CN104581152A - HEVC intra-frame prediction mode decision accelerating method - Google Patents
HEVC intra-frame prediction mode decision accelerating method Download PDFInfo
- Publication number
- CN104581152A CN104581152A CN201410842187.XA CN201410842187A CN104581152A CN 104581152 A CN104581152 A CN 104581152A CN 201410842187 A CN201410842187 A CN 201410842187A CN 104581152 A CN104581152 A CN 104581152A
- Authority
- CN
- China
- Prior art keywords
- modes
- rmd
- mode
- candidate
- mpm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000001133 acceleration Effects 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 description 7
- 241000985610 Forpus Species 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 101001126234 Homo sapiens Phospholipid phosphatase 3 Proteins 0.000 description 1
- 102100030450 Phospholipid phosphatase 3 Human genes 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
一种HEVC帧内预测模式选择加速方法,首先推测空间相邻PU与当前PU的纹理一致性,若具有纹理一致性这一特征,对于RMD选取的第一模式在MPM中的预测单元,跳过RDO过程,直接设置该模式为RDO最优模式。其次利用RMD选取的前两个模式反映出来的PU内的纹理特征,通过判断是否RMD选取的前两个模式都为DC或Planar模式,或都为角模式,对RMD选取的第一模式不在MPM中的预测单元进一步分成不同情况分别进行模式选择加速。本发明充分挖掘了RMD和MPM所反映的预测单元和相邻已编码预测单元的纹理一致性以及预测单元内的纹理特性,具备有效减少帧内模式选择中RDO预测模式选择过程的复杂度等优点。
An HEVC intra-frame prediction mode selection acceleration method, first guessing the texture consistency between the spatially adjacent PU and the current PU, if there is texture consistency, for the prediction unit of the first mode selected by RMD in the MPM, skip In the RDO process, directly set this mode as the RDO optimal mode. Secondly, using the texture features in the PU reflected by the first two modes selected by RMD, by judging whether the first two modes selected by RMD are both DC or Planar modes, or both are corner modes, the first mode selected by RMD is not in MPM The prediction unit in is further divided into different cases for mode selection acceleration. The invention fully exploits the texture consistency of the prediction unit reflected by RMD and MPM and the adjacent coded prediction unit, as well as the texture characteristics in the prediction unit, and has the advantages of effectively reducing the complexity of the RDO prediction mode selection process in intra-frame mode selection. .
Description
技术领域technical field
本发明涉及高性能视频编码(High Efficiency Video Coding,HEVC)领域,特别涉及在编码中帧内模式选择的技术。The present invention relates to the field of high-performance video coding (High Efficiency Video Coding, HEVC), in particular to the technology of intra-frame mode selection in coding.
背景技术Background technique
数字视频已经成为我们日常生活中不可或缺的一部分。随着网络和视频采集技术的快速发展,超高清视频服务已经成为了未来数字视频的发展趋势。为了更好地满足超高清视频服务的需求,动态图像专家组(Moving Picture Experts Group,MPEG)和视频编码联合组(JointCollaborative Team on Video Coding,JCT-VC)联合推出了新的视频压缩标准——高效率视频编码(High Efficiency Video Coding,HEVC)。作为ITU-T H.264/MPEG-4AVC的继任者,HEVC采用了许多新的编码技术,可以在相同的视频质量的情况下相对于前任节省一半的码字。由于采用了许多新的技术,编码器的复杂度大大增加,这样使得实时编码的实现变得越发困难,所以减小编码器的复杂度是HEVC的重要研究领域。Digital video has become an integral part of our daily lives. With the rapid development of network and video capture technology, ultra-high-definition video service has become the development trend of digital video in the future. In order to better meet the needs of ultra-high-definition video services, the Moving Picture Experts Group (MPEG) and the Joint Collaborative Team on Video Coding (JCT-VC) jointly launched a new video compression standard—— High Efficiency Video Coding (HEVC). As the successor of ITU-T H.264/MPEG-4AVC, HEVC adopts many new coding techniques, which can save half of the codewords compared with the predecessor with the same video quality. Due to the adoption of many new technologies, the complexity of the encoder is greatly increased, which makes the realization of real-time encoding more and more difficult, so reducing the complexity of the encoder is an important research field of HEVC.
HEVC为了提高帧内编码的压缩性能,将帧内预测方向的个数增加到35,0和1模式分别为DC和Planar模式,其余的2~35模式为角模式,这大大增加了帧内模式选择的计算复杂度。为了减少这一部分的复杂度,现有的HEVC所采取的技术为:对于一个预测单元(PredictionUnit,PU),首先进行的是简单的粗模式选择(Rough Mode Decision,RMD)。RMD采用阿达马变换(Hadamard Transform)来计算各个模式的率失真代价。RMD将35种模式按照率失真代价由小到大排列。其中,编码器会根据PU的大小来选择RDO备选模式,对于64x64,32x32,16x16大小的PU单元,RMD选出代价最小的3个模式作为RDO备选模式,对于8x8和4x4大小的PU单元,RMD选出代价最小的8个模式作为RDO备选模式,这些备选模式将被存储在备选列表中。RMD结束后,最有可能模式(Most Probable Mode,MPM)将检查当前PU上方和左侧的PU已选出的最优模式是否在备选模式列表中,如果上方或左侧PU的最优模式不在备选模式列表中,则将其加入列表中,具体做法可参考文献1(参见L.Zhao,L.Zhang,S.Ma,and D.Zhao,“Fast mode decision algorithm for intra prediction in HEVC,”inProc.in Proc.VCIP 2011,pp.1-4.)。在接下来的率失真优化(Rate-distortion optimization,RDO)阶段将采用编码所使用的离散余弦/正弦变换(Discrete Cosine/Sine Transform,DCT/DST)对所有备选模式计算率失真代价。RDO阶段率失真代价最小的模式即是最终的最优模式。确定最优模式之后,残差四叉树变换(Residual Quadtree transform,RQT)会根据选出的最优模式对PU进行变换编码。除了HEVC已有的快速帧内模式选择技术外,也有一些其他的方法。例如文献2(参见M.Zhang,C.Zhao,and J.Xu,“An adaptive fast intra mode decision inHEVC,”in Proc.ICIP 2012,pp.221-224.)通过RMD选出的备选模式分布中来推测当前预测块的纹理特征。该技术对16x16,32x32大小的PU和8x8,4x4大小的PU需要两种不同的处理方案,而且对于8x8和4x4大小的PU需要对RMD选出的前四个备选模式进行分析,并通过判断是否存在DC或Planar模式,以及第一备选角模式和第二备选角模式是否相邻来推断该PU的纹理特征,而且该技术没有利用RMD选出的备选模式和MPM之间的关系所反映的相邻PU的纹理一致性。In order to improve the compression performance of intra-frame coding, HEVC increases the number of intra-frame prediction directions to 35, 0 and 1 modes are DC and Planar modes, and the remaining 2-35 modes are corner modes, which greatly increases the number of intra-frame prediction directions. Computational complexity of choice. In order to reduce the complexity of this part, the existing technology adopted by HEVC is: for a prediction unit (PredictionUnit, PU), the first thing is a simple rough mode selection (Rough Mode Decision, RMD). RMD uses Hadamard Transform to calculate the rate-distortion cost of each mode. RMD arranges the 35 modes according to the rate-distortion cost from small to large. Among them, the encoder will select the RDO alternative mode according to the size of the PU. For PU units of 64x64, 32x32, and 16x16 sizes, RMD selects the three modes with the lowest cost as RDO alternative modes. For PU units of 8x8 and 4x4 sizes , RMD selects 8 modes with the lowest cost as RDO candidate modes, and these candidate modes will be stored in the candidate list. After the RMD ends, the Most Probable Mode (Most Probable Mode, MPM) will check whether the optimal mode selected by the PU above and to the left of the current PU is in the list of alternative modes, if the optimal mode of the PU above or to the left is If it is not in the list of alternative modes, add it to the list. For details, please refer to Document 1 (see L.Zhao, L.Zhang, S.Ma, and D.Zhao, "Fast mode decision algorithm for intra prediction in HEVC, "in Proc. in Proc. VCIP 2011, pp.1-4.). In the next rate-distortion optimization (Rate-distortion optimization, RDO) stage, the discrete cosine/sine transform (DCT/DST) used for encoding will be used to calculate the rate-distortion cost for all alternative modes. The mode with the smallest rate-distortion cost in the RDO stage is the final optimal mode. After determining the optimal mode, the Residual Quadtree transform (RQT) will transform and encode the PU according to the selected optimal mode. In addition to HEVC's existing fast intra-frame mode selection technology, there are also some other methods. For example, literature 2 (see M. Zhang, C. Zhao, and J. Xu, "An adaptive fast intra mode decision in HEVC," in Proc. ICIP 2012, pp. 221-224.) distribution of alternative modes selected by RMD to infer the texture features of the current prediction block. This technology requires two different processing schemes for PUs of 16x16 and 32x32 sizes and PUs of 8x8 and 4x4 sizes, and for PUs of 8x8 and 4x4 sizes, it is necessary to analyze the first four alternative modes selected by RMD and pass judgment Whether there is a DC or Planar mode, and whether the first candidate corner mode and the second candidate corner mode are adjacent to infer the texture characteristics of the PU, and this technique does not use the relationship between the candidate mode selected by RMD and the MPM Reflected texture consistency of adjacent PUs.
发明内容Contents of the invention
本发明的目的在于提供一种HEVC帧内预测模式选择加速方法。The purpose of the present invention is to provide an HEVC intra prediction mode selection acceleration method.
为达到上述目的,本发明的解决方案是:首先重点考虑空间相邻PU与当前PU的纹理一致性。利用纹理一致性这一特征,对于RMD选取的第一模式在MPM中的预测单元,跳过RDO过程,直接设置该模式为RDO最优模式。其次,再利用RMD选取的前两个模式反映出来的PU内的纹理特征,通过判断是否RMD选取的前两个模式都为DC或Planar模式,或都为角模式,对RMD选取的第一模式不在MPM中的预测单元进一步分成平坦块、具有一定方向的纹理块,无明确方向的复杂纹理块三种情况分别进行模式选择加速。To achieve the above object, the solution of the present invention is: firstly, focus on the texture consistency between the spatially adjacent PU and the current PU. Using the feature of texture consistency, for the prediction unit of the first mode selected by RMD in the MPM, the RDO process is skipped, and the mode is directly set as the RDO optimal mode. Secondly, using the texture features in the PU reflected by the first two modes selected by RMD, by judging whether the first two modes selected by RMD are both DC or Planar modes, or both are corner modes, the first mode selected by RMD The prediction units that are not in the MPM are further divided into flat blocks, texture blocks with a certain direction, and complex texture blocks without a clear direction for mode selection acceleration.
本发明充分挖掘了RMD和MPM所反映的预测单元和相邻已编码预测单元的纹理一致性以及预测单元内的纹理特性,可以有效减少帧内模式选择中RDO预测模式选择过程的复杂度。The invention fully exploits the texture consistency of the prediction unit reflected by the RMD and the MPM and the adjacent coded prediction unit and the texture characteristics in the prediction unit, and can effectively reduce the complexity of the RDO prediction mode selection process in the intra-frame mode selection.
本发明利用MPM所反映的当前预测单元相邻PU的纹理特征,以及RMD选出的第一个备选模式所反映的当前PU的纹理特征,将MPM和RMD结合起来推测当前PU与相邻PU是否纹理一致。一致性的准则定义为:若第一个备选模式在MPM中,那么就认为当前PU和相邻PU是纹理一致的。对于和相邻PU具有纹理一致性的预测单元,RMD第一个备选模式将作为当前预测单元RDO的最优模式。The present invention uses the texture features of the adjacent PU of the current prediction unit reflected by the MPM, and the texture feature of the current PU reflected by the first candidate mode selected by the RMD, and combines the MPM and RMD to estimate the current PU and the adjacent PU. Whether the texture is consistent. The criterion of consistency is defined as: if the first candidate mode is in the MPM, then the current PU is considered to be consistent with the texture of the adjacent PU. For a prediction unit that has texture consistency with an adjacent PU, the first candidate mode of RMD will be the optimal mode of RDO for the current prediction unit.
对于依照上述一致性准则被判断为和相邻PU纹理不一致的预测单元,本发明将利用RMD选出的前两个备选模式推测当前PU纹理特征,并依照如下准则将预测单元分为三类:For the prediction unit that is judged to be inconsistent with the adjacent PU texture according to the above consistency criterion, the present invention will use the first two candidate modes selected by RMD to infer the current PU texture feature, and divide the prediction unit into three categories according to the following criteria :
(1)若当前预测单元RMD所得的第一和第二备选模式都为DC或Planar模式,则该PU为平坦块;(1) If the first and second candidate modes obtained by the current prediction unit RMD are both DC or Planar modes, then the PU is a flat block;
(2)若当前预测单元RMD所得的第一和第二备选模式都为角模式,则该PU为具有一定方向的纹理块;(2) If the first and second candidate modes obtained by the current prediction unit RMD are both corner modes, then the PU is a texture block with a certain direction;
(3)若当前预测单元RMD所得的第一和第二备选模式不都为DC或Planar模式,也不都为角模式,则该PU为没有明确方向的复杂纹理块。(3) If the first and second candidate modes obtained by the current prediction unit RMD are not both DC or Planar modes, nor are both corner modes, then the PU is a complex texture block without a clear direction.
对于第一类预测单元,其RDO的备选模式只包括DC和Planar模式,其他模式可以从备选列表中去除。对于第二类预测单元,其RDO的备选模式只包括RMD所得的前三个备选模式和MPM,其它模式可以从备选列表中去除。对于第三类预测单元,其RDO的备选模式只包括RMD所得的前二个备选模式和MPM,其他模式可以从备选列表中去除。为此,本发明技术方案的实施步骤为:For the first type of prediction unit, its RDO candidate modes only include DC and Planar modes, and other modes can be removed from the candidate list. For the second type of prediction unit, its RDO candidate modes only include the first three candidate modes and MPM obtained by RMD, and other modes can be removed from the candidate list. For the third type of prediction unit, its RDO candidate modes only include the first two candidate modes and MPM obtained by RMD, and other modes can be removed from the candidate list. For this reason, the implementation steps of the technical solution of the present invention are:
步骤1:进行当前预测单元的RMD和MPM。Step 1: Perform RMD and MPM of the current prediction unit.
步骤2:检查RMD选出的第一备选模式是否在MPM中。若RMD选出的第一备选模式在MPM中,则该预测和相邻的已编码单元具有相似的纹理特征,直接将该模式设为RDO最优模式,跳过RDO过程。Step 2: Check whether the first candidate mode selected by the RMD is in the MPM. If the first candidate mode selected by RMD is in the MPM, then the predicted and adjacent coded units have similar texture features, and this mode is directly set as the RDO optimal mode, skipping the RDO process.
步骤3:对于RMD选出的第一备选模式不在MPM中的预测单元,检查RMD选出的前两个备选模式是否都是DC或Planar模式。若RMD选出的前两个备选模式都是DC或Planar模式,则该预测是平坦块,其RDO只检查DC和Planar两个备选模式,其他角模式可以从备选模式列表中去除。Step 3: For the prediction unit whose first candidate mode selected by the RMD is not in the MPM, check whether the first two candidate modes selected by the RMD are both DC or Planar modes. If the first two candidate modes selected by RMD are both DC or Planar modes, the prediction is a flat block, and its RDO only checks the two candidate modes of DC and Planar, and other corner modes can be removed from the list of candidate modes.
步骤3:对于RMD选出的第一备选模式不在MPM中,且RMD选出的前两个备选模式不都是DC或Planar模式的预测单元,检查RMD选出的前两个备选模式是否都是角度模式。若RMD选出的前两个备选模式都是角度模式,则该预测单元是具有一定方向的纹理块,RDO将只检查RMD选出的前三个备选模式和MPM,其他模式可以从备选模式列表中去除。Step 3: For the first candidate mode selected by RMD is not in the MPM, and the first two candidate modes selected by RMD are not both prediction units of DC or Planar mode, check the first two candidate modes selected by RMD Is it all angular mode. If the first two candidate modes selected by RMD are both angle modes, then the prediction unit is a texture block with a certain direction, RDO will only check the first three candidate modes and MPM selected by RMD, other modes can be obtained from the removed from the selection mode list.
步骤4:对于RMD选出的第一备选模式不在MPM中,且RMD选出的前两个备选模式不都是DC或Planar模式,也不都是角模式的预测单元,则该预测单元是没有明确方向的复杂纹理块,RDO将只检查RMD选出的前二个备选模式和MPM,其他模式可以从备选模式列表中去除。Step 4: For the first candidate mode selected by RMD is not in the MPM, and the first two candidate modes selected by RMD are not both DC or Planar mode, nor are they all prediction units of angular mode, then the prediction unit It is a complex texture block without a clear direction. RDO will only check the first two candidate modes and MPM selected by RMD, and other modes can be removed from the list of candidate modes.
步骤5:根据RDO所选的最优模式对当前编码单元做RQT。Step 5: Perform RQT on the current coding unit according to the optimal mode selected by RDO.
由于采用上述方案,本发明的有益效果是:Owing to adopting said scheme, the beneficial effect of the present invention is:
1、本发现首先利用了RMD和MPM结果所反映的相邻预测块和当前预测块纹理一致性的关系,可以使得纹理一致预测单元直接跳过RDO过程。该技术能有效地减少HEVC帧内模式选择过程的复杂度。1. This discovery first utilizes the relationship between the texture consistency of the adjacent prediction blocks reflected by the RMD and MPM results and the current prediction block, so that the texture consistency prediction unit can directly skip the RDO process. This technology can effectively reduce the complexity of HEVC intra mode selection process.
2、本算法对所有尺寸的预测单元采用统一的块内纹理特性预测方案,仅需要分析RMD所得的前两个RDO备选模式就可以将预测单元按不同的纹理特性分成三类,并分别进行预测模式选择加速。2. This algorithm adopts a unified intra-block texture characteristic prediction scheme for prediction units of all sizes, and only needs to analyze the first two RDO candidate modes obtained by RMD to divide the prediction units into three categories according to different texture characteristics, and perform Forecast mode select Accelerated.
3、本发明在现有HEVC帧内模式选择方案的基础上,在几乎不损失视频主客观质量的情况下,有效降低编码复杂度,且该方法易于实现。3. On the basis of the existing HEVC intra-frame mode selection scheme, the present invention can effectively reduce the encoding complexity without losing the subjective and objective quality of the video, and the method is easy to implement.
附图说明Description of drawings
图1是本发明的HEVC帧内快速模式选择方法流程图。FIG. 1 is a flow chart of the HEVC intra-frame fast mode selection method of the present invention.
具体实施方式Detailed ways
以下结合附图所示实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the embodiments shown in the accompanying drawings.
如图1所示,本发明一种实施例包括以下步骤:As shown in Figure 1, an embodiment of the present invention includes the following steps:
步骤1:基于HEVC通用的测试平台HM,在当前预测单元的RMD和MPM做完后,根据RMD得出的备选模式列表和MPM所得出的相邻编码块的最有可能模式检查当前编码块和相邻编码块的纹理关系。若备选模式列表中的第一模式在MPM中,则跳过RDO,第一备选模式作为RDO最优模式,直接进行后续的RQT过程。否则转到步骤2。该步骤对应图1中的第一个分支,即第一备选模式在最有可能模式中。Step 1: Based on the HEVC common test platform HM, after the RMD and MPM of the current prediction unit are completed, check the current coding block according to the list of alternative modes obtained by RMD and the most probable mode of adjacent coding blocks obtained by MPM Texture relationship with adjacent coded blocks. If the first mode in the candidate mode list is in the MPM, the RDO is skipped, and the first candidate mode is used as the optimal mode of the RDO, and the subsequent RQT process is directly performed. Otherwise go to step 2. This step corresponds to the first branch in Figure 1, that is, the first candidate mode is in the most probable mode.
步骤2:检查备选模式列表前两个模式是否都是0,1模式,即DC和Planar模式。若是,则RDO仅对0,1模式进行检查,得到最优预测模式后,再进行后续的RQT过程。否则转到步骤3。该步骤对应图1中的第二个分支,即第1、2个备选模式是模式0、1。Step 2: Check whether the first two modes in the list of alternative modes are both 0, 1 modes, namely DC and Planar modes. If so, RDO only checks the 0,1 mode, and after obtaining the optimal prediction mode, the subsequent RQT process is performed. Otherwise go to step 3. This step corresponds to the second branch in Figure 1, that is, the first and second alternative modes are modes 0 and 1.
步骤3:检查备选模式列表前两个模式是否都是角模式,即是否都在2~35这个闭区间内。若是,则RDO仅检查备选列表的前三个模式以及MPM,得到最优预测模式后,再进行后续的RQT过程。否则转到步骤4。该步骤对应图1的第三个分支,即前三个备选模式加上最有可能模式。Step 3: Check whether the first two modes in the candidate mode list are both angle modes, that is, whether they are both within the closed interval of 2-35. If so, RDO only checks the first three modes and MPM in the candidate list, and after obtaining the optimal prediction mode, the subsequent RQT process is performed. Otherwise go to step 4. This step corresponds to the third branch in Figure 1, that is, the first three candidate modes plus the most probable mode.
步骤4:RDO仅检查备选列表的前二个模式以及MPM,得到最优预测模式后,再进行后续的RQT过程。该步骤对应图1的第四个分支。Step 4: RDO only checks the first two modes and MPM in the candidate list, and after obtaining the optimal prediction mode, the subsequent RQT process is performed. This step corresponds to the fourth branch in Figure 1.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above description of the embodiments is for those of ordinary skill in the art to understand and apply the present invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410842187.XA CN104581152A (en) | 2014-12-25 | 2014-12-25 | HEVC intra-frame prediction mode decision accelerating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410842187.XA CN104581152A (en) | 2014-12-25 | 2014-12-25 | HEVC intra-frame prediction mode decision accelerating method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104581152A true CN104581152A (en) | 2015-04-29 |
Family
ID=53096221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410842187.XA Pending CN104581152A (en) | 2014-12-25 | 2014-12-25 | HEVC intra-frame prediction mode decision accelerating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104581152A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105208387A (en) * | 2015-10-16 | 2015-12-30 | 浙江工业大学 | HEVC intra-frame prediction mode fast selection method |
WO2017113456A1 (en) * | 2015-12-30 | 2017-07-06 | 邦彦技术股份有限公司 | Hevc-oriented fast intra-frame prediction mode decision method and device |
CN107396130A (en) * | 2017-07-28 | 2017-11-24 | 天津大学 | HEVC fast intra mode decision making algorithms based on DCT |
WO2019141007A1 (en) * | 2018-01-16 | 2019-07-25 | 腾讯科技(深圳)有限公司 | Method and device for selecting prediction direction in image encoding, and storage medium |
CN111757105A (en) * | 2020-06-30 | 2020-10-09 | 北京百度网讯科技有限公司 | Image encoding processing method, apparatus, device and medium |
CN112118444A (en) * | 2019-06-20 | 2020-12-22 | 杭州海康威视数字技术股份有限公司 | Encoding method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665079A (en) * | 2012-05-08 | 2012-09-12 | 北方工业大学 | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) |
CN103096069A (en) * | 2011-11-04 | 2013-05-08 | 吴秀美 | Method and apparatus of deriving intra predicion mode |
CN103929652A (en) * | 2014-04-30 | 2014-07-16 | 西安电子科技大学 | Fast Mode Selection Method for Intra Prediction Based on Autoregressive Model in Video Standards |
-
2014
- 2014-12-25 CN CN201410842187.XA patent/CN104581152A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103096069A (en) * | 2011-11-04 | 2013-05-08 | 吴秀美 | Method and apparatus of deriving intra predicion mode |
CN102665079A (en) * | 2012-05-08 | 2012-09-12 | 北方工业大学 | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) |
CN103929652A (en) * | 2014-04-30 | 2014-07-16 | 西安电子科技大学 | Fast Mode Selection Method for Intra Prediction Based on Autoregressive Model in Video Standards |
Non-Patent Citations (1)
Title |
---|
DONGDONG ZHANG,YOUWEI CHEN,EBROUL IZQUIERDO: "Fast intra mode decision for HEVC based on texture characteristic from RMD and MPM", 《VISUAL COMMUNICATIONS AND IMAGE PROCESSING CONFERENCE, 2014 IEEE》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105208387A (en) * | 2015-10-16 | 2015-12-30 | 浙江工业大学 | HEVC intra-frame prediction mode fast selection method |
CN105208387B (en) * | 2015-10-16 | 2018-03-13 | 浙江工业大学 | A kind of HEVC Adaptive Mode Selection Method for Intra-Prediction |
WO2017113456A1 (en) * | 2015-12-30 | 2017-07-06 | 邦彦技术股份有限公司 | Hevc-oriented fast intra-frame prediction mode decision method and device |
CN107396130A (en) * | 2017-07-28 | 2017-11-24 | 天津大学 | HEVC fast intra mode decision making algorithms based on DCT |
WO2019141007A1 (en) * | 2018-01-16 | 2019-07-25 | 腾讯科技(深圳)有限公司 | Method and device for selecting prediction direction in image encoding, and storage medium |
US11395002B2 (en) | 2018-01-16 | 2022-07-19 | Tencent Technology (Shenzhen) Company Limited | Prediction direction selection method and apparatus in image encoding, and storage medium |
CN112118444A (en) * | 2019-06-20 | 2020-12-22 | 杭州海康威视数字技术股份有限公司 | Encoding method and device |
CN112118444B (en) * | 2019-06-20 | 2022-11-25 | 杭州海康威视数字技术股份有限公司 | Encoding method and device |
CN111757105A (en) * | 2020-06-30 | 2020-10-09 | 北京百度网讯科技有限公司 | Image encoding processing method, apparatus, device and medium |
US20210297664A1 (en) * | 2020-06-30 | 2021-09-23 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method for image encoding, electronic device and storage medium |
US11582449B2 (en) * | 2020-06-30 | 2023-02-14 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method for image encoding, electronic device and storage medium |
CN111757105B (en) * | 2020-06-30 | 2023-07-04 | 北京百度网讯科技有限公司 | Image coding processing method, device, equipment and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109688414B (en) | A method for reducing candidate prediction modes of VVC intra-coding unit and early termination of block division | |
Zhao et al. | Fast mode decision algorithm for intra prediction in HEVC | |
Wang et al. | Novel adaptive algorithm for intra prediction with compromised modes skipping and signaling processes in HEVC | |
CN102665079A (en) | Adaptive fast intra prediction mode decision for high efficiency video coding (HEVC) | |
CN104023233B (en) | Fast inter-frame prediction method of HEVC (High Efficiency Video Coding) | |
CN104581152A (en) | HEVC intra-frame prediction mode decision accelerating method | |
CN103404142B (en) | More measurement filtering | |
CN103763570B (en) | Rapid HEVC intra-frame prediction method based on SATD | |
CN103997646B (en) | Fast intra-mode prediction mode selecting method in a kind of HD video coding | |
CN104702958B (en) | A kind of HEVC inner frame coding methods and system based on spatial coherence | |
CN104581181B (en) | A kind of inner frame coding method based on alternative mode list optimization | |
CN102665078A (en) | Intra prediction mode decision based on direction vector for HEVC (High Efficiency Video Coding) | |
CN104639940B (en) | A kind of quick HEVC method for choosing frame inner forecast mode | |
CN103220529A (en) | Method for achieving video coding and decoding loop filtering | |
CN103929652B (en) | Intra-frame prediction fast mode selecting method based on autoregressive model in video standard | |
CN105681808B (en) | A kind of high-speed decision method of SCC interframe encodes unit mode | |
CN110351552B (en) | A Fast Coding Method in Video Coding | |
Yu et al. | Early termination of coding unit splitting for HEVC | |
CN107566846A (en) | Video coding skip mode decision-making technique, device, equipment and storage medium | |
CN101304529A (en) | Method and device for selecting macroblock mode | |
Ting et al. | Gradient-based PU size selection for HEVC intra prediction | |
CN111541896A (en) | A method and system for optimizing intra-frame prediction mode based on VVC | |
CN103327327A (en) | Selection method of inter-frame predictive coding units for HEVC | |
CN102647593A (en) | A kind of AVS intra-frame mode decision-making method and device | |
CN104954787B (en) | HEVC inter-frame forecast mode selection methods and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150429 |
|
WD01 | Invention patent application deemed withdrawn after publication |