个主要组成部分。将聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、辛酸亚锡、三乙醇胺和水按照质量比100:100:0.4:0.6:0.1均匀混合,并加热到40℃,调节粘度至100mPa·s以下,得聚氨酯树脂前驱体溶液。
(4)将树脂箱放入真空烘箱中,再将形坯直接浸入前驱液中,但将形坯的上端露出液面,以便在浸渗过程中形坯中的气体可以从其上端排出;抽真空,这样更有利于树脂浸渗到毛坯里面;将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化;固化条件为100℃固化24小时,待零件随炉冷却后取出,经表面打磨处理即可得到碳化硅晶须增强的聚氨酯基复合产品零件。
实施例6
(1)采用机械混合法法制备环氧树脂和短切玻璃纤维的复合粉末。其中环氧树脂的百分比为10%,筛选得到粉末粒径为10~100微米的复合粉末以备选择性激光烧结成形。
(2)采用选择性激光烧结技术成形具有孔隙的形坯,选择性激光烧结的工艺参数如下:激光功率8W,扫描速率3000mm/s,扫描间距0.15mm,铺粉层厚0.1mm,预热温度50℃,成形得到环氧树脂/短切玻璃纤维复合产品的形坯,经测试其弯曲强度为0.8MPa,开口孔隙率为57%。
(3)通过碱-酸-碱的方式合成低粘度的脲醛树脂前驱体。首先配制36%的甲醛溶液500ml,并加入8g六甲基四胺,油浴升温至55℃,加入第一批尿素50g,反应60min;继续升温至90℃反应,加入第二批尿素70g,反应过程中用20%氢氧化钠调节PH值为5-6,反应40min;调节PH值至7-8再加入第三批尿素20g,反应20min,在停止反应之前调节PH值为7-8,得到低粘度的脲醛树脂前驱体。
(4)将树脂箱放入真空烘箱中,再将形坯直接浸入前驱液中,但将形坯的上端露出液面,以便在浸渗过程中形坯中的气体可以从其上端排出;抽真空,这样更有利于树脂浸渗到毛坯里面;将浸渗好的形坯取出,清理表面多余的树脂。
(5)将浸渗后的零件放入烘箱中进行固化;固化条件为50℃固化48小时;待零件随炉冷却后取出,经表面打磨处理即可得到玻璃纤维增强的脲醛树脂基复合产品零件。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:
包括以下步骤:
1)制备适用于选择性激光烧结3D打印技术的复合粉末,所述复合粉末按体积比包括以下原料:高分子粘结剂10%~50%,短纤维90%~50%;
2)采用选择性激光烧结技术成形具有孔隙的形坯,成形的形坯的孔隙率为10%~60%,弯曲强度在0.3MPa以上;
3)将形坯放入液态热固性树脂前驱体中进行浸渗后处理,后处理过程如下:
3.1)配制粘度在100mPa·s以下的液态热固性树脂前驱体;
3.2)将形坯浸入液态热固性树脂前驱体中以使液态热固性树脂浸渗到形坯的孔隙中,并将形坯的上端露出液面以使形坯孔隙中的气体排出;
4)从液态热固性树脂前驱体中取出形坯后进行固化处理;
5)对固化处理后的形坯进行打磨处理,即得到成品。
2.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤1)中所述的复合粉末的粒径分布在10~150微米。
3.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤1)中所述的短纤维的直径为6~10微米,长度为10~150微米。
4.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤2)中选择性激光烧结技术成形的工艺参数如下:激光功率5~15W,扫描速率1500~3000mm/s,扫描间距0.08~0.15mm,铺粉层厚0.1~0.2mm,预热温度50~200℃。
5.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤3.2)中将形坯和液态热固性树脂前驱体放入真空烘箱中,抽真空,以加速液态热固性树脂浸渗到形坯的孔隙中。
6.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤4)中固化处理的温度为50~200℃,固化时间为3~48小时。
7.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤1)中所述的高分子粘接剂为尼龙12、尼龙6、尼龙11、聚丙烯、环氧树脂和/或酚醛树脂。
8.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤1)中所述的短纤维为碳纤维、玻璃纤维、硼纤维、碳化硅晶须和/或芳纶纤维。
9.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤3.1)中所述液态热固性树脂前驱体中采用的热固性树脂为环氧树脂、酚醛树脂、聚氨酯、脲醛树脂或不饱和聚酯树脂。
10.根据权利要求1所述的一种短纤维增强热固性树脂复合产品的3D打印制造方法,其特征在于:步骤4)中将形坯从液态热固性树脂前驱体中取出后先清理树脂,然后再进行固化处理。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510075179.1A CN104647760B (zh) | 2015-02-12 | 2015-02-12 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
JP2017530287A JP6386185B2 (ja) | 2015-02-12 | 2015-05-20 | 短繊維強化熱硬化性樹脂複合製品の3d印刷製造方法 |
EP15881682.7A EP3257658B1 (en) | 2015-02-12 | 2015-05-20 | Method for manufacturing composite product made of short-fibre reinforced thermosetting resin by means of 3d printing |
PCT/CN2015/079374 WO2016127521A1 (zh) | 2015-02-12 | 2015-05-20 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
US15/615,795 US20170266882A1 (en) | 2015-02-12 | 2017-06-06 | Method for manufacturing composite product from chopped fiber reinforced thermosetting resin by 3d printing |
US16/740,511 US20200147900A1 (en) | 2015-02-12 | 2020-01-13 | Method for manufacturing composite product from chopped fiber reinforced thermosetting resin by 3d printing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510075179.1A CN104647760B (zh) | 2015-02-12 | 2015-02-12 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104647760A true CN104647760A (zh) | 2015-05-27 |
CN104647760B CN104647760B (zh) | 2017-03-08 |
Family
ID=53239624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510075179.1A Active CN104647760B (zh) | 2015-02-12 | 2015-02-12 | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20170266882A1 (zh) |
EP (1) | EP3257658B1 (zh) |
JP (1) | JP6386185B2 (zh) |
CN (1) | CN104647760B (zh) |
WO (1) | WO2016127521A1 (zh) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105131516A (zh) * | 2015-09-17 | 2015-12-09 | 中南大学 | 一种用于3d打印制备碳/碳复合材料的粉末材料的制备 |
CN105172142A (zh) * | 2015-09-17 | 2015-12-23 | 中南大学 | 一种3d打印制备碳/碳复合材料方法 |
CN105271783A (zh) * | 2015-10-21 | 2016-01-27 | 武汉理工大学 | 一种用于3d打印的玻璃粉及其制备方法 |
CN105330177A (zh) * | 2015-11-27 | 2016-02-17 | 中国建筑材料科学研究总院 | 激光选择性烧结制备封接玻璃预制件的方法 |
CN105524429A (zh) * | 2015-12-30 | 2016-04-27 | 成都新柯力化工科技有限公司 | 一种3d打印用聚芳酯粉末材料及其制备方法 |
CN105694376A (zh) * | 2016-03-22 | 2016-06-22 | 西安铂力特激光成形技术有限公司 | 一种碳纤维材料制品的制备方法 |
CN106313498A (zh) * | 2016-09-08 | 2017-01-11 | 厦门理工学院 | 全喷印多喷嘴喷头的制备方法 |
CN106515015A (zh) * | 2016-10-31 | 2017-03-22 | 上海航天设备制造总厂 | 一种碳纤维复合尼龙材料制造方法 |
CN106584857A (zh) * | 2016-11-28 | 2017-04-26 | 上海航天精密机械研究所 | 一种用于3d打印聚苯乙烯零件的真空浸树脂装置 |
CN106739024A (zh) * | 2016-11-17 | 2017-05-31 | 苏州大学 | 一种对3d打印成型件进行强化处理的方法 |
CN106739025A (zh) * | 2016-11-23 | 2017-05-31 | 武汉理工大学 | 3d打印质子交换膜燃料电池电堆进气歧管的后处理方法 |
CN106927846A (zh) * | 2017-04-13 | 2017-07-07 | 华中科技大学 | 一种C/C‑SiC复合材料零件的制备方法及其产品 |
CN107320155A (zh) * | 2017-06-30 | 2017-11-07 | 深圳市倍康美医疗电子商务有限公司 | 一种口内肿瘤切除及修补用辅助部件的数字化成型方法 |
CN107650375A (zh) * | 2017-09-22 | 2018-02-02 | 上海航天精密机械研究所 | 烧结模型树脂浸渗方法及真空浸渗设备 |
CN107671294A (zh) * | 2016-08-01 | 2018-02-09 | 通用电气公司 | 制作热等静压包套以及使用该包套来生产预成型件的热等静压工艺 |
CN107722564A (zh) * | 2017-10-27 | 2018-02-23 | 华中科技大学 | 一种玻璃纤维树脂复合材料的制备方法及产品 |
CN107962771A (zh) * | 2016-10-19 | 2018-04-27 | 通用汽车环球科技运作有限责任公司 | 制造复合制品的方法 |
CN108047708A (zh) * | 2017-12-28 | 2018-05-18 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料的制备方法 |
CN108070100A (zh) * | 2016-11-16 | 2018-05-25 | 上海材料研究所 | 一种纤维协同环氧树脂增强3d打印件的后处理方法 |
CN108084601A (zh) * | 2017-12-18 | 2018-05-29 | 洛阳名力科技开发有限公司 | 一种树脂基陶瓷摩擦材料的制备方法 |
CN108164997A (zh) * | 2017-12-28 | 2018-06-15 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料 |
CN108381908A (zh) * | 2018-02-08 | 2018-08-10 | 西安交通大学 | 一种连续纤维增强热固性树脂基复合材料3d打印工艺 |
CN109129934A (zh) * | 2018-10-16 | 2019-01-04 | 武汉大学 | 一种增强3d打印类岩石材料强度与改善其力学性能的方法 |
CN109203464A (zh) * | 2018-08-14 | 2019-01-15 | 西安交通大学 | 纤维增强热固性复合材料3d打印构件后固化方法及装置 |
WO2019028722A1 (zh) * | 2017-08-10 | 2019-02-14 | 东莞远铸智能科技有限公司 | 一种3d打印工件的制备方法 |
KR20190039409A (ko) * | 2016-07-29 | 2019-04-11 | 바스프 에스이 | 레이저 소결 분말을 위한 강화제를 함유하는 폴리아미드 배합물 |
CN110189874A (zh) * | 2019-05-28 | 2019-08-30 | 华中科技大学 | 一种基于3d打印技术的绝缘子的制备方法 |
CN110218417A (zh) * | 2019-06-19 | 2019-09-10 | 裕克施乐塑料制品(太仓)有限公司 | 一种多级孔氮化硼结构件/环氧树脂复合材料 |
EP3420159A4 (en) * | 2016-02-24 | 2019-10-02 | Csahto Oy | MODULAR FRAME |
CN110330765A (zh) * | 2019-06-19 | 2019-10-15 | 裕克施乐塑料制品(太仓)有限公司 | 一种利用sls成型多孔陶瓷导热网络制备导热聚合物材料的工艺 |
CN111183184A (zh) * | 2017-10-04 | 2020-05-19 | 阿科玛法国公司 | 热塑性粉末组合物和通过这种组合物的3d打印生产的增强的三维物体 |
US10780630B2 (en) | 2015-09-14 | 2020-09-22 | Tiger Coatings Gmbh & Co. Kg | Use of a thermosetting polymeric powder composition |
CN112166483A (zh) * | 2018-06-05 | 2021-01-01 | 金刚石电机株式会社 | 内燃机用点火线圈及其制造方法 |
CN112272658A (zh) * | 2018-05-28 | 2021-01-26 | 西格里碳素欧洲公司 | 制造陶瓷组件的方法 |
CN112295871A (zh) * | 2019-07-31 | 2021-02-02 | 共享智能铸造产业创新中心有限公司 | 模具表面加压渗透强化剂工艺及容器 |
CN112624777A (zh) * | 2020-12-17 | 2021-04-09 | 中国科学院上海硅酸盐研究所 | 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法 |
CN113560578A (zh) * | 2021-08-11 | 2021-10-29 | 苏州中耀科技有限公司 | 一种临时性金属模具的成型方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6825333B2 (ja) * | 2016-11-28 | 2021-02-03 | 株式会社リコー | 立体造形物の製造方法、及び立体造形物の製造装置 |
US11542379B2 (en) | 2017-09-28 | 2023-01-03 | Ford Global Technologies, Llc | Polyurethane foams containing additive manufacturing waste as filler for automotive applications and processes for manufacturing the same |
AT520756B1 (de) * | 2017-12-06 | 2019-07-15 | Montanuniv Leoben | Verfahren zum herstellen einer multimaterial-bauteilverbindung und die multimaterial-bauteilverbindung |
US20210331243A1 (en) | 2018-02-28 | 2021-10-28 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
WO2019209339A1 (en) * | 2018-04-27 | 2019-10-31 | Hewlett-Packard Development Company, L.P. | Support structures and interfaces |
WO2020003212A1 (en) | 2018-06-29 | 2020-01-02 | 3M Innovative Properties Company | Additive layer manufacturing method and articles |
EP3765269A4 (en) | 2018-10-29 | 2021-09-22 | Hewlett-Packard Development Company, L.P. | THREE-DIMENSIONAL PRINTING |
WO2020091773A1 (en) * | 2018-10-31 | 2020-05-07 | Hewlett-Packard Development Company, L.P. | Sinterable setter with interface layer |
WO2020091774A1 (en) * | 2018-10-31 | 2020-05-07 | Hewlett-Packard Development Company, L.P. | 3d powder sinterable setters |
US11648734B2 (en) | 2019-02-08 | 2023-05-16 | The Trustees Of Columbia University In The City Of New York | Inverted laser sintering systems for fabrication of additively-manufactured parts |
CN110330348A (zh) * | 2019-05-15 | 2019-10-15 | 中南大学 | 一种直写成型的SiCw/SiC复合材料及其制备方法 |
EP3980246A4 (en) * | 2019-06-04 | 2023-09-20 | A&S Business Group Pty Ltd | MATERIALS AND METHODS FOR PRODUCING CARBON COMPOSITE BODIES BY THREE-DIMENSIONAL PRINTING |
US11618835B2 (en) * | 2020-08-18 | 2023-04-04 | National Technology & Engineering Solutions Of Sandia, Llc | Method of controlled conversion of thermosetting resins and additive manufacturing thereof by selective laser sintering |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3384505A (en) * | 1963-07-12 | 1968-05-21 | Aerojet General Co | Impregnation and partial polymerization of resin coated wound glass fiber package |
JPS60208273A (ja) * | 1984-04-03 | 1985-10-19 | Janome Sewing Mach Co Ltd | プリンタのインク含浸プラテン用ナイロン焼結体 |
CN1752238A (zh) * | 2005-09-27 | 2006-03-29 | 华中科技大学 | 金属/高分子复合材料零件的快速制造方法 |
CN101238166A (zh) * | 2005-07-01 | 2008-08-06 | 金文申有限公司 | 制备多孔网状复合材料的方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3551838B2 (ja) * | 1999-05-26 | 2004-08-11 | 松下電工株式会社 | 三次元形状造形物の製造方法 |
WO2002077599A2 (en) * | 2000-11-06 | 2002-10-03 | The Johns Hopkins University | Rapid prototype wind tunnel model and method of making same |
WO2002055451A1 (en) * | 2000-11-27 | 2002-07-18 | Board Of Regents, The University Of Texas System | Method for fabricating siliconized silicon carbide parts |
GB0103752D0 (en) * | 2001-02-15 | 2001-04-04 | Vantico Ltd | Three-Dimensional printing |
US20020149137A1 (en) * | 2001-04-12 | 2002-10-17 | Bor Zeng Jang | Layer manufacturing method and apparatus using full-area curing |
US20030173713A1 (en) * | 2001-12-10 | 2003-09-18 | Wen-Chiang Huang | Maskless stereo lithography method and apparatus for freeform fabrication of 3-D objects |
EP1628823B8 (en) * | 2003-05-21 | 2012-06-27 | 3D Systems Incorporated | Thermoplastic powder material system for appearance models from 3d printing systems |
CN100446897C (zh) * | 2006-08-02 | 2008-12-31 | 南昌航空工业学院 | 一种选区激光烧结快速制造金属模具的方法 |
CN1970202A (zh) * | 2006-12-08 | 2007-05-30 | 华中科技大学 | 一种选择性激光烧结快速直接制造注塑模具的方法 |
CA2717677C (en) * | 2008-03-14 | 2016-11-01 | Valspar Sourcing, Inc. | Powder compositions and methods of manufacturing articles therefrom |
DE102010062347A1 (de) * | 2010-04-09 | 2011-12-01 | Evonik Degussa Gmbh | Polymerpulver auf der Basis von Polyamiden, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver |
US10011089B2 (en) * | 2011-12-31 | 2018-07-03 | The Boeing Company | Method of reinforcement for additive manufacturing |
US20130323473A1 (en) * | 2012-05-30 | 2013-12-05 | General Electric Company | Secondary structures for aircraft engines and processes therefor |
CN106794623B (zh) * | 2014-09-30 | 2019-08-06 | 惠普发展公司,有限责任合伙企业 | 用于三维印刷的颗粒组合物 |
US20170304894A1 (en) * | 2014-11-10 | 2017-10-26 | Velo3D, Inc. | Printing three-dimensional objects using beam array |
US9920429B2 (en) * | 2014-12-01 | 2018-03-20 | Raytheon Company | Method for manufacturing polymer-metal composite structural component |
US10048661B2 (en) * | 2014-12-17 | 2018-08-14 | General Electric Company | Visualization of additive manufacturing process data |
-
2015
- 2015-02-12 CN CN201510075179.1A patent/CN104647760B/zh active Active
- 2015-05-20 WO PCT/CN2015/079374 patent/WO2016127521A1/zh active Application Filing
- 2015-05-20 JP JP2017530287A patent/JP6386185B2/ja active Active
- 2015-05-20 EP EP15881682.7A patent/EP3257658B1/en active Active
-
2017
- 2017-06-06 US US15/615,795 patent/US20170266882A1/en not_active Abandoned
-
2020
- 2020-01-13 US US16/740,511 patent/US20200147900A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3384505A (en) * | 1963-07-12 | 1968-05-21 | Aerojet General Co | Impregnation and partial polymerization of resin coated wound glass fiber package |
JPS60208273A (ja) * | 1984-04-03 | 1985-10-19 | Janome Sewing Mach Co Ltd | プリンタのインク含浸プラテン用ナイロン焼結体 |
CN101238166A (zh) * | 2005-07-01 | 2008-08-06 | 金文申有限公司 | 制备多孔网状复合材料的方法 |
CN1752238A (zh) * | 2005-09-27 | 2006-03-29 | 华中科技大学 | 金属/高分子复合材料零件的快速制造方法 |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10780630B2 (en) | 2015-09-14 | 2020-09-22 | Tiger Coatings Gmbh & Co. Kg | Use of a thermosetting polymeric powder composition |
CN105131516A (zh) * | 2015-09-17 | 2015-12-09 | 中南大学 | 一种用于3d打印制备碳/碳复合材料的粉末材料的制备 |
CN105172142A (zh) * | 2015-09-17 | 2015-12-23 | 中南大学 | 一种3d打印制备碳/碳复合材料方法 |
CN105172142B (zh) * | 2015-09-17 | 2018-06-08 | 中南大学 | 一种3d打印制备碳/碳复合材料方法 |
CN105271783A (zh) * | 2015-10-21 | 2016-01-27 | 武汉理工大学 | 一种用于3d打印的玻璃粉及其制备方法 |
CN105330177A (zh) * | 2015-11-27 | 2016-02-17 | 中国建筑材料科学研究总院 | 激光选择性烧结制备封接玻璃预制件的方法 |
CN105524429A (zh) * | 2015-12-30 | 2016-04-27 | 成都新柯力化工科技有限公司 | 一种3d打印用聚芳酯粉末材料及其制备方法 |
EP3420159A4 (en) * | 2016-02-24 | 2019-10-02 | Csahto Oy | MODULAR FRAME |
CN105694376B (zh) * | 2016-03-22 | 2018-05-15 | 西安铂力特增材技术股份有限公司 | 一种碳纤维材料制品的制备方法 |
CN105694376A (zh) * | 2016-03-22 | 2016-06-22 | 西安铂力特激光成形技术有限公司 | 一种碳纤维材料制品的制备方法 |
KR102383706B1 (ko) * | 2016-07-29 | 2022-04-07 | 바스프 에스이 | 레이저 소결 분말을 위한 강화제를 함유하는 폴리아미드 배합물 |
KR20190039409A (ko) * | 2016-07-29 | 2019-04-11 | 바스프 에스이 | 레이저 소결 분말을 위한 강화제를 함유하는 폴리아미드 배합물 |
CN107671294A (zh) * | 2016-08-01 | 2018-02-09 | 通用电气公司 | 制作热等静压包套以及使用该包套来生产预成型件的热等静压工艺 |
CN106313498B (zh) * | 2016-09-08 | 2019-02-22 | 厦门理工学院 | 一种全喷印多喷嘴喷头的制备方法 |
CN106313498A (zh) * | 2016-09-08 | 2017-01-11 | 厦门理工学院 | 全喷印多喷嘴喷头的制备方法 |
CN107962771A (zh) * | 2016-10-19 | 2018-04-27 | 通用汽车环球科技运作有限责任公司 | 制造复合制品的方法 |
CN106515015A (zh) * | 2016-10-31 | 2017-03-22 | 上海航天设备制造总厂 | 一种碳纤维复合尼龙材料制造方法 |
CN108070100A (zh) * | 2016-11-16 | 2018-05-25 | 上海材料研究所 | 一种纤维协同环氧树脂增强3d打印件的后处理方法 |
CN106739024A (zh) * | 2016-11-17 | 2017-05-31 | 苏州大学 | 一种对3d打印成型件进行强化处理的方法 |
CN106739025B (zh) * | 2016-11-23 | 2019-01-04 | 武汉理工大学 | 3d打印质子交换膜燃料电池电堆进气歧管的后处理方法 |
CN106739025A (zh) * | 2016-11-23 | 2017-05-31 | 武汉理工大学 | 3d打印质子交换膜燃料电池电堆进气歧管的后处理方法 |
CN106584857A (zh) * | 2016-11-28 | 2017-04-26 | 上海航天精密机械研究所 | 一种用于3d打印聚苯乙烯零件的真空浸树脂装置 |
CN106927846B (zh) * | 2017-04-13 | 2018-05-04 | 华中科技大学 | 一种C/C-SiC复合材料零件的制备方法及其产品 |
RU2728429C1 (ru) * | 2017-04-13 | 2020-07-29 | Хуачжунский Университет Науки И Технологии | Способ изготовления изделий из композитного C/C-SIC материала и продуктов на их основе |
US11021402B2 (en) * | 2017-04-13 | 2021-06-01 | Huazhong University Of Science And Technology | Method of preparing carbon fiber reinforced carbon-silicon carbide composite part |
WO2018188436A1 (zh) * | 2017-04-13 | 2018-10-18 | 华中科技大学 | 一种C/C-SiC复合材料零件的制备方法及其产品 |
CN106927846A (zh) * | 2017-04-13 | 2017-07-07 | 华中科技大学 | 一种C/C‑SiC复合材料零件的制备方法及其产品 |
CN107320155A (zh) * | 2017-06-30 | 2017-11-07 | 深圳市倍康美医疗电子商务有限公司 | 一种口内肿瘤切除及修补用辅助部件的数字化成型方法 |
WO2019028722A1 (zh) * | 2017-08-10 | 2019-02-14 | 东莞远铸智能科技有限公司 | 一种3d打印工件的制备方法 |
CN107650375A (zh) * | 2017-09-22 | 2018-02-02 | 上海航天精密机械研究所 | 烧结模型树脂浸渗方法及真空浸渗设备 |
CN111183184A (zh) * | 2017-10-04 | 2020-05-19 | 阿科玛法国公司 | 热塑性粉末组合物和通过这种组合物的3d打印生产的增强的三维物体 |
US11767428B2 (en) | 2017-10-04 | 2023-09-26 | Arkema France | Thermoplastic powder composition and reinforced three-dimensional object produced by 3D printing of such a composition |
CN107722564A (zh) * | 2017-10-27 | 2018-02-23 | 华中科技大学 | 一种玻璃纤维树脂复合材料的制备方法及产品 |
CN108084601A (zh) * | 2017-12-18 | 2018-05-29 | 洛阳名力科技开发有限公司 | 一种树脂基陶瓷摩擦材料的制备方法 |
CN108164997A (zh) * | 2017-12-28 | 2018-06-15 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料 |
CN108047708A (zh) * | 2017-12-28 | 2018-05-18 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料的制备方法 |
CN108047708B (zh) * | 2017-12-28 | 2020-02-07 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料的制备方法 |
CN108164997B (zh) * | 2017-12-28 | 2020-03-06 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用长链尼龙复合材料 |
CN108381908A (zh) * | 2018-02-08 | 2018-08-10 | 西安交通大学 | 一种连续纤维增强热固性树脂基复合材料3d打印工艺 |
CN108381908B (zh) * | 2018-02-08 | 2020-04-10 | 西安交通大学 | 一种连续纤维增强热固性树脂基复合材料3d打印工艺 |
CN112272658A (zh) * | 2018-05-28 | 2021-01-26 | 西格里碳素欧洲公司 | 制造陶瓷组件的方法 |
CN112166483A (zh) * | 2018-06-05 | 2021-01-01 | 金刚石电机株式会社 | 内燃机用点火线圈及其制造方法 |
CN112166483B (zh) * | 2018-06-05 | 2024-04-19 | 金刚石捷步拉电机株式会社 | 内燃机用点火线圈及其制造方法 |
CN109203464A (zh) * | 2018-08-14 | 2019-01-15 | 西安交通大学 | 纤维增强热固性复合材料3d打印构件后固化方法及装置 |
CN109129934B (zh) * | 2018-10-16 | 2020-01-07 | 武汉大学 | 一种增强3d打印类岩石材料强度与改善其力学性能的方法 |
CN109129934A (zh) * | 2018-10-16 | 2019-01-04 | 武汉大学 | 一种增强3d打印类岩石材料强度与改善其力学性能的方法 |
CN110189874A (zh) * | 2019-05-28 | 2019-08-30 | 华中科技大学 | 一种基于3d打印技术的绝缘子的制备方法 |
CN110218417A (zh) * | 2019-06-19 | 2019-09-10 | 裕克施乐塑料制品(太仓)有限公司 | 一种多级孔氮化硼结构件/环氧树脂复合材料 |
CN110330765A (zh) * | 2019-06-19 | 2019-10-15 | 裕克施乐塑料制品(太仓)有限公司 | 一种利用sls成型多孔陶瓷导热网络制备导热聚合物材料的工艺 |
CN110218417B (zh) * | 2019-06-19 | 2022-04-15 | 裕克施乐塑料制品(太仓)有限公司 | 一种多级孔氮化硼结构件/环氧树脂复合材料 |
CN112295871A (zh) * | 2019-07-31 | 2021-02-02 | 共享智能铸造产业创新中心有限公司 | 模具表面加压渗透强化剂工艺及容器 |
CN112624777A (zh) * | 2020-12-17 | 2021-04-09 | 中国科学院上海硅酸盐研究所 | 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法 |
CN112624777B (zh) * | 2020-12-17 | 2022-05-10 | 中国科学院上海硅酸盐研究所 | 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法 |
CN113560578A (zh) * | 2021-08-11 | 2021-10-29 | 苏州中耀科技有限公司 | 一种临时性金属模具的成型方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2016127521A1 (zh) | 2016-08-18 |
JP6386185B2 (ja) | 2018-09-05 |
EP3257658B1 (en) | 2021-09-15 |
EP3257658A1 (en) | 2017-12-20 |
EP3257658A4 (en) | 2018-02-21 |
CN104647760B (zh) | 2017-03-08 |
US20170266882A1 (en) | 2017-09-21 |
US20200147900A1 (en) | 2020-05-14 |
JP2017537199A (ja) | 2017-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104647760A (zh) | 一种短纤维增强热固性树脂复合产品的3d打印制造方法 | |
CN1923506B (zh) | 一种增韧的复合材料层合板及其制备方法 | |
CN111936303B (zh) | 由复合材料制造用于燃气涡轮发动机的具有装配金属前缘的叶片的方法 | |
EP2358517B1 (en) | Manufacture of a structural composites component | |
EP1880833A1 (en) | Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction | |
CN101804714B (zh) | 具有表面功能层的复合材料构件的rtm制备方法 | |
RU2587171C2 (ru) | Способ получения композиционного материала | |
CN101913251B (zh) | 树脂基复合材料复杂构件的液体模塑熔芯成型工艺 | |
CN107215039A (zh) | 一种夹芯复合材料及其制备方法 | |
CN102575064A (zh) | 经涂覆的增强材料 | |
CN107521124A (zh) | 碳纤维双面板加筋结构件及其制造方法 | |
CN104385627A (zh) | 带有抗雷击表面功能层的先进树脂基复合材料及制备方法 | |
CN104742383A (zh) | 一种复合材料空腔构件整体化制造方法 | |
Wang et al. | Rapid curing epoxy resin and its application in carbon fibre composite fabricated using VARTM moulding | |
CN105946247A (zh) | 一种制备具有复杂内腔制件的方法和模具 | |
CN107325481A (zh) | 一种酚醛塑料检查井井盖及其制备方法 | |
CN108864995B (zh) | 一种多轴向复合材料弯管及制备方法 | |
CN206999679U (zh) | 碳纤维双面板加筋结构件 | |
CN112590252A (zh) | 一种增强热塑性自动铺放构件层间性能的方法 | |
CN109551787A (zh) | 一种复合材料型材的先进拉挤成型方法及其成型装置 | |
CN109049759A (zh) | 复合材料轮毂及其制造方法 | |
WO2015051831A1 (en) | A method of manufacturing a modular composite laminate structure, structure obtained by the method and use thereof | |
CN214465099U (zh) | 一种风机叶轮 | |
CN105946255B (zh) | 拉挤成型激光烘箱复合固化制备复合材料异形筋材 | |
CN106459431A (zh) | 可喷涂的碳纤维‑环氧材料及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |