Nothing Special   »   [go: up one dir, main page]

CN104573230B - Towards the visual human's job task simulation analysis system and method for spacecraft maintenance - Google Patents

Towards the visual human's job task simulation analysis system and method for spacecraft maintenance Download PDF

Info

Publication number
CN104573230B
CN104573230B CN201510004982.6A CN201510004982A CN104573230B CN 104573230 B CN104573230 B CN 104573230B CN 201510004982 A CN201510004982 A CN 201510004982A CN 104573230 B CN104573230 B CN 104573230B
Authority
CN
China
Prior art keywords
virtual
real
module
human
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510004982.6A
Other languages
Chinese (zh)
Other versions
CN104573230A (en
Inventor
万毕乐
吴星辉
贺文兴
徐奕柳
王再成
宋晓晖
刘哲
邢帅
刘智斌
郑鹏
张立建
张强
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft Environment Engineering
Original Assignee
Beijing Institute of Spacecraft Environment Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft Environment Engineering filed Critical Beijing Institute of Spacecraft Environment Engineering
Priority to CN201510004982.6A priority Critical patent/CN104573230B/en
Publication of CN104573230A publication Critical patent/CN104573230A/en
Application granted granted Critical
Publication of CN104573230B publication Critical patent/CN104573230B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种面向航天器维修的虚拟人作业任务仿真分析系统及仿真分析方法。该面向航天器维修的虚拟人作业任务仿真分析系统包括虚拟现实实时渲染及运动数据采集模块,用于模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态;微重力虚拟环境构建模块,用于负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,从而获取虚拟微重力环境下虚拟人运动姿态;作业任务仿真分析模块,其实现通用虚拟场景、空间布局的快速构建和预分析,生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策。

The invention discloses a virtual human operation task simulation analysis system and simulation analysis method for spacecraft maintenance. The simulation and analysis system for virtual human tasks for spacecraft maintenance includes virtual reality real-time rendering and motion data acquisition modules, which are used to simulate the more complex movements of astronauts in on-orbit maintenance operations, so as to realize restricted or supported movements, and then obtain The movement posture of real people; the microgravity virtual environment building block, which is responsible for realizing unrestricted or supported free-state movements or position transfer movements that require whole-body coordination, so as to obtain the movement posture of virtual people in a virtual microgravity environment; job task simulation analysis Module, which realizes the rapid construction and pre-analysis of general virtual scenes and spatial layouts, generates various actions required for the operation process of job tasks, and performs man-machine effect simulation analysis of virtual human actions to realize feedback optimization of virtual human job task planning or feasibility decision.

Description

面向航天器维修的虚拟人作业任务仿真分析系统及方法Simulation and Analysis System and Method for Virtual Human Operation Tasks Oriented to Spacecraft Maintenance

技术领域technical field

本发明涉及制造仿真领域,尤其涉及一种面向航天器维修的虚拟人作业任务仿真分析系统及仿真分析方法。The invention relates to the field of manufacturing simulation, in particular to a virtual human operation task simulation analysis system and simulation analysis method for spacecraft maintenance.

背景技术Background technique

有人参与的空间在轨作业任务是载人航天工程的关键技术之一,包括载人航天器的在轨装配与维修、空间科学实验、空间有效载荷释放或回收、空间救援等。目前航天员在轨作业任务(包括出舱和舱外活动)的训练和验证主要在如中性浮力水槽、失重飞机、舱外活动训练模拟器、气压舱、脱挂试验台、气垫平台等半实物仿真大型模拟设备中进行。这种方法的局限性在于系统造价高、应用柔性差、太空微重力环境模拟差异性大等。Manned space on-orbit operations are one of the key technologies of manned spaceflight engineering, including on-orbit assembly and maintenance of manned spacecraft, space science experiments, release or recovery of space payloads, space rescue, etc. At present, the training and verification of astronauts' on-orbit operation tasks (including extravehicular activities and extravehicular activities) are mainly carried out in semi-autonomous areas such as neutral buoyancy tanks, weightless aircraft, extravehicular activity training simulators, air pressure chambers, detachment test benches, and air cushion platforms. Physical simulation is carried out in large-scale simulation equipment. The limitations of this method lie in the high cost of the system, poor application flexibility, and large differences in the simulation of the microgravity environment in space.

虚拟现实技术是指综合利用计算机系统和各种特殊的软、硬件来产生一种可以替代现实世界和环境的仿真环境,并具有沉浸感、交互性及实时性的特点。利用虚拟现实技术模拟失重特性下虚拟人肢体姿态和运动,结合沉浸式图形图像、力觉反馈等感官刺激,可为航天员提供逼真的操作体验。基于虚拟现实的微重力环境下虚拟人在轨作业任务仿真分析系统既可用于训练,也可用于任务规划和分析。Virtual reality technology refers to the comprehensive use of computer systems and various special software and hardware to generate a simulation environment that can replace the real world and environment, and has the characteristics of immersion, interactivity and real-time. Using virtual reality technology to simulate the posture and movement of virtual human limbs under the characteristics of weightlessness, combined with sensory stimulation such as immersive graphic images and force feedback, it can provide astronauts with a realistic operating experience. The simulation and analysis system of virtual human on-orbit operation tasks in microgravity environment based on virtual reality can be used not only for training, but also for task planning and analysis.

目前,随着虚拟现实技术的成熟和发展,人们已经开始将虚拟现实技术引入制造仿真领域。如专利“基于航天器装配仿真技术的虚拟装配系统和虚拟装配方法”(申请号为200810180605,公开号为101739478)构建了包括CAD建模模块、虚拟装配规划模块、装配工艺设计模块的虚拟装配系统,并给出基于航天器装配仿真技术的虚拟装配方法。专利“基于DELMIA环境下的沉浸式虚拟维修仿真系统虚拟人控制方法”(申请号为201110442411,公开号为102521464)利用二次开发接口将动作捕捉设备所捕捉的人体动作实时导入专业软件提供的虚拟维修平台的虚拟人上,有效实现真人对虚拟人的控制和功效分析。At present, with the maturity and development of virtual reality technology, people have begun to introduce virtual reality technology into the field of manufacturing simulation. For example, the patent "virtual assembly system and virtual assembly method based on spacecraft assembly simulation technology" (application number 200810180605, publication number 101739478) builds a virtual assembly system including CAD modeling module, virtual assembly planning module, and assembly process design module , and a virtual assembly method based on spacecraft assembly simulation technology is given. The patent "virtual human control method for immersive virtual maintenance simulation system based on DELMIA environment" (application number 201110442411, publication number 102521464) uses the secondary development interface to import the human motion captured by the motion capture device into the virtual human body provided by professional software in real time. On the virtual human of the maintenance platform, the real person can effectively realize the control and efficacy analysis of the virtual human.

上述各类系统和方法存在以下问题:The above-mentioned various systems and methods have the following problems:

(1)CAD模型的虚拟现实渲染均需以固定的格式导入仿真系统,处理过程既耗费时间,又易带来数据的丢失,尤其对于航天器等大型模型;(1) The virtual reality rendering of the CAD model needs to be imported into the simulation system in a fixed format. The processing process is time-consuming and easy to cause data loss, especially for large models such as spacecraft;

(2)虚拟现实环境的虚拟人及模型均为纯几何而不具备物理属性,无法构建并生成微重力环境下的运动姿态:无论是Delmia、还是自行开发的仿真软件,其虚拟人的姿态库以及捕获自空间位置跟踪系统的真人动作均来自正常重力环境,在缺乏半物理模拟硬件的条件下,无法生成微重力环境的运动姿态;(2) The virtual human and the model in the virtual reality environment are all pure geometry without physical properties, and cannot construct and generate motion postures in a microgravity environment: Whether it is Delmia or self-developed simulation software, the virtual human posture library And the real action captured from the space position tracking system comes from the normal gravity environment. In the absence of semi-physical simulation hardware, it is impossible to generate the movement posture of the microgravity environment;

发明内容Contents of the invention

本发明要解决的技术问题在于提供一种面向航天器维修的虚拟人作业任务仿真分析系统及仿真分析方法,以通过通用CAD模型的虚拟现实实时渲染,避免模型转换,实现虚拟数字样机及环境的快速沉浸式交互评估;通过专业软件构建微重力环境并以离线方式生成虚拟人在轨作业姿态,结合运动捕捉系统捕捉的实时人体动作,形成微重力环境虚拟人操作仿真模拟;将虚拟人操作导入专业人机功效分析模块,完成姿态分析、疲劳度评估等定量化分析,最终实现面向航天器维修的虚拟人作业任务仿真及分析。The technical problem to be solved by the present invention is to provide a virtual human task simulation analysis system and simulation analysis method for spacecraft maintenance, so as to avoid model conversion through the virtual reality real-time rendering of the general CAD model, and realize the virtual digital prototype and the environment. Rapid immersive interactive evaluation; use professional software to build a microgravity environment and generate virtual human on-orbit operation postures offline, combined with real-time human movements captured by the motion capture system, to form a virtual human operation simulation in a microgravity environment; import virtual human operations into The professional human-machine function analysis module completes the quantitative analysis such as attitude analysis and fatigue evaluation, and finally realizes the simulation and analysis of virtual human operation tasks for spacecraft maintenance.

为了解决上述技术问题,本发明提供了一种面向航天器维修的虚拟人作业任务仿真分析系统,该面向航天器维修的虚拟人作业任务仿真分析系统包括:虚拟现实实时渲染及运动数据采集模块,用于模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态;微重力虚拟环境构建模块,用于负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,从而获取虚拟微重力环境下虚拟人运动姿态;虚拟人驱动接口模块,用于将所述真实人运动姿态和所述虚拟微重力环境下虚拟人运动姿态导入并驱动作业任务仿真分析模块的虚拟人,以实现人机功效仿真分析;作业任务仿真分析模块,其利用所述虚拟现实实时渲染及运动数据采集模块实现通用虚拟场景、空间布局的快速构建和预分析,利用所述虚拟现实实时渲染及运动数据采集模块和所述微重力虚拟环境构建模块生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策。In order to solve the above-mentioned technical problems, the present invention provides a virtual human task simulation analysis system oriented to spacecraft maintenance. The virtual human task simulation analysis system oriented to spacecraft maintenance includes: virtual reality real-time rendering and motion data acquisition modules, It is used to simulate the more complex movements of astronauts in on-orbit maintenance operations, so as to realize restricted or supported movements, and then obtain real human motion postures; the microgravity virtual environment building block is used to realize unconstrained or supported free-state movements Or position transfer movements that require whole-body coordination, so as to obtain the movement posture of the virtual human in the virtual microgravity environment; the virtual human driving interface module is used to import the movement posture of the real person and the movement posture of the virtual human in the virtual microgravity environment And drive the virtual human of the job task simulation analysis module to realize the man-machine effect simulation analysis; the job task simulation analysis module, which utilizes the virtual reality real-time rendering and motion data acquisition module to realize the rapid construction and prediction of general virtual scenes and spatial layouts Analysis, using the virtual reality real-time rendering and motion data acquisition module and the microgravity virtual environment construction module to generate various actions required for the operation process of the job task, and perform human-machine effect simulation analysis of virtual human actions to realize virtual human Feedback optimization or feasibility decision for job task planning.

本发明还提供了一种面向航天器维修的虚拟人作业任务仿真分析方法,该面向航天器维修的虚拟人作业任务仿真分析方法包括:步骤1:在虚拟现实实时渲染及运动数据采集模块中,模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态;步骤2:在微重力虚拟环境构建模块中,负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,从而获取虚拟微重力环境下虚拟人运动姿态;步骤3:在虚拟人驱动接口模块中,将所述真实人运动姿态和所述虚拟微重力环境下虚拟人运动姿态导入并驱动作业任务仿真分析模块的虚拟人,以实现人机功效仿真分析;步骤4:在作业任务仿真分析模块中,利用所述虚拟现实实时渲染及运动数据采集模块实现通用虚拟场景、空间布局的快速构建和预分析,利用所述虚拟现实实时渲染及运动数据采集模块和所述微重力虚拟环境构建模块生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策。The present invention also provides a virtual human task simulation analysis method for spacecraft maintenance. The spacecraft maintenance-oriented virtual human task simulation analysis method includes: Step 1: In the virtual reality real-time rendering and motion data acquisition module, Simulate the more complex movements of astronauts in on-orbit maintenance operations, so as to realize the movement with constraints or supports, and then obtain the real human motion posture; Step 2: In the microgravity virtual environment building block, it is responsible for realizing the free state without constraints or supports Movement or position transfer movement that requires whole-body coordination, so as to obtain the movement posture of the virtual human in the virtual microgravity environment; Step 3: In the virtual human driving interface module, combine the movement posture of the real person with the virtual human movement posture in the virtual microgravity environment. Human motion posture imports and drives the virtual human in the job task simulation analysis module to realize man-machine efficiency simulation analysis; Step 4: In the job task simulation analysis module, use the virtual reality real-time rendering and motion data acquisition module to realize a general virtual scene , rapid construction and pre-analysis of spatial layout, using the virtual reality real-time rendering and motion data acquisition module and the microgravity virtual environment construction module to generate various actions required for the operation process of the job task, and perform the human-machine movement of the virtual human Efficacy simulation analysis to realize feedback optimization or feasibility decision of virtual human task planning.

本发明提供的面向航天器维修的虚拟人作业任务仿真分析系统及仿真分析方法同现有技术相比的优点在于:Compared with the prior art, the virtual human task simulation analysis system and simulation analysis method for spacecraft maintenance provided by the present invention have the following advantages:

(1)通过虚拟现实实时渲染及运动数据采集模块,支持将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,并提供基本交互操作,以辅助实现通用虚拟场景快速构建、空间布局预分析、虚拟数字样机快速评审、基本操作预评估等应用,避免了数据格式转换处理的时间消耗和数据丢失;(1) Through the virtual reality real-time rendering and motion data acquisition module, it supports real-time rendering of various CAD scenes to virtual reality without format conversion, and provides basic interactive operations to assist in the rapid construction of general virtual scenes, Applications such as spatial layout pre-analysis, virtual digital prototype rapid review, and basic operation pre-evaluation avoid time consumption and data loss in data format conversion processing;

(2)针对航天员在轨作业任务的两类工况,分别构造虚拟现实实时渲染及运动数据采集模块和微重力虚拟环境构建模块,覆盖作业任务各类运动姿态模拟仿真,克服了大型半实物模拟仿真硬件系统造价高、应用柔性差等缺点,弥补了单纯虚拟仿真软件无法构建微重力环境的缺陷。(2) Aiming at the two types of working conditions of astronauts' on-orbit operation tasks, the virtual reality real-time rendering and motion data acquisition module and the microgravity virtual environment building module were respectively constructed to cover various motion posture simulations of the operation tasks and overcome the large-scale semi-physical The shortcomings of the simulation hardware system, such as high cost and poor application flexibility, make up for the shortcomings that pure virtual simulation software cannot build a microgravity environment.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需使用的附图作简单地介绍In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the description of the embodiments or the prior art

图1为本发明的面向航天器维修的虚拟人作业任务仿真分析系统的结构框图;Fig. 1 is the structural block diagram of the simulation analysis system of the virtual human operation task facing the spacecraft maintenance of the present invention;

图2为本发明的面向航天器维修的虚拟人作业任务仿真分析方法流程图;Fig. 2 is the flow chart of the simulation analysis method of virtual human task for spacecraft maintenance of the present invention;

图3为图1中的作业任务仿真分析模块的工作流程图。Fig. 3 is a working flow chart of the job task simulation analysis module in Fig. 1 .

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings and specific embodiments.

本发明提供了一种面向航天器维修的虚拟人作业任务仿真分析系统及仿真分析方法,以通过通用CAD模型的虚拟现实实时渲染,避免模型转换,实现虚拟数字样机及环境的快速沉浸式交互评估;通过专业软件构建微重力环境并以离线方式生成虚拟人在轨作业姿态,结合运动捕捉系统捕捉的实时人体动作,形成微重力环境虚拟人操作仿真模拟;将虚拟人操作导入专业人机功效分析模块,并完成姿态分析、疲劳度评估等定量化分析,最终实现面向航天器维修的虚拟人作业任务仿真及分析。The present invention provides a simulation analysis system and simulation analysis method for virtual human task tasks oriented to spacecraft maintenance, so as to avoid model conversion through virtual reality real-time rendering of general CAD models, and realize fast immersive interactive evaluation of virtual digital prototypes and environments ; Use professional software to build a microgravity environment and generate the virtual human on-orbit operation posture offline, combined with the real-time human body movements captured by the motion capture system, to form a virtual human operation simulation in a microgravity environment; import the virtual human operation into professional man-machine efficiency analysis module, and complete quantitative analysis such as attitude analysis and fatigue evaluation, and finally realize the simulation and analysis of virtual human operation tasks for spacecraft maintenance.

图1所示为本发明的面向航天器维修的虚拟人作业任务仿真分析系统100的结构框图。面向航天器维修的虚拟人作业任务仿真分析系统包括:虚拟现实实时渲染及运动数据采集模块110、微重力虚拟环境构建模块120、虚拟人驱动接口模块130、作业任务仿真分析模块140。FIG. 1 is a structural block diagram of a virtual human task simulation analysis system 100 oriented to spacecraft maintenance according to the present invention. The simulation and analysis system of virtual human tasks for spacecraft maintenance includes: a virtual reality real-time rendering and motion data acquisition module 110 , a microgravity virtual environment construction module 120 , a virtual human driver interface module 130 , and a task simulation analysis module 140 .

虚拟现实实时渲染及运动数据采集模块110用于模拟采集宇航员在轨维修操作中较为复杂的动作,如身体限定上肢活动、脚限定上肢活动、手限定直体活动,对应实现仪表板操作、开关舱门、辅助交互对接、更换设备等作业任务,从而实现有约束或支撑的运动,进而获取真实人运动姿态。虚拟现实实时渲染及运动数据采集模块110包括虚拟现实硬件模块111及虚拟现实实时渲染模块112。The virtual reality real-time rendering and motion data acquisition module 110 is used to simulate and collect astronauts’ more complex actions in on-orbit maintenance operations, such as body-limited upper limb activities, feet-limited upper-body activities, and hand-limited straight body activities, correspondingly realizing instrument panel operations, switch Doors, auxiliary interactive docking, equipment replacement and other operating tasks, so as to achieve restricted or supported movements, and then obtain real human motion postures. The virtual reality real-time rendering and motion data collection module 110 includes a virtual reality hardware module 111 and a virtual reality real-time rendering module 112 .

虚拟现实硬件模块111,包括数据头盔(VR 1280)、数据手套(CyberGlove II)、运动捕捉系统(例如,ART全身动作捕捉系统)、三维空间手柄(交互手柄Flystick)、双通道投影(Christie Mirage DS+10K-M)、硬屏、3D眼镜等。其中,数据头盔为操作者提供通用虚拟场景的第一视角体验,操作者通过数据头套及运动捕捉系统为作业任务仿真分析模块提供真实人运动输入;双通道投影、硬屏、3D眼镜为评审者提供第三视角体验,评审者通过三维空间手柄实现通用虚拟场景的空间布局修改等操作。所述虚拟现实硬件模块111为沉浸式虚拟现实环境的创建提供硬件支持,辅助真人实现尽可能接近在轨维修真实情况的各类运动操作,并捕捉人体实时动作,同时,可为通用虚拟场景构建、空间布局分析提供真实体验支撑。Virtual reality hardware module 111, comprises data helmet (VR 1280), data glove (CyberGlove II), motion capture system (for example, ART whole body motion capture system), three-dimensional space handle (interactive handle Flystick), two-channel projection (Christie Mirage DS +10K-M), hard screen, 3D glasses, etc. Among them, the data helmet provides the operator with the first-view experience of the general virtual scene, and the operator provides real human motion input for the task simulation analysis module through the data headgear and motion capture system; dual-channel projection, hard screen, and 3D glasses are the reviewers Provide a third-person perspective experience, and the judges can use the three-dimensional space handle to realize the modification of the spatial layout of the general virtual scene and other operations. The virtual reality hardware module 111 provides hardware support for the creation of an immersive virtual reality environment, assists real people to realize various motion operations that are as close as possible to the real situation of on-orbit maintenance, and captures real-time movements of the human body. , Spatial layout analysis provides real experience support.

虚拟现实实时渲染模块112,包括多通道展示模块113、视角跟踪导航模块114、交互浏览评估模块115以及虚拟装配模块116。虚拟现实实时渲染模块112,采用基于OpenGL的可视化解决方案法国Techviz软件。多通道展示模块113,可采用Techviz软件中的TechvizXL Basic license基本模块及TechViz XL双通道主动立体节点授权支持将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,将当前虚拟场景进行高分辨率的可视化,同时支持多种虚拟现实显示方案,包括数据头盔、硬屏,其中,数据头盔和硬屏分别提供操作者视角及第三者评审视角。视角跟踪导航模块114,采用Techviz软件中的NavigationOption基本导航模块和Tracking Option高级跟踪模块提供视角跟踪导航功能,通过三维空间手柄、主视角3D眼镜等硬件支撑,实现系统视角或虚拟场景的自由导航,并可进行人体位置跟踪。交互浏览评估模块115,可采用Techviz软件中的DMU1和DMU2模块提供交互浏览评估功能,用以辅助操作者利用三维空间手柄实现对虚拟场景评估,提供书签功能、测量功能、剖面功能、缩放功能、注释功能、隐藏和显示组件功能、快照功能等。虚拟装配模块116,采用Techviz软件中的虚拟装配模块,允许操作者对虚拟场景中的任一部件进行交互式移动,看到拆装移动过程的碰撞情况并对路径进行记录,为虚拟场景快速布局的预分析、以及装配、拆卸、维修等操作的预评估提供支撑。虚拟现实实时渲染模块112提供基本交互操作,以辅助实现通用虚拟场景快速构建、空间布局预分析、虚拟数字样机快速评审、基本操作预评估等应用。The virtual reality real-time rendering module 112 includes a multi-channel display module 113 , a viewing angle tracking and navigation module 114 , an interactive browsing evaluation module 115 and a virtual assembly module 116 . The virtual reality real-time rendering module 112 adopts French Techviz software, a visualization solution based on OpenGL. The multi-channel display module 113 can use the TechvizXL Basic license basic module in the Techviz software and the TechViz XL dual-channel active stereo node authorization to support real-time rendering of various CAD scenes to virtual reality without format conversion. The scene is visualized in high resolution and supports multiple virtual reality display solutions, including data helmets and hard screens. The data helmets and hard screens provide the operator's perspective and the third-party review perspective respectively. The angle of view tracking navigation module 114 adopts the NavigationOption basic navigation module and the Tracking Option advanced tracking module in the Techviz software to provide the angle of view tracking and navigation function, and realizes the free navigation of the system angle of view or the virtual scene through hardware support such as a three-dimensional space handle and a main angle of view 3D glasses. And it can track the position of the human body. The interactive browsing evaluation module 115 can use the DMU1 and DMU2 modules in the Techviz software to provide an interactive browsing evaluation function, to assist the operator to use the three-dimensional space handle to realize the evaluation of the virtual scene, to provide bookmark functions, measurement functions, profile functions, zoom functions, Comment function, hide and show component function, snapshot function, etc. The virtual assembly module 116 adopts the virtual assembly module in the Techviz software, allowing the operator to interactively move any part in the virtual scene, see the collision situation during the disassembly and assembly movement process and record the path, and quickly lay out the virtual scene Provide support for pre-analysis and pre-assessment of assembly, disassembly, maintenance and other operations. The virtual reality real-time rendering module 112 provides basic interactive operations to assist applications such as rapid construction of general virtual scenes, pre-analysis of spatial layout, rapid review of virtual digital prototypes, and pre-evaluation of basic operations.

微重力虚拟环境构建模块120,采用专业动画制作引擎英国Natural Motion公司的Endorphin角色动态生成软件,在此平台上完成微重力虚拟场景构建、物理属性建模、约束关系建模、虚拟人姿态设置、运动操作设计等,最终生成微重力环境下虚拟人运动动画,获取虚拟人运动姿态。微重力虚拟环境构建模块120负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,如横向漂移、单/双曲臂漂移等,对应实现舱内漂移、出舱过程、货物运输、舱外行走等作业任务。微重力虚拟环境构建模块120涉及较大场景的虚拟人运动模拟,获取虚拟微重力环境下虚拟人运动姿态。The microgravity virtual environment construction module 120 adopts the Endorphin role dynamic generation software of British Natural Motion Company, a professional animation production engine, and completes microgravity virtual scene construction, physical attribute modeling, constraint relationship modeling, virtual human posture setting, Motion operation design, etc., finally generate virtual human motion animation in microgravity environment, and obtain virtual human motion posture. The microgravity virtual environment building module 120 is responsible for realizing unconstrained or supported free-state movement or position transfer movement that requires whole-body coordination, such as lateral drift, single/double crank arm drift, etc. Operation tasks such as transportation and extravehicular walking. The microgravity virtual environment construction module 120 involves the motion simulation of a virtual human in a larger scene, and obtains the motion posture of a virtual human in a virtual microgravity environment.

虚拟人驱动接口模块130由第一虚拟人驱动接口131和第二虚拟人驱动接口132组成。第一虚拟人驱动接口131采用Delmia V5的扩展模块RTID Human(Real-TimeInteraction for Delmia Human),用于支持将运动跟踪系统(ART全身动作捕捉系统)采集的真实人运动用求解器实时驱动Delmia V5的虚拟人模型。第二虚拟人驱动接口132基于Delmia V5的CAA二次开发模块开发实现,将微重力虚拟环境构建模块120生成的微重力条件下人体运动通过BVH格式导入Delmia并与其虚拟人运动关节绑定,驱动虚拟人模型。第一虚拟人驱动接口131和第二虚拟人驱动接口132分别对应于虚拟现实实时渲染及运动数据采集模块110及微重力虚拟环境构建模块120两类在轨作业运动姿态实现方式,将虚拟现实实时渲染及运动数据采集模块110采集的真实人运动姿态或虚拟微重力环境下虚拟人运动姿态分别以实时或离线方式导入并驱动作业任务仿真分析模块140的虚拟人,以实现人机功效仿真分析。The virtual human driving interface module 130 is composed of a first virtual human driving interface 131 and a second virtual human driving interface 132 . The first virtual human drive interface 131 adopts the extension module RTID Human (Real-TimeInteraction for Delmia Human) of Delmia V5, which is used to support real-time human movement collected by the motion tracking system (ART whole body motion capture system) to drive Delmia V5 in real time with the solver virtual human model. The second virtual human drive interface 132 is developed and implemented based on the CAA secondary development module of Delmia V5, and the human body movement under microgravity conditions generated by the microgravity virtual environment building module 120 is imported into Delmia through the BVH format and bound to its virtual human motion joints to drive virtual human model. The first avatar driving interface 131 and the second avatar driving interface 132 respectively correspond to the virtual reality real-time rendering and motion data acquisition module 110 and the microgravity virtual environment construction module 120 two types of on-orbit operation motion gesture realization methods, and the virtual reality real-time The movement posture of the real person collected by the rendering and motion data collection module 110 or the movement posture of the virtual person in the virtual microgravity environment are respectively imported in real-time or offline and drive the virtual person in the task simulation analysis module 140 to realize the simulation analysis of human-machine efficiency.

作业任务仿真分析模块140,采用达索公司的Delmia V5商业套件,提供通用虚拟场景构建、空间布局分析、操作流程规划、碰撞检测、人机功效分析等功能,为本发明系统的核心支撑部分。上述通用虚拟场景构建及空间布局分析在虚拟现实实时渲染模块的支撑下可快速构建符合真实舱内或舱外活动的作业任务场景,操作流程规划及碰撞检测用以辅助规划完整作业任务涉及的所有操作序列,人机功效分析用以评估作业任务虚拟人操作的可行性。人机功效分析的评估方法包括RULA(Rapid Upper Limb Assessment)、NIOSH(National Institute of Occupational Safety and Health)、OWAS(Owako Working-posture Analyzing System)、Snook表等。The operation task simulation analysis module 140 adopts the Delmia V5 commercial suite of Dassault Corporation to provide functions such as general virtual scene construction, spatial layout analysis, operation process planning, collision detection, and man-machine efficiency analysis, which is the core support part of the system of the present invention. With the support of the virtual reality real-time rendering module, the above-mentioned general virtual scene construction and spatial layout analysis can quickly build operation task scenes that conform to the real cabin or extravehicular activities, and the operation process planning and collision detection are used to assist in planning all tasks involved in the complete operation task Operation sequence, human-machine efficacy analysis is used to evaluate the feasibility of virtual human operation of job tasks. Evaluation methods for man-machine efficacy analysis include RULA (Rapid Upper Limb Assessment), NIOSH (National Institute of Occupational Safety and Health), OWAS (Owako Working-posture Analyzing System), Snook table, etc.

航天员实际在轨维修作业任务动作主要包括两种工况:一类是有约束或支撑的运动,比如被座椅或足限制器束缚,手持气动设备,抓住扶手或反推舱壁等;另一类是无约束或支撑的自由态。针对两类工况运动姿态的模拟,分别构造虚拟现实实时渲染及运动数据采集模块110和微重力虚拟环境构建模块120。虚拟现实实时渲染及运动数据采集模块110结合虚拟现实硬件模块111的数据手套和运动捕捉系统采集获得真实人运动姿态,通过第一虚拟人驱动接口131以实时的方式导入并驱动作业任务仿真分析模块140的虚拟人,真实人操作过程中的虚拟现实体验通过虚拟现实实时渲染模块112的多通道展示模块113提供。微重力虚拟环境构建模块120的虚拟微重力环境下虚拟人运动姿态直接通过第二虚拟人驱动接口132以离线的方式导入并驱动作业任务仿真分析模块140的虚拟人。The actual on-orbit maintenance tasks of astronauts mainly include two working conditions: one is restricted or supported movements, such as restrained by seats or foot restraints, holding pneumatic equipment, grabbing handrails or pushing back bulkheads, etc.; The other category is the free state without constraints or supports. Aiming at the simulation of motion gestures of the two types of working conditions, a virtual reality real-time rendering and motion data acquisition module 110 and a microgravity virtual environment construction module 120 are respectively constructed. The virtual reality real-time rendering and motion data collection module 110 combines the data glove and the motion capture system of the virtual reality hardware module 111 to collect and obtain real human motion gestures, and imports and drives the operation task simulation analysis module in real time through the first virtual human driving interface 131 The virtual person at 140, the virtual reality experience during the operation of the real person is provided by the multi-channel display module 113 of the virtual reality real-time rendering module 112. The movement posture of the virtual human in the virtual microgravity environment of the microgravity virtual environment construction module 120 is directly imported and driven offline by the second virtual human driving interface 132 to the virtual human of the task simulation analysis module 140 .

作业任务仿真分析模块140,利用虚拟现实实时渲染模块112实现通用虚拟场景、空间布局的快速构建和预分析,利用虚拟现实实时渲染及运动数据采集模块110和微重力虚拟环境构建模块120生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效分析,最终完成虚拟人作业任务规划的反馈优化或可行性决策。The job task simulation analysis module 140 uses the virtual reality real-time rendering module 112 to realize the rapid construction and pre-analysis of general virtual scenes and spatial layouts, and uses the virtual reality real-time rendering and motion data collection module 110 and the microgravity virtual environment construction module 120 to generate job tasks All kinds of actions required by the operation process, and the man-machine efficiency analysis of the virtual human action, and finally complete the feedback optimization or feasibility decision of the virtual human task planning.

图2所示为本发明的为面向航天器维修的虚拟人作业任务仿真分析方法流程图200。图2将结合图1进行描述。本领域技术人员可以理解的是,虽然图2中公开了具体的步骤,但是这些步骤仅作为示例用于说明,也就是说,本发明实施例的面向航天器维修的虚拟人作业任务仿真分析方法还可以执行多个其它的步骤或执行图2中步骤的变换步骤。具体地,本发明实施例包括如下步骤:FIG. 2 is a flow chart 200 of the simulation analysis method for virtual human tasks oriented to spacecraft maintenance according to the present invention. FIG. 2 will be described in conjunction with FIG. 1 . Those skilled in the art can understand that although specific steps are disclosed in FIG. 2, these steps are only used as an example for illustration, that is to say, the virtual human task simulation analysis method for spacecraft maintenance in the embodiment of the present invention A number of other steps or transformations of the steps in FIG. 2 may also be performed. Specifically, the embodiment of the present invention includes the following steps:

在步骤201中,在虚拟现实实时渲染及运动数据采集模块中,模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态。具体地,在虚拟现实实时渲染及运动数据采集模块110的虚拟现实硬件模块111中,为沉浸式虚拟现实环境的创建提供硬件支持,辅助真人利用实现尽可能接近在轨真实情况的各类运动操作,并捕捉人体实时动作,同时,为通用虚拟场景构建、空间布局分析、虚拟样机快速评审提供真实体验支撑;在虚拟现实实时渲染及运动数据采集模块110的虚拟现实实时渲染模块112中,支持将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,并提供基本交互操作,以辅助实现通用虚拟场景快速构建、空间布局预分析、虚拟数字样机快速评审、基本操作预评估。进一步地,在虚拟现实实时渲染模块112中,采用Techviz软件中的Techviz XL Basic license基本模块及TechViz XL双通道主动立体节点将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,将当前虚拟场景进行高分辨率的可视化,同时支持多种虚拟现实显示方案,包括数据头盔、硬屏,其中,所述数据头盔和所述硬屏分别提供操作者视角及第三者评审视角;采用Techviz软件中的Navigation Option基本导航模块和Tracking Option高级跟踪模块提供视角跟踪导航功能,通过三维空间手柄、主视角3D眼镜,实现系统视角或虚拟场景的自由导航,并可进行人体位置跟踪;采用Techviz软件中的DMU1和DMU2模块提供交互浏览评估功能,用以辅助操作者利用三维空间手柄实现对虚拟场景评估,提供书签功能、测量功能、剖面功能、缩放功能、注释功能、隐藏和显示组件功能、快照功能;采用Techviz软件中的虚拟装配模块,允许操作者对虚拟场景中的任一部件进行交互式移动,看到拆装移动过程的碰撞情况并对路径进行记录,为虚拟场景快速布局的预分析、以及装配、拆卸、维修操作的预评估提供支撑。In step 201, in the virtual reality real-time rendering and motion data acquisition module, the relatively complex movements of astronauts in on-orbit maintenance operations are simulated, so as to realize restricted or supported movements, and then obtain real human motion postures. Specifically, in the virtual reality hardware module 111 of the virtual reality real-time rendering and motion data collection module 110, hardware support is provided for the creation of an immersive virtual reality environment, assisting real people to use various motion operations that are as close as possible to the real situation on the track. , and capture the real-time motion of the human body, and at the same time, provide real experience support for general virtual scene construction, spatial layout analysis, and rapid review of virtual prototypes; in the virtual reality real-time rendering module 112 of the virtual reality real-time rendering and motion data collection module Various CAD scenes are rendered to virtual reality in real time without format conversion, and basic interactive operations are provided to assist in the rapid construction of general virtual scenes, pre-analysis of spatial layout, rapid review of virtual digital prototypes, and pre-evaluation of basic operations. Further, in the virtual reality real-time rendering module 112, the Techviz XL Basic license basic module and the TechViz XL dual-channel active stereo node in the Techviz software are used to render various CAD scenes to the virtual reality in real time without format conversion. , to perform high-resolution visualization of the current virtual scene, while supporting multiple virtual reality display solutions, including data helmets and hard screens, wherein the data helmet and the hard screen provide the operator's perspective and the third-party review perspective respectively ;Using the Navigation Option basic navigation module and the Tracking Option advanced tracking module in the Techviz software to provide perspective tracking and navigation functions, through the three-dimensional space handle and the main perspective 3D glasses, it can realize the free navigation of the system perspective or virtual scene, and can track the position of the human body; The DMU1 and DMU2 modules in the Techviz software are used to provide interactive browsing and evaluation functions to assist the operator to use the three-dimensional space handle to realize the evaluation of the virtual scene, providing bookmark functions, measurement functions, section functions, zoom functions, annotation functions, hiding and displaying components function, snapshot function; using the virtual assembly module in Techviz software, it allows the operator to interactively move any part in the virtual scene, see the collision situation during the disassembly and assembly movement process and record the path, and quickly lay out the virtual scene Provide support for the pre-analysis and pre-assessment of assembly, disassembly and maintenance operations.

在步骤202中,在微重力虚拟环境构建模块中,负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,从而获取虚拟微重力环境下虚拟人运动姿态。在微重力虚拟环境构建模块中,还进行微重力虚拟场景构建、物理属性建模、约束关系建模、虚拟人姿态设置、运动操作设计。In step 202, in the microgravity virtual environment building block, it is responsible for realizing unconstrained or supported free-state movement or position transfer movement requiring whole-body coordination, so as to obtain the motion posture of the virtual human in the virtual microgravity environment. In the microgravity virtual environment construction module, microgravity virtual scene construction, physical attribute modeling, constraint relationship modeling, virtual human posture setting, and motion operation design are also carried out.

在步骤203中,在虚拟人驱动接口模块中,将所述真实人运动姿态和所述虚拟微重力环境下虚拟人运动姿态导入并驱动作业任务仿真分析模块的虚拟人,以实现人机功效仿真分析。具体地,虚拟人驱动接口进一步包括:第一虚拟人驱动接口,对应于有约束或支撑的运动工况,将所述真实人运动姿态以实时方式导入并驱动所述作业任务仿真分析模块的虚拟人;第二虚拟人驱动接口,对应于无约束或支撑的自由态运动或需全身协调的位置转移类运动工况,将所述虚拟微重力环境下虚拟人运动姿态以离线方式导入并驱动所述作业任务仿真分析模块的虚拟人。In step 203, in the virtual human driving interface module, import the motion posture of the real human and the virtual human motion posture in the virtual microgravity environment into and drive the virtual human in the job task simulation analysis module, so as to realize the ergonomics simulation analyze. Specifically, the virtual human driving interface further includes: a first virtual human driving interface, corresponding to a constrained or supported motion working condition, importing the real human motion posture into real-time mode and driving the virtual human body of the task simulation analysis module. Human; the second virtual human driving interface, corresponding to unconstrained or supported free-state motion or position transfer motion conditions that require whole-body coordination, imports and drives the motion posture of the virtual human in the virtual microgravity environment in an offline manner The virtual human of the simulation analysis module of the job task.

在步骤204中,在作业任务仿真分析模块中,利用所述虚拟现实实时渲染及运动数据采集模块实现通用虚拟场景、空间布局的快速构建和预分析,利用所述虚拟现实实时渲染及运动数据采集模块和所述微重力虚拟环境构建模块生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策。通用虚拟场景构建及空间布局分析在虚拟现实实时渲染模块的支撑下可快速构建符合真实舱内或舱外活动的作业任务场景;操作流程规划及碰撞检测用以辅助规划完整作业任务涉及的所有操作序列。In step 204, in the task simulation analysis module, use the virtual reality real-time rendering and motion data collection module to realize the rapid construction and pre-analysis of general virtual scenes and spatial layouts, and use the virtual reality real-time rendering and motion data collection The module and the microgravity virtual environment building module generate various actions required for the operation process of the task, and perform the man-machine effect simulation analysis of the virtual human action, so as to realize the feedback optimization or feasibility decision of the virtual human task planning. General virtual scene construction and spatial layout analysis With the support of the virtual reality real-time rendering module, the operation task scene that conforms to the real cabin or extravehicular activities can be quickly constructed; the operation process planning and collision detection are used to assist in the planning of all operations involved in the complete operation task sequence.

图3所示为图1中的作业任务仿真分析模块140的工作流程图300。图3将结合图1和图2进行描述。具体地,本发明的作业任务仿真分析模块140包括如下步骤:FIG. 3 shows a work flow chart 300 of the job task simulation analysis module 140 in FIG. 1 . FIG. 3 will be described in conjunction with FIG. 1 and FIG. 2 . Specifically, the job task simulation analysis module 140 of the present invention includes the following steps:

在步骤301中,根据作业任务需求构建尽可能符合真实情况的虚拟场景;In step 301, a virtual scene that conforms to the real situation as much as possible is constructed according to the job task requirements;

在步骤302中,根据作业任务需求对操作空间进行布局,例如,布置操舱内/舱外设备空间;In step 302, the operation space is arranged according to the requirements of the operation task, for example, the equipment space inside/outside the cabin is arranged;

在步骤303中,通过虚拟现实实时渲染模块112提供的快速虚拟现实体验,对步骤301和302的结果进行预评估,若不符合要求则反复执行步骤301至步骤303;若预评估结果符合要求则执行步骤304;In step 303, through the fast virtual reality experience provided by the virtual reality real-time rendering module 112, the results of steps 301 and 302 are pre-evaluated, and if the requirements are not met, then steps 301 to 303 are repeated; if the pre-evaluation results meet the requirements, then Execute step 304;

在步骤304中,根据作业任务需求详细设计全过程涉及的操作动作,完成操作流程的规划;In step 304, the operation actions involved in the whole process are designed in detail according to the job task requirements, and the planning of the operation process is completed;

在步骤305中,根据操作规划结果,对所涉及动作进行类型划分,对于有约束或支撑的运动或局部操作比较复杂的运动,转至步骤306;无约束或支撑的自由态运动或涉及较大场景位置变换的运动,转至步骤307;In step 305, according to the results of the operation planning, the types of actions involved are classified. For the movement with constraints or support or the movement with relatively complex local operations, go to step 306; For the motion of scene position transformation, go to step 307;

在步骤306中,利用虚拟现实实时渲染及运动数据采集模块110,生成并采集真实人运动姿态,通过第一虚拟人驱动接口131以实时的方式驱动作业任务仿真分析模块140的虚拟人完成此操作的仿真;In step 306, use the virtual reality real-time rendering and motion data collection module 110 to generate and collect real human motion gestures, and drive the virtual human in the job task simulation analysis module 140 in real time through the first virtual human driving interface 131 to complete this operation simulation;

在步骤307中,利用微重力虚拟环境构建模块120生成虚拟微重力环境下虚拟人运动姿态,通过第二虚拟人驱动接口132以离线的方式驱动作业任务仿真分析模块140的虚拟人完成此操作的仿真;In step 307, use the microgravity virtual environment construction module 120 to generate the motion posture of the virtual human in the virtual microgravity environment, and drive the virtual human in the task simulation analysis module 140 to complete the operation through the second virtual human driving interface 132 in an offline manner simulation;

在步骤308中,将操作全流程的所有动作以步骤306和步骤307的方式生成相应的运动姿态并组合成完整的全流程操作序列;In step 308, all the actions of the whole operation process are generated in the manner of steps 306 and 307 to generate corresponding movement gestures and combined into a complete operation sequence of the whole process;

在步骤309中,利用个体化人体功效模型,作业任务仿真分析模块140完成各序列运动姿态的人机功效分析;In step 309, using the individualized human body function model, the job task simulation analysis module 140 completes the human-machine function analysis of each sequence of motion postures;

在步骤310中,判断运动姿态是否需要优化,如需优化,则反复执行步骤305至步骤310;如不需要优化,则执行步骤311;In step 310, it is judged whether the motion posture needs to be optimized, if optimization is required, then step 305 to step 310 are repeatedly performed; if optimization is not required, then step 311 is performed;

在步骤311中,利用综合分析评价模,评估作业任务的全流程规划结果;In step 311, use the comprehensive analysis evaluation model to evaluate the whole process planning results of the operation tasks;

在步骤312中,根据作业任务的全流程规划评估结果判断是否需要优化,如需优化,则反复执行步骤301至步骤312,以获得最优结果;如不需要优化,则仿真分析过程结束。In step 312, it is judged whether optimization is needed according to the evaluation result of the whole process planning of the task. If optimization is needed, step 301 to step 312 are repeated to obtain the optimal result; if optimization is not needed, the simulation analysis process ends.

Claims (6)

1.一种面向航天器维修的虚拟人作业任务仿真分析系统,其特征在于,所述面向航天器维修的虚拟人作业任务仿真分析系统包括:1. A virtual human task simulation analysis system for spacecraft maintenance, characterized in that, the spacecraft maintenance-oriented virtual human task simulation analysis system includes: 虚拟现实实时渲染及运动数据采集模块,用于模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态;The virtual reality real-time rendering and motion data acquisition module is used to simulate the more complex movements of astronauts in on-orbit maintenance operations, so as to realize constrained or supported movements, and then obtain real human motion postures; 微重力虚拟环境构建模块,用于实现微重力虚拟场景构建、物理属性建模、约束关系建模、虚拟人姿态设置、运动操作设计,从而获取虚拟微重力环境下虚拟人运动姿态;The microgravity virtual environment building module is used to realize the microgravity virtual scene construction, physical attribute modeling, constraint relationship modeling, virtual human posture setting, motion operation design, so as to obtain the virtual human motion posture in the virtual microgravity environment; 虚拟人驱动接口模块,用于将所述真实人运动姿态和所述虚拟微重力环境下虚拟人运动姿态导入并驱动作业任务仿真分析模块的虚拟人,以实现人机功效仿真分析;The virtual human driving interface module is used to import the motion posture of the real person and the virtual human motion posture in the virtual microgravity environment and drive the virtual human in the task simulation analysis module to realize the man-machine efficiency simulation analysis; 作业任务仿真分析模块,其利用所述虚拟现实实时渲染及运动数据采集模块实现通用虚拟场景、空间布局的快速构建和预分析,利用所述虚拟现实实时渲染及运动数据采集模块和所述微重力虚拟环境构建模块生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策;其特征在于,所述虚拟现实实时渲染及运动数据采集模块进一步包括:The job task simulation analysis module, which uses the virtual reality real-time rendering and motion data acquisition module to realize the rapid construction and pre-analysis of general virtual scenes and spatial layouts, uses the virtual reality real-time rendering and motion data acquisition module and the microgravity The virtual environment building module generates various actions required for the operation process of the job task, and performs the man-machine effect simulation analysis of the virtual human action, so as to realize the feedback optimization or feasibility decision of the virtual human job task planning; it is characterized in that the virtual reality The real-time rendering and motion data acquisition module further includes: 虚拟现实硬件模块,其为沉浸式虚拟现实环境的创建提供硬件支持,辅助真人利用实现尽可能接近在轨真实情况的各类运动操作,并捕捉人体实时动作,同时,为通用虚拟场景构建、空间布局分析、虚拟样机快速评审提供真实体验支撑;Virtual reality hardware module, which provides hardware support for the creation of immersive virtual reality environment, assists real people to use various motion operations that are as close as possible to the real situation on orbit, and captures real-time human body movements. Layout analysis and virtual prototype rapid review provide real experience support; 虚拟现实实时渲染模块,用于支持将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,并提供基本交互操作,以辅助实现通用虚拟场景快速构建、空间布局预分析、虚拟数字样机快速评审、基本操作预评估,所述虚拟现实实时渲染模块进一步包括:The virtual reality real-time rendering module is used to support the real-time rendering of various CAD scenes to virtual reality without format conversion, and provides basic interactive operations to assist in the rapid construction of general virtual scenes, spatial layout pre-analysis, virtual Digital prototype rapid review, basic operation pre-evaluation, the virtual reality real-time rendering module further includes: 多通道展示模块,其采用Techviz软件中的Techviz XL Basic license基本模块及Techviz XL双通道主动立体节点将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,将当前虚拟场景进行高分辨率的可视化,同时支持多种虚拟现实显示方案,包括数据头盔、硬屏,其中,所述数据头盔和所述硬屏分别提供操作者视角及第三者评审视角;Multi-channel display module, which uses the Techviz XL Basic license basic module and the Techviz XL dual-channel active stereo node in the Techviz software to render various CAD scenes to virtual reality in real time without format conversion, and make the current virtual scene real-time High-resolution visualization, while supporting multiple virtual reality display solutions, including data helmets and hard screens, wherein the data helmet and the hard screen provide the operator's perspective and the third-party review perspective respectively; 视角跟踪导航模块,其采用Techviz软件中的Navigation Option基本导航模块和Tracking Option高级跟踪模块提供视角跟踪导航功能,通过三维空间手柄、主视角3D眼镜,实现系统视角或虚拟场景的自由导航,并可进行人体位置跟踪;The viewing angle tracking navigation module adopts the Navigation Option basic navigation module and the Tracking Option advanced tracking module in the Techviz software to provide the viewing angle tracking and navigation function. Through the three-dimensional space handle and the main viewing angle 3D glasses, the free navigation of the system viewing angle or the virtual scene can be realized. Carry out human position tracking; 交互浏览评估模块,其采用Techviz软件中的DMU1和DMU2模块提供交互浏览评估功能,用以辅助操作者利用三维空间手柄实现对虚拟场景评估,提供书签功能、测量功能、剖面功能、缩放功能、注释功能、隐藏和显示组件功能、快照功能;Interactive browsing evaluation module, which adopts the DMU1 and DMU2 modules in Techviz software to provide interactive browsing evaluation function, to assist the operator to use the three-dimensional space handle to realize the virtual scene evaluation, provide bookmark function, measurement function, section function, zoom function, annotation functions, hide and show component functions, snapshot functions; 虚拟装配模块,其采用Techviz软件中的虚拟装配模块,允许操作者对虚拟场景中的任一部件进行交互式移动,看到拆装移动过程的碰撞情况并对路径进行记录,为虚拟场景快速布局的预分析、以及装配、拆卸、维修操作的预评估提供支撑。Virtual assembly module, which uses the virtual assembly module in Techviz software, allows the operator to interactively move any part in the virtual scene, see the collision situation during the disassembly and movement process and record the path, and quickly lay out the virtual scene Provide support for the pre-analysis and pre-assessment of assembly, disassembly and maintenance operations. 2.根据权利要求1所述的面向航天器维修的虚拟人作业任务仿真分析系统,其特征在于,所述虚拟人驱动接口模块进一步包括:2. The virtual human task simulation analysis system for spacecraft maintenance according to claim 1, wherein the virtual human driving interface module further comprises: 第一虚拟人驱动接口,对应于有约束或支撑的运动工况,将所述真实人运动姿态以实时方式导入并驱动所述作业任务仿真分析模块的虚拟人;The first virtual human driving interface, corresponding to the restricted or supported movement conditions, imports the movement posture of the real human in a real-time manner and drives the virtual human of the task simulation analysis module; 第二虚拟人驱动接口,对应于无约束或支撑的自由态运动或需全身协调的位置转移类运动工况,将所述虚拟微重力环境下虚拟人运动姿态以离线方式导入并驱动所述作业任务仿真分析模块的虚拟人。The second virtual human driving interface, corresponding to unconstrained or supported free-state motion or position transfer motion working conditions that require whole-body coordination, imports the motion posture of the virtual human in the virtual microgravity environment offline and drives the operation The virtual human of the task simulation analysis module. 3.根据权利要求1所述的面向航天器维修的虚拟人作业任务仿真分析系统,其特征在于,所述通用虚拟场景构建及空间布局分析在虚拟现实实时渲染模块的支撑下可快速构建符合真实舱内或舱外活动的作业任务场景;操作流程规划及碰撞检测用以辅助规划完整作业任务涉及的所有操作序列。3. The virtual human task simulation analysis system for spacecraft maintenance according to claim 1, wherein the construction of the general virtual scene and the analysis of the spatial layout can be rapidly constructed under the support of the virtual reality real-time rendering module. Operation task scenarios of in-vehicle or extra-vehicle activities; operation process planning and collision detection are used to assist in planning all operation sequences involved in a complete operation task. 4.一种面向航天器维修的虚拟人作业任务仿真分析方法,其特征在于,所述面向航天器维修的虚拟人作业任务仿真分析方法包括:4. A virtual human task simulation analysis method for spacecraft maintenance, characterized in that the spacecraft maintenance-oriented virtual human task simulation analysis method comprises: 步骤1:在虚拟现实实时渲染及运动数据采集模块中,模拟宇航员在轨维修操作中较为复杂的动作,从而实现有约束或支撑的运动,进而获取真实人运动姿态;Step 1: In the virtual reality real-time rendering and motion data acquisition module, simulate the more complex movements of astronauts in on-orbit maintenance operations, so as to realize the movement with constraints or support, and then obtain the real human motion posture; 其中,为沉浸式虚拟现实环境的创建提供硬件支持,辅助真人利用实现尽可能接近在轨真实情况的各类运动操作,并捕捉人体实时动作,同时,为通用虚拟场景构建、空间布局分析、虚拟样机快速评审提供真实体验支撑;Among them, it provides hardware support for the creation of immersive virtual reality environment, assists real people to use various motion operations that are as close as possible to the real situation on orbit, and captures real-time human body movements. Prototype rapid review provides real experience support; 支持将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,并提供基本交互操作,以辅助实现通用虚拟场景快速构建、空间布局预分析、虚拟数字样机快速评审、基本操作预评估,其中采用Techviz软件中的Techviz XL Basic l icense基本模块及TechViz XL双通道主动立体节点将各类CAD场景在不需进行格式转换的情况下实时渲染至虚拟现实,将当前虚拟场景进行高分辨率的可视化,同时支持多种虚拟现实显示方案,包括数据头盔、硬屏,其中,所述数据头盔和所述硬屏分别提供操作者视角及第三者评审视角;It supports real-time rendering of various CAD scenes to virtual reality without format conversion, and provides basic interactive operations to assist in the rapid construction of general virtual scenes, pre-analysis of spatial layout, rapid review of virtual digital prototypes, and basic operation pre-analysis. Evaluation, in which the Techviz XL Basic license basic module and the TechViz XL dual-channel active stereo node in the Techviz software are used to render various CAD scenes to virtual reality in real time without format conversion, and high-resolution the current virtual scene High-efficiency visualization, while supporting a variety of virtual reality display solutions, including data helmets and hard screens, wherein the data helmet and the hard screen provide the operator's perspective and the third party's review perspective respectively; 采用Techviz软件中的Navigation Option基本导航模块和Tracking Option高级跟踪模块提供视角跟踪导航功能,通过三维空间手柄、主视角3D眼镜,实现系统视角或虚拟场景的自由导航,并可进行人体位置跟踪;The Navigation Option basic navigation module and the Tracking Option advanced tracking module in the Techviz software are used to provide perspective tracking and navigation functions. Through the three-dimensional space handle and the main perspective 3D glasses, free navigation of the system perspective or virtual scene can be realized, and human body position tracking can be performed; 采用Techviz软件中的DMU1和DMU2模块提供交互浏览评估功能,用以辅助操作者利用三维空间手柄实现对虚拟场景评估,提供书签功能、测量功能、剖面功能、缩放功能、注释功能、隐藏和显示组件功能、快照功能;The DMU1 and DMU2 modules in the Techviz software are used to provide interactive browsing and evaluation functions to assist the operator to use the three-dimensional space handle to realize the evaluation of the virtual scene, providing bookmark functions, measurement functions, section functions, zoom functions, annotation functions, hiding and displaying components function, snapshot function; 采用Techviz软件中的虚拟装配模块,允许操作者对虚拟场景中的任一部件进行交互式移动,看到拆装移动过程的碰撞情况并对路径进行记录,为虚拟场景快速布局的预分析、以及装配、拆卸、维修操作的预评估提供支撑;The virtual assembly module in the Techviz software allows the operator to interactively move any part in the virtual scene, see the collision situation during the disassembly and assembly movement process and record the path, and pre-analyze the rapid layout of the virtual scene, and Provide support for pre-assessment of assembly, disassembly and maintenance operations; 步骤2:在微重力虚拟环境构建模块中,负责实现无约束或支撑的自由态运动或需全身协调的位置转移类运动,从而获取虚拟微重力环境下虚拟人运动姿态;Step 2: In the building block of the microgravity virtual environment, it is responsible for realizing the free-state movement without constraints or support or the position transfer movement that requires whole-body coordination, so as to obtain the movement posture of the virtual human in the virtual microgravity environment; 在微重力虚拟环境构建模块中,进行微重力虚拟场景构建、物理属性建模、约束关系建模、虚拟人姿态设置、运动操作设计In the microgravity virtual environment construction module, microgravity virtual scene construction, physical attribute modeling, constraint relationship modeling, virtual human posture setting, and motion operation design 步骤3:在虚拟人驱动接口模块中,将所述真实人运动姿态和所述虚拟微重力环境下虚拟人运动姿态导入并驱动作业任务仿真分析模块的虚拟人,以实现人机功效仿真分析;Step 3: In the virtual human driving interface module, import the motion posture of the real person and the virtual human motion posture in the virtual microgravity environment and drive the virtual human in the task simulation analysis module to realize the man-machine efficacy simulation analysis; 步骤4:在作业任务仿真分析模块中,利用所述虚拟现实实时渲染及运动数据采集模块实现通用虚拟场景、空间布局的快速构建和预分析,利用所述虚拟现实实时渲染及运动数据采集模块和所述微重力虚拟环境构建模块生成作业任务操作流程所需各类动作,并进行虚拟人动作的人机功效仿真分析,以实现虚拟人作业任务规划的反馈优化或可行性决策。Step 4: In the job task simulation analysis module, use the virtual reality real-time rendering and motion data acquisition module to realize the rapid construction and pre-analysis of general virtual scenes and spatial layouts, use the virtual reality real-time rendering and motion data acquisition module and The microgravity virtual environment building module generates various actions required by the task operation process, and performs man-machine effect simulation analysis of virtual human actions, so as to realize feedback optimization or feasibility decision-making of virtual human task planning. 5.根据权利要求4所述的面向航天器维修的虚拟人作业任务仿真分析方法,其特征在于,所述虚拟人驱动接口模块进一步包括:5. The virtual human task simulation analysis method for spacecraft maintenance according to claim 4, wherein the virtual human driving interface module further comprises: 第一虚拟人驱动接口,对应于有约束或支撑的运动工况,将所述真实人运动姿态以实时方式导入并驱动所述作业任务仿真分析模块的虚拟人;The first virtual human driving interface, corresponding to the restricted or supported movement conditions, imports the movement posture of the real human in a real-time manner and drives the virtual human of the task simulation analysis module; 第二虚拟人驱动接口,对应于无约束或支撑的自由态运动或需全身协调的位置转移类运动工况,将所述虚拟微重力环境下虚拟人运动姿态以离线方式导入并驱动所述作业任务仿真分析模块的虚拟人。The second virtual human driving interface, corresponding to unconstrained or supported free-state motion or position transfer motion working conditions that require whole-body coordination, imports the motion posture of the virtual human in the virtual microgravity environment offline and drives the operation The virtual human of the task simulation analysis module. 6.根据权利要求4所述的面向航天器维修的虚拟人作业任务仿真分析方法,其特征在于,步骤4中的通用虚拟场景构建及空间布局分析在虚拟现实实时渲染模块的支撑下可快速构建符合真实舱内或舱外活动的作业任务场景;操作流程规划及碰撞检测用以辅助规划完整作业任务涉及的所有操作序列。6. The method for simulation and analysis of virtual human tasks for spacecraft maintenance according to claim 4, wherein the general virtual scene construction and spatial layout analysis in step 4 can be quickly constructed with the support of the virtual reality real-time rendering module Operational task scenarios that conform to real cabin or extravehicular activities; operation process planning and collision detection are used to assist in the planning of all operation sequences involved in a complete operation task.
CN201510004982.6A 2015-01-06 2015-01-06 Towards the visual human's job task simulation analysis system and method for spacecraft maintenance Active CN104573230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510004982.6A CN104573230B (en) 2015-01-06 2015-01-06 Towards the visual human's job task simulation analysis system and method for spacecraft maintenance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510004982.6A CN104573230B (en) 2015-01-06 2015-01-06 Towards the visual human's job task simulation analysis system and method for spacecraft maintenance

Publications (2)

Publication Number Publication Date
CN104573230A CN104573230A (en) 2015-04-29
CN104573230B true CN104573230B (en) 2018-05-18

Family

ID=53089284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510004982.6A Active CN104573230B (en) 2015-01-06 2015-01-06 Towards the visual human's job task simulation analysis system and method for spacecraft maintenance

Country Status (1)

Country Link
CN (1) CN104573230B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916182B (en) * 2015-05-27 2017-07-28 北京宇航系统工程研究所 A kind of immersive VR maintenance and Training Simulation System
US10043311B2 (en) * 2015-09-16 2018-08-07 The Boeing Company Immersive design management system
WO2017120768A1 (en) * 2016-01-12 2017-07-20 深圳多哚新技术有限责任公司 Heat dissipation apparatus based on hand-held terminal of vr glasses, hand-held terminal and vr glasses
CN106652721B (en) * 2016-10-21 2019-01-01 中国民航大学 A kind of aircraft maintenance virtual training system and method
CN106354043A (en) * 2016-11-05 2017-01-25 杭州畅动智能科技有限公司 Control system of device
CN106709164A (en) * 2016-12-07 2017-05-24 中国直升机设计研究所 Immersive virtual simulation-based repairability dynamic assessment method
CN106774949A (en) * 2017-03-09 2017-05-31 北京神州四达科技有限公司 Collaborative simulation exchange method, device and system
CN107092357B (en) * 2017-04-21 2021-05-28 厦门中智信系统集成有限公司 Holographic real-world building equipment management system based on virtual reality
CN107464465A (en) * 2017-07-31 2017-12-12 中国航空工业集团公司西安飞机设计研究所 A kind of active emergency evacuation virtual training system
CN107256654A (en) * 2017-07-31 2017-10-17 中国航空工业集团公司西安飞机设计研究所 A kind of guiding emergency evacuation virtual training system
CN108334697B (en) * 2017-09-28 2022-10-11 广西东方道迩科技有限公司 Simulation experiment method for evaluating three-dimensional reconstruction software
CN108363491B (en) * 2018-03-02 2019-03-26 北京空间技术研制试验中心 Spacecraft maintainable technology on-orbit terrestrial virtual verifies system and method
CN108629121B (en) * 2018-05-08 2022-04-01 山东师范大学 Virtual reality crowd simulation method and system based on terrorist valley effect avoidance
CN109801709B (en) * 2018-12-04 2022-11-18 广西峰和云启文化投资有限公司 Hand posture capturing and health state sensing system for virtual environment
CN112305935B (en) * 2019-07-31 2022-11-08 沈阳工业大学 A simulation method of shield machine tool changing process based on semi-physical simulation and digital simulation
CN111598273B (en) * 2020-07-20 2020-10-20 中国人民解放军国防科技大学 A maintenance detection method and device for an environmental control life insurance system based on VR technology
CN112329246A (en) * 2020-11-10 2021-02-05 上海精密计量测试研究所 Virtual verification method and system for maintainability design of solar cell array of space station
CN113269448A (en) * 2021-05-31 2021-08-17 北京理工大学 System and method for evaluating assembling performance of human-computer work efficiency in virtual reality environment
CN114280997B (en) * 2021-12-29 2024-05-24 东北电力大学 Microgravity environment simulation operation training system and control method thereof
CN114417618A (en) * 2022-01-21 2022-04-29 北京理工大学 A Virtual Reality-Assisted Assembly Complexity Evaluation System
CN115180190B (en) * 2022-08-24 2023-04-07 北京卫星环境工程研究所 Ground simulation system and experimental method for on-orbit operation extra-cabin maintenance tool of astronaut
CN115390677B (en) * 2022-10-27 2023-04-07 江苏中车数字科技有限公司 Assembly simulation man-machine work efficiency evaluation system and method based on virtual reality
CN115861496A (en) * 2022-11-28 2023-03-28 南方电网储能股份有限公司 Power scene virtual human body driving method and device based on dynamic capture system
CN116300517B (en) * 2022-12-26 2023-11-24 北京卫星环境工程研究所 Multi-person collaborative deduction simulation platform and method for spacecraft on-orbit missions
CN118448000A (en) * 2024-04-08 2024-08-06 北京诺亦腾科技有限公司 Rehabilitation training evaluation method, device, equipment and medium based on virtual reality

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
人在虚拟载人航天器虚拟乘员舱内环境中作业特性的仿真研究;周前祥等;《系统仿真学报》;20050131;第17卷(第1期);第69-71页 *
基于虚拟现实的灾难救援机器人实时感知与判定系统研究;王明辉等;《仪器仪表学报》;20110630;第32卷(第6期);第331-335页 *
载人航天器虚拟维修环境的设计与实现;李伟等;《航天器环境工程》;20140228;第31卷(第1期);引言、第2.5、3.2-3.3节 *

Also Published As

Publication number Publication date
CN104573230A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104573230B (en) Towards the visual human's job task simulation analysis system and method for spacecraft maintenance
Shukla et al. Virtual manufacturing: an overview
Jayaram et al. Assessment of VR technology and its applications to engineering problems
Xia et al. A new type haptics-based virtual environment system for assembly training of complex products
Seth et al. SHARP: a system for haptic assembly and realistic prototyping
Marzano et al. Design of a virtual reality framework for maintainability and assemblability test of complex systems
Xia et al. A review of virtual reality and haptics for product assembly (part 1): rigid parts
Huang et al. An approach for augmented learning of finite element analysis
CN112380735A (en) Cabin engineering virtual assessment device
Guo et al. An evaluation method using virtual reality to optimize ergonomic design in manual assembly and maintenance scenarios
Bruno et al. A Mixed Reality system for the ergonomic assessment of industrial workstations
CN111598273B (en) A maintenance detection method and device for an environmental control life insurance system based on VR technology
CN106650027A (en) Launching site digital joint training test method
Keller et al. Use of virtual reality for optimizing the life cycle of a fusion component
Keller et al. ITER design, integration and assembly studies assisted by virtual reality
CN107424207A (en) A kind of Virtual Maintenance Simulation method and device based on data fusion
Cichon et al. Simulation-based control and simulation-based support in erobotics applications
Baratoff et al. Developing and applying AR Technology in design, production, service and training
Talaba et al. Virtual reality in product design and robotics
Jayaram et al. Case studies using immersive virtual assembly in industry
CN112329246A (en) Virtual verification method and system for maintainability design of solar cell array of space station
CN114417618A (en) A Virtual Reality-Assisted Assembly Complexity Evaluation System
Vlasov et al. Application of VR and AR technologies in educational process
Li et al. The application research on the virtual maintenance in aircraft design
Li et al. Accessibility evaluation in aircraft cabin based on virtual reality

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant