CN104476544A - Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system - Google Patents
Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system Download PDFInfo
- Publication number
- CN104476544A CN104476544A CN201410601411.6A CN201410601411A CN104476544A CN 104476544 A CN104476544 A CN 104476544A CN 201410601411 A CN201410601411 A CN 201410601411A CN 104476544 A CN104476544 A CN 104476544A
- Authority
- CN
- China
- Prior art keywords
- module
- dead zone
- adaptive
- control
- inverse model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000007 visual effect Effects 0.000 title claims abstract description 77
- 230000003044 adaptive effect Effects 0.000 claims abstract description 69
- 230000033001 locomotion Effects 0.000 claims abstract description 31
- 238000004891 communication Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 230000009021 linear effect Effects 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 230000009022 nonlinear effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
- Control Of Position Or Direction (AREA)
Abstract
本发明公开了一种视觉伺服机械臂系统的自适应死区逆模型发生装置。所述的视觉伺服机械臂系统由视觉伺服控制器、视觉模块、运动控制模块、驱动模块、六自由度机械臂、力矩反馈模块、速度与位置采集模块、和检测模块组成;上述视觉伺服控制器中的自适应死区逆模型发生装置用于消除死区非线性约束,该装置包含:死区逆模型模块、自适应模块、运算控制模块;死区逆模型模块用于构建平滑的死区非线性逆模型;自适应模块采用自适应律来在线调整预估的死区参数,再传送到死区逆模型模块中改变逆模型的参数;通过上述模块之间的信号通信,在视觉伺服机械臂内部形成一个闭环控制系统。本发明有效地消除死区非线性约束的影响,达到较高的图像跟踪精度。
The invention discloses a device for generating an adaptive dead zone inverse model of a visual servo manipulator system. The visual servo manipulator system is composed of a visual servo controller, a vision module, a motion control module, a drive module, a six-degree-of-freedom manipulator, a torque feedback module, a speed and position acquisition module, and a detection module; the above-mentioned visual servo controller The adaptive dead zone inverse model generating device in the system is used to eliminate the dead zone nonlinear constraints, and the device includes: dead zone inverse model module, adaptive module, and operation control module; the dead zone inverse model module is used to construct a smooth dead zone non-linear Linear inverse model; the adaptive module adopts the adaptive law to adjust the estimated dead zone parameters online, and then transmits to the dead zone inverse model module to change the parameters of the inverse model; through the signal communication between the above modules, the visual servo manipulator A closed-loop control system is formed internally. The invention effectively eliminates the influence of the non-linear constraint of the dead zone and achieves higher image tracking precision.
Description
技术领域technical field
本发明涉及一种视觉伺服机械臂系统的自适应死区逆模型发生装置,属于视觉伺服机械臂系统在输入信号上的改造技术。The invention relates to an adaptive dead zone inverse model generating device of a visual servo manipulator system, which belongs to the transformation technology of the visual servo manipulator system on the input signal.
背景技术Background technique
机器人的研究开始于20世纪中叶,它伴随着自动化和计算机技术的发展以及原子能的开发利用而发展起来。机器人一直处于从简单到复杂,从单一到多样,从低级到高级的不断发展过程中,随着电子器件技术的发展,计算机的计算处理能力得到极大的提高与各种各样的传感器应用在机器人系统上,大多数机器人工作环境是预先设定好的,所以一旦工作环境发生任何变化,就需要重新设定机器人系统。这样一来便大大地限制了工业机器人的应用范围。为了改变这种情况,使机器人适应各种变化的环境,人们将各种外部传感器如触觉、距离、力觉和视觉传感器应用到机器人控制系统中,为了给机器人提供广泛丰富的信息而无需对环境进行接触式测量,进而使机器人具有更广的适用范围及更高的性能,人们为机器人引入视觉传感器。在机械臂的视觉伺服系统研究之中,机器人的视觉传感器与执行器之间的智能控制策略具有广泛的应用前景,并已经成为一个研究热点。所谓视觉伺服,就是将视觉传感器所得到的目标位置信息作为反馈,从而构造位置闭环的机器人控制系统P。。视觉伺服通过自动获取和分析目标图像来控制机器人运动。总之,视觉伺服就是利用机器视觉的原理,对图像反馈信息进行快速处理,并根据处理得到的信息快速给出位置控制信号,构成位置闭环的机器人控制。Robot research began in the middle of the 20th century, and it developed along with the development of automation and computer technology and the development and utilization of atomic energy. Robots have been in the process of continuous development from simple to complex, from single to diverse, from low-level to high-level. With the development of electronic device technology, the computing power of computers has been greatly improved and various sensors are used in On the robot system, the working environment of most robots is pre-set, so once there is any change in the working environment, the robot system needs to be reset. As a result, the application range of industrial robots is greatly limited. In order to change this situation and make the robot adapt to various changing environments, people apply various external sensors such as touch, distance, force and vision sensors to the robot control system. To carry out contact measurement, so that the robot has a wider range of application and higher performance, people introduce visual sensors for robots. In the research of the visual servo system of the manipulator, the intelligent control strategy between the robot's visual sensor and the actuator has broad application prospects, and has become a research hotspot. The so-called visual servoing is to use the target position information obtained by the visual sensor as feedback to construct a position closed-loop robot control system P. . Visual servoing controls robot motion by automatically acquiring and analyzing images of objects. In short, visual servoing is to use the principle of machine vision to quickly process the image feedback information, and quickly give the position control signal according to the processed information to form a position closed-loop robot control.
20世纪70年代初,人们开始将计算机视觉与机器人伺服技术结合起来。Shirai和Inoue是最早将视觉应用于机器人系统的学者。他们采用的视觉伺服方式是通过视觉系统采集到的图像信息来计算估计目标的位置,这是一种静态的视觉控制方式。视觉与机器人系统的连接是开环的,所以机器人的定位精度与视觉系统精度以及机器人精度有关。其中,视觉系统精度主要受视觉标定误差和分辨率的影响。而机器人精度主要与关节位置传感器精度、机器人逆运动In the early 1970s, people began to combine computer vision with robotic servo technology. Shirai and Inoue were the first scholars to apply vision to robotic systems. The visual servo method they adopt is to calculate and estimate the position of the target through the image information collected by the visual system, which is a static visual control method. The connection between the vision and the robot system is an open loop, so the positioning accuracy of the robot is related to the accuracy of the vision system and the robot. Among them, the accuracy of the vision system is mainly affected by the vision calibration error and resolution. The accuracy of the robot is mainly related to the accuracy of the joint position sensor and the inverse motion of the robot.
学模型精度、关节控制算法、齿隙和机器人柔性等因素有关。按照反馈信息的不同,视觉伺服主要分为基于图像的视觉伺服和基于位置的视觉伺服两类。基于图像的视觉伺服直接以图像计算误差,传给视觉控制器来规划机器人的运动。这种方法不需要计算目标的位置,对机器人的位姿不敏感,但是控制器的设计难度比较大。基于位置的视觉伺服根据图像和机器人自身的位姿来计算目标的位置,视觉控制器根据目标位置来规划机器人的运动。这种方法的优点是反馈到视觉控制器的信号是位置信号,而内环控制器需要的也是位置信号,因此视觉控制器的设计实现都相对容易。但该方法需要计算图像的三维信息,获取目标的空间坐标,同时,目标的位置依赖于机器人和摄像机的位姿,对机器人和摄像机的标定误差比较敏感。It is related to factors such as the accuracy of the scientific model, the joint control algorithm, the backlash and the flexibility of the robot. According to the different feedback information, visual servoing is mainly divided into image-based visual servoing and position-based visual servoing. Image-based visual servoing directly uses images to calculate errors and transmits them to the vision controller to plan the movement of the robot. This method does not need to calculate the position of the target and is not sensitive to the pose of the robot, but the design of the controller is relatively difficult. The position-based visual servoing calculates the position of the target according to the image and the pose of the robot itself, and the vision controller plans the movement of the robot according to the target position. The advantage of this method is that the signal fed back to the vision controller is a position signal, and the inner loop controller also needs a position signal, so the design and implementation of the vision controller is relatively easy. However, this method needs to calculate the three-dimensional information of the image and obtain the spatial coordinates of the target. At the same time, the position of the target depends on the pose of the robot and the camera, and is sensitive to the calibration error of the robot and the camera.
但目前的关键问题是:第一,普遍的带视觉伺服机械臂系统都需要对相机进行标定,然而相机标定是一件繁琐且效率低下的工作,尽管已经有不少的方法被用于视觉系统的标定,但是相机标定的成本依然很高。对摄像机的外部参数和内部参数进行求取的过程即为摄像机的标定。视觉系统的工作原理就是从摄像机获取二维图像信息出发,计算出三维环境中物体的形状、位置等几何信息,并由此重新构建三维物体。二维图像上每一点的位置与三维空间中该物体表面相应点的几何位置相关。这种相互关系决定于摄像机成像几何模型,几何模型的参数又称为摄像机参数,主要包括外参数和内参数。其中外参数是指摄像机坐标系在参考坐标系中的表示,内参数则主要包括成像平面坐标到图像坐标的放大系数、光轴中心点的图像坐标、镜头畸变系数等。摄像机标定提供了专业摄像机与非测量摄像机之间的联系。而所谓非测量摄像机是指其内部参数完全未知,部分未知或者原则上不确定的这样一类摄像机。摄像机标定就是通过标定实验获得摄像机的内、外参数;第二,由于齿轮难以完全紧凑咬合以及机械随使用时间和次数的损耗,在机械臂系统的力矩输入会存在各种各样的非线性因素,不仅会大大影响控制的效果更会导致伺服系统不稳定,其中比较常见的就是输入死区非线性约束。在驱动器为电机提供输入力矩时,存在的死区非线性表现为齿轮咬合出现重叠,当一定范围内力矩可以准确的施加在电机上,但是当力矩超出死区阀值时,表现为输施加到电机上的力矩呈现阀值特性,保持死区的输入最大值,使控制性能剧烈下降甚至会导致不稳定。But the key issues at present are: First, the common robotic arm system with visual servo needs to calibrate the camera. However, camera calibration is a cumbersome and inefficient work, although many methods have been used in vision systems. calibration, but the cost of camera calibration is still high. The process of calculating the external parameters and internal parameters of the camera is the calibration of the camera. The working principle of the vision system is to start from the two-dimensional image information obtained by the camera, calculate the geometric information such as the shape and position of the object in the three-dimensional environment, and then reconstruct the three-dimensional object. The position of each point on the two-dimensional image is related to the geometric position of the corresponding point on the surface of the object in three-dimensional space. This interrelationship depends on the camera imaging geometric model, and the parameters of the geometric model are also called camera parameters, mainly including external parameters and internal parameters. The external parameters refer to the representation of the camera coordinate system in the reference coordinate system, and the internal parameters mainly include the magnification factor from the imaging plane coordinates to the image coordinates, the image coordinates of the center point of the optical axis, and the lens distortion coefficient. Camera calibration provides the link between professional cameras and non-surveyed cameras. The so-called non-measurement camera refers to such a type of camera whose internal parameters are completely unknown, partially unknown or in principle uncertain. Camera calibration is to obtain the internal and external parameters of the camera through calibration experiments; secondly, because the gears are difficult to fully mesh and the machinery wears down with time and times of use, there will be various nonlinear factors in the torque input of the manipulator system , will not only greatly affect the control effect but also cause the servo system to be unstable, among which the more common one is the input dead zone nonlinear constraint. When the driver provides the input torque for the motor, the non-linearity of the dead zone is manifested by the overlap of the gear meshing. When the torque can be accurately applied to the motor within a certain range, but when the torque exceeds the dead zone threshold, it appears that the input is applied to the motor. The torque on the motor presents a threshold characteristic, maintaining the maximum input value of the dead zone, causing a drastic drop in control performance and even instability.
发明内容Contents of the invention
本发明的目的在于考虑上述的视觉伺服机械臂控制系统在输入信号上受死区非线性约束影响而提出的一种视觉伺服机械臂系统的自适应死区逆模型发生装置。The object of the present invention is to propose an adaptive dead zone inverse model generation device for a visual servo manipulator system considering that the above-mentioned visual servo manipulator control system is affected by the dead zone nonlinear constraint on the input signal.
本发明的技术方案是:视觉伺服机械臂系统的自适应死区逆模型发生装置,包括有视觉伺服控制器(1)、视觉模块(2)、运动控制模块(3)、驱动模块(4)、六自由度机械臂(5)、力矩反馈模块(6)、速度(7)与位置采集模块(8)、和检测模块(9)组成;视觉伺服控制器(1)由计算机控制单元(15)、控制信号发生单元(11)、自适应死区逆模型发生装置(12)、自适应相机标定装置(13),通信单元(14)组成;其特征在于,视觉伺服控制器(1)接收图像处理单元(23)得到的实际图像轨迹和期望的图像轨迹形成的误差信号、由位置采集模块(7)采集的位置信号、由速度采集模块(8)采集的速度信号、由力矩反馈模块(6)采集的力矩信号,通过计算机运算控制单元(15)运算,由伺服视觉控制器(1)与视觉模块(2)之间的通信单元(14)(21)进行信息交换通过自适应相机标定装置(13)在线标定相机,由自适应死区逆模型发生装置(12)构建死区逆并作用于控制信号,由控制信号发生单元(11)给控制模块(3)发送控制信号;运动控制模块(3)调制PWM波于驱动模块(4)驱动电机传动机械臂(5)运动;由检测模块(9)检测驱动模块(4)中的电机电流、速度和位置信息,并反馈与运动控制模块(3)实现闭环控制;视觉模块(2)采集机械臂(5)末端特征点的图像坐标并反馈于控制器(1)的输入,形成带死区非线性约束的视觉伺服控制系统的闭环控制。The technical solution of the present invention is: an adaptive dead zone inverse model generating device of a visual servo manipulator system, including a visual servo controller (1), a vision module (2), a motion control module (3), and a drive module (4) , a six-degree-of-freedom mechanical arm (5), a torque feedback module (6), a speed (7) and a position acquisition module (8), and a detection module (9); the visual servo controller (1) is composed of a computer control unit (15 ), a control signal generating unit (11), an adaptive dead zone inverse model generating device (12), an adaptive camera calibration device (13), and a communication unit (14); it is characterized in that the visual servo controller (1) receives The actual image trajectory obtained by the image processing unit (23) and the error signal formed by the expected image trajectory, the position signal collected by the position acquisition module (7), the speed signal collected by the speed acquisition module (8), and the torque feedback module ( 6) The torque signal collected is calculated by the computer operation control unit (15), and the information is exchanged by the communication unit (14) (21) between the servo vision controller (1) and the vision module (2) and calibrated by the adaptive camera The device (13) calibrates the camera online, the dead zone inversion is constructed by the adaptive dead zone inverse model generating device (12) and acts on the control signal, and the control signal generating unit (11) sends the control signal to the control module (3); the motion control The module (3) modulates the PWM wave in the drive module (4) to drive the motor to drive the mechanical arm (5) to move; the detection module (9) detects the motor current, speed and position information in the drive module (4), and feedbacks and motion control The module (3) realizes closed-loop control; the vision module (2) collects the image coordinates of the feature points at the end of the manipulator (5) and feeds back the input of the controller (1), forming a closed-loop visual servo control system with dead zone nonlinear constraints control.
上述的自适应死区逆模型发生装置(12),包含自适应模块(121)、死区逆模型模块(122)、运算控制模块(123);自适应模块(121)包含自适应律存储器(1211)、死区参数调整值存储器(1212)、死区参数初始值存储值(1213);死区逆模型模块(122)包含参数存储值(1221)、功率放大器(1222)、压电驱动(1223)、阀值电路(1224)、发生电路(1225);运算控制模块(123)包含运算存储器(1231)(1234)、积分模块(1232)、乘除运算模块(1233)、加减运算模块(1234)。The above-mentioned adaptive dead zone inverse model generator (12) comprises an adaptive module (121), a dead zone inverse model module (122), an operation control module (123); the adaptive module (121) comprises an adaptive law memory ( 1211), dead zone parameter adjustment value memory (1212), dead zone parameter initial value storage value (1213); dead zone inverse model module (122) includes parameter storage value (1221), power amplifier (1222), piezoelectric drive ( 1223), threshold value circuit (1224), generating circuit (1225); operation control module (123) comprises operation memory (1231) (1234), integration module (1232), multiplication and division operation module (1233), addition and subtraction operation module ( 1234).
上述的自适应死区逆模型发生装置(12)中,死区逆模型模块(122)的参数存储器(1221)接受由通信单元(14)、运算存储器(1231)传输的数据,得到死区逆模型的预估参数向量进而调控功率放大电路(1222)施加于验电驱动(1223)的电压值,阀值电路(1224)利用电压信号给发生电路(1225)进行开关控制,最后发生电路将死区逆模型模块(122)产生的用于消除死区非线性影响的控制信号发送到控制信号发生单元(11)中;同时死区参数调整值存储器(1212)与参数存储器(1221)进行相机预估参数以及死区信息交换。In the above-mentioned adaptive dead zone inverse model generation device (12), the parameter memory (1221) of the dead zone inverse model module (122) accepts the data transmitted by the communication unit (14) and the operation memory (1231), and obtains the dead zone inverse a vector of estimated parameters for the model Furthermore, the voltage value applied by the power amplifier circuit (1222) to the electric test drive (1223) is regulated, and the threshold value circuit (1224) uses the voltage signal to perform switch control for the generation circuit (1225), and finally the generation circuit reverses the dead zone to the model module (122 ) to send the control signal used to eliminate the non-linear influence of the dead zone to the control signal generating unit (11); at the same time, the dead zone parameter adjustment value memory (1212) and the parameter memory (1221) carry out camera estimation parameters and dead zone information exchange.
上述的自适应死区逆模型发生装置(12)中,自适应模块(121)中的自适应律存储器(1211)存储了自适应律的编程代码,用数学形式可以表达为:In the above-mentioned self-adaptive dead zone inverse model generating device (12), the self-adaptive law memory (1211) in the self-adaptive module (121) has stored the programming code of self-adaptive law, can be expressed as in mathematical form:
其中为死区逆模型的预估参数向量的导数,为正定对称矩阵,为死区结构参数预估值,为关节速度误差,为与视觉系统相关的域参考角速度,为角速度;前述的参数为由参数存储器(1221)通过死区参数调整值存储器(1212)传递到自适应律存储器(1211)中;在系统运行初期,由死区参数初始值存储器(1213)将初始信息传递到运算存储器(1234)中;在系统运行后,由自适应律存储器(1211)和死区参数调整值存储器(1212)将要进行计算的数据传递到运算存储器(1234)中。in is the vector of estimated parameters for the inverse model of the dead zone derivative of is a positive definite symmetric matrix, is the estimated value of the dead zone structure parameter, is the joint velocity error, is the domain reference angular velocity associated with the vision system, is the angular velocity; the aforementioned parameters are passed to the adaptive law memory (1211) by the parameter memory (1221) through the dead zone parameter adjustment value memory (1212); at the initial stage of system operation, the dead zone parameter initial value memory (1213) will The initial information is transferred to the operation memory (1234); after the system runs, the data to be calculated is transferred to the operation memory (1234) by the adaptive law memory (1211) and the dead zone parameter adjustment value memory (1212).
上述的自适应死区逆模型发生装置(12)中,运算控制模块中的运算存储器(1234)将接受到的数据同时由积分模块(1232)、微分模块(1232)、乘除运算模块(1233)和加减模块(1233)进行微积分、乘除加减运算,然后将计算后的数据存入运算存储器(1231)中,再传递与参数存储器(1221)中。In the above-mentioned self-adaptive dead zone inverse model generation device (12), the data received by the operation memory (1234) in the operation control module is simultaneously processed by the integral module (1232), the differential module (1232), the multiplication and division operation module (1233) Perform calculus, multiplication, division, addition and subtraction operations with the addition and subtraction module (1233), and then store the calculated data in the operation memory (1231), and then transfer it to the parameter memory (1221).
上述的自适应死区逆模型发生装置(12)需要通过总线与通信单元(14)和自适应相机标定装置(13)相连,自适应律存储器(1211)中的参数变量值为视觉模块(2)传递到控制器的数据以及位置采集模块(8)、速度采集模块(7)中采集的位置信号与速度信号,死区逆模型模块(122)中的参数存储器(1211)也存储力矩反馈模块(6)传递的信号;由死区逆模型(122)产生消除死区非线性影响的力矩发生信号。The above-mentioned adaptive dead zone inverse model generation device (12) needs to be connected with the communication unit (14) and the adaptive camera calibration device (13) through the bus, and the parameter variable value in the adaptive law memory (1211) is the vision module (2 ) data transmitted to the controller and the position signal and speed signal collected in the position acquisition module (8) and the speed acquisition module (7), the parameter memory (1211) in the dead zone inverse model module (122) also stores the torque feedback module (6) The transmitted signal; the torque generation signal that eliminates the nonlinear influence of the dead zone is generated by the dead zone inverse model (122).
上述的带死区非线性约束的视觉伺服机械臂系统中,视觉伺服控制器(1)与视觉模块(2)通过通信单元(14)(21)通信,自适应相机标定装置(13)在线预估视觉模块(2)的模型参数,建立一个非标定的独立深度视觉模型,并把相机单元(24)拍摄的图像通过图像处理单元(23)与运算控制单元(22)进行实时处理得到特征点的实际图像轨迹。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the visual servo controller (1) communicates with the vision module (2) through the communication unit (14) (21), and the adaptive camera calibration device (13) online Estimate the model parameters of the vision module (2), establish a non-calibrated independent depth vision model, and process the image captured by the camera unit (24) in real time through the image processing unit (23) and the operation control unit (22) to obtain the feature points the actual image trajectory.
上述的带死区非线性约束的视觉伺服机械臂系统中,视觉伺服控制器(1)接收由输入图像轨迹信号以及由视觉系统经图像处理后得到的实际图像轨迹信号形成的图像误差,接收位置采集模块(8)和速度采集模块(7)得到的机械臂关节角度、关节速度、末端位置,接收由力矩反馈模块(6)采集的力矩经过死区非线性模块后的力矩变化,实现对机械臂的位置信息的采集,量化机械臂的运动轨迹,并把期望的机械臂位置信息直接传入到运动控制模块。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the visual servo controller (1) receives the image error formed by the input image trajectory signal and the actual image trajectory signal obtained by the visual system after image processing, and receives the position The acquisition module (8) and the speed acquisition module (7) obtain the joint angle, joint speed, and end position of the manipulator, and receive the torque change after the torque collected by the torque feedback module (6) passes through the dead zone nonlinear module, so as to realize the control of the mechanical arm. Collect the position information of the arm, quantify the movement trajectory of the manipulator, and directly transmit the expected position information of the manipulator to the motion control module.
上述的带死区非线性约束的视觉伺服机械臂系统中,运动控制模块(3)采用DSP控制器实现三闭环控制和PWM控制;所述三闭环控制的最外环为由位置控制(31)实现的位置控制环,中间一环为由速度控制(32)实现的速度控制环,最内环为由电流控制(33)实现的电流控制环,所述DSP控制器与控制信号发生单元通信。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the motion control module (3) uses a DSP controller to realize three closed-loop control and PWM control; the outermost loop of the three closed-loop control is controlled by the position (31) The realized position control loop, the middle one is the speed control loop realized by the speed control (32), the innermost loop is the current control loop realized by the current control (33), and the DSP controller communicates with the control signal generation unit.
上述的带死区非线性约束的视觉伺服机械臂系统中,驱动模块(4)接受PWM控制(34)发送的PWM调制信号,驱动器(41)驱动带死区约束的电机(42)(43),电力拖动传动装置(44)并由此拖动六自由度机械臂(5)运动。In the above visual servo manipulator system with dead zone nonlinear constraints, the drive module (4) receives the PWM modulation signal sent by the PWM control (34), and the driver (41) drives the motor (42) (43) with dead zone constraints , the electric power drags the transmission device (44) and thereby drags the six-degree-of-freedom mechanical arm (5) to move.
上述的带死区非线性约束的视觉伺服机械臂系统中,力矩反馈模块(6)采集驱动器(41)的施加于电机上未经过死区约束的力矩和经过死区约束后的电机转速,实现死区约束对视觉伺服控制器(1)的反馈。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the torque feedback module (6) collects the torque applied to the motor by the driver (41) without the dead zone constraint and the motor speed after the dead zone constraint, to realize The dead zone constrains the feedback to the visual servo controller (1).
上述的带死区非线性约束的视觉伺服机械臂系统中,检测模块(9)实现检测并提供三闭环控制的闭环反馈信号,包含QEP电路(91)和频率测量电路(92)、光电编码器(93)、A/D转换器(94)、电流传感器(95);电机转轴上的光电编码器(93)输出的脉冲信号传输给QEP电路(91)和频率测量电路(92),脉冲信号经QEP电路(91)处理得到位置反馈信号,并传送给运动控制模块(3)中的位置控制环(31),脉冲信号经频率测量电路处理,得到速度反馈信号,并传送给运动控制模块(3)中的速度控制模块(32),电流传感器(95)检测电机绕组电流,并通过A/D转换器(94)得到其数字电流信号,再将其传送给运动控制模块(3)中的电流控制环(33)。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the detection module (9) realizes detection and provides closed-loop feedback signals for three closed-loop control, including QEP circuit (91), frequency measurement circuit (92), photoelectric encoder (93), A/D converter (94), current sensor (95); the pulse signal output by the photoelectric encoder (93) on the motor shaft is transmitted to the QEP circuit (91) and the frequency measurement circuit (92), and the pulse signal After being processed by the QEP circuit (91), the position feedback signal is obtained and sent to the position control loop (31) in the motion control module (3). The pulse signal is processed by the frequency measurement circuit to obtain a speed feedback signal and sent to the motion control module ( 3) in the speed control module (32), the current sensor (95) detects the motor winding current, and obtains its digital current signal through the A/D converter (94), and then sends it to the motion control module (3) Current control loop (33).
上述的带死区非线性约束的视觉伺服机械臂系统中,六自由度机械臂(5)在末端标记多个可以由相机单元(24)拍摄、图像处理单元(23)检测到的特征点,该特征点的图像坐标由视觉模块(2)得到。In the above-mentioned visual servo manipulator system with dead zone nonlinear constraints, the six-degree-of-freedom manipulator (5) marks a plurality of feature points at the end that can be photographed by the camera unit (24) and detected by the image processing unit (23), The image coordinates of the feature points are obtained by the vision module (2).
本发明采用手眼分离的视觉伺服机械臂结构,即相机安装在便于观察机械臂末端特征点的固定位置,通过拍照将图像传递到图像处理单元提取出特征点的图像轨迹。另外充分考虑到相机标定的问题,通过自适应相机标定装置在线预估视觉模型,减少了标定相机产生的繁复工作量。同时本发明也充分考虑到机械臂系统在在面临失去非线性约束输入的情况下,利用自适应死区逆模型发生装置消除死区非线性约束,采取的自适应律可以有效建立对应的死区逆模型。实验证明这种方法达到了很好的效果,本发明是一种性能优良,易于在计算机系统上搭建的的自适应死区逆模型发生装置。The present invention adopts a visual servo manipulator structure with hand-eye separation, that is, the camera is installed at a fixed position convenient for observing the feature points at the end of the manipulator, and the image is transmitted to the image processing unit to extract the image trajectory of the feature points by taking pictures. In addition, the problem of camera calibration is fully considered, and the online estimation of the visual model through the adaptive camera calibration device reduces the complicated workload of calibrating the camera. At the same time, the present invention also fully considers that when the manipulator system loses the nonlinear constraint input, it uses the adaptive dead zone inverse model generating device to eliminate the dead zone nonlinear constraint, and the adaptive law adopted can effectively establish the corresponding dead zone inverse model. Experiments have proved that this method has achieved very good results. The present invention is an adaptive dead zone inverse model generation device with excellent performance and easy to build on a computer system.
附图说明Description of drawings
图1带死区非线性约束的视觉伺服机械臂系统总体框图Fig.1 Overall block diagram of visual servo manipulator system with dead zone nonlinear constraints
图2自适应死区逆模型发生装置原理框图Figure 2 Principle block diagram of adaptive dead zone inverse model generator
图3手眼分离视觉伺服物理结构示意图Figure 3 Schematic diagram of the physical structure of hand-eye separation visual servoing
图4构建的逆死区模型以及输入力矩通过的死区非线性示意图The inverse dead zone model constructed in Fig. 4 and the nonlinear schematic diagram of the dead zone through which the input torque passes
图5未采用自适应死区逆模型发生装置跟踪轨迹示意图Figure 5 Schematic diagram of the tracking trajectory of the device without adaptive dead zone inverse model generation
图6采用自适应死区逆模型发生装置跟踪轨迹示意图Figure 6 Schematic diagram of tracking trajectory using adaptive dead zone inverse model generation device
图7视觉伺服机械臂控制系统的控制框图Figure 7 Control block diagram of visual servo manipulator control system
具体实施方式Detailed ways
本发明涉及一种视觉伺服机械臂控制系统的死区逆模型发生装置,利用设计的自适应律来在线预估死区非线性约束模型的参数,再构建相对应的死区逆模型,能有效消除输入信号受约束下视觉伺服控制器控制机械臂使其末端特征点在图像平面上渐进跟踪期望的图像轨迹,达到较高的图像跟踪精度。下面结合附图和具体实例对本发明所设计的视觉伺服机械臂控制系统的死区逆模型发生装置进行详细的说明。The invention relates to a dead zone inverse model generating device of a visual servo manipulator control system, which uses the designed adaptive law to estimate the parameters of the dead zone nonlinear constraint model online, and then constructs the corresponding dead zone inverse model, which can effectively The visual servo controller controls the manipulator to make the end feature points gradually track the desired image trajectory on the image plane under the condition that the input signal is eliminated, so as to achieve high image tracking accuracy. The dead zone inverse model generation device of the visual servo manipulator control system designed by the present invention will be described in detail below in conjunction with the accompanying drawings and specific examples.
图1为带死区非线性约束的视觉伺服机械臂系统总体框图。在图1中设计视觉伺服控制器的目的是:在相机未标定以及机械臂输入力矩受爱去非线性约束的情况下,控制机械臂的运动使机械臂末端上的特征点在图像平面上的投影能够跟踪跟踪给定的期望图像轨迹。控制器视觉伺服控制器接收图像处理单元得到的实际图像轨迹和期望的图像轨迹形成的误差信号、由位置采集模块采集的位置信号、由速度采集模块采集的速度信号、由力矩反馈模块采集的力矩信号,通过计算机运算控制单元运算,由伺服视觉控制器与视觉模块之间的通信单元进行信息交换通过自适应相机标定装置在线标定相机,由自适应死区逆模型发生装置构建死区逆并作用于控制信号,由控制信号发生单元给控制模块发送控制信号;运动控制模块调制PWM波于驱动模块驱动电机传动机械臂运动;由检测模块检测驱动模块中的电机电流、速度和位置信息,并反馈与运动控制模块实现闭环控制;视觉模块采集机械臂末端特征点的图像坐标并反馈于控制器的输入,形成带死区非线性约束的视觉伺服控制系统的闭环控制,控制器可以根据图像反馈,速度反馈及时调整控制器输出提供最佳的图像跟踪性能。Figure 1 is the overall block diagram of the visual servo manipulator system with nonlinear constraints in the dead zone. The purpose of designing the visual servo controller in Figure 1 is to control the movement of the manipulator so that the feature points on the end of the manipulator are in the image plane when the camera is not calibrated and the input torque of the manipulator is constrained by nonlinearity. Projection is able to track a given desired image trajectory. Controller The visual servo controller receives the error signal formed by the actual image trajectory and the expected image trajectory obtained by the image processing unit, the position signal collected by the position acquisition module, the speed signal collected by the speed acquisition module, and the torque collected by the torque feedback module The signal is calculated by the computer operation control unit, and the information is exchanged by the communication unit between the servo vision controller and the vision module. The camera is calibrated online by the adaptive camera calibration device, and the dead zone inversion is constructed by the adaptive dead zone inverse model generation device. Based on the control signal, the control signal generation unit sends the control signal to the control module; the motion control module modulates the PWM wave in the drive module to drive the motor to drive the mechanical arm; the detection module detects the motor current, speed and position information in the drive module, and feeds back Realize closed-loop control with the motion control module; the vision module collects the image coordinates of the feature points at the end of the manipulator and feeds back to the input of the controller to form a closed-loop control of the visual servo control system with dead zone nonlinear constraints. The controller can feedback according to the image, Velocity feedback adjusts controller output in time to provide optimal image tracking performance.
图7为视觉伺服机械臂控制系统的控制框图,该控制框图就是图一的原理装置图在控制上的体现。Fig. 7 is a control block diagram of the visual servo manipulator control system, which is the embodiment of the principle device diagram in Fig. 1 in terms of control.
图2为自适应死区逆模型发生装置原理框图。可以从图1中得到图2为视觉伺服控制器的一部分,该装置的作用是构建一个可以在线调整的死区逆模型消除输入非线性的影响,最大限度的还原设计的输入力矩。死区逆模型模块根据得到的预估参数向量构建死区逆模型,自适应模块将设计好的自适应律传递到运算控制模块中进行计算,根据自适应律:Fig. 2 is a schematic block diagram of an adaptive dead zone inverse model generating device. It can be obtained from Figure 1 that Figure 2 is a part of the visual servo controller. The function of this device is to construct a dead zone inverse model that can be adjusted online to eliminate the influence of input nonlinearity and restore the designed input torque to the maximum extent. The dead zone inverse model module is based on the obtained estimated parameter vector Construct the inverse model of the dead zone, and the adaptive module transfers the designed adaptive law to the operation control module for calculation. According to the adaptive law:
得到参数向量在系统的运行过程中不断修正参数向量的值,即死区的斜率kr、kl以及断点hr、hl的预估值,使设计的输入力矩可以最大限度的抵消非线性输入带来的扰动。get the parameter vector Constantly modify the parameter vector during the operation of the system The values of , that is, the slopes k r , k l of the dead zone and the estimated values of the breakpoints hr , h l , enable the designed input torque to offset the disturbance caused by the nonlinear input to the greatest extent.
图3为本发明采用的手眼分离视觉伺服物理结构示意图,相机安装于一个便于观察机械臂末端特征点的固定位置,机械臂与相机通过总线与计算机连接进行信息的交换。相对于将相机安装在机械臂末端的结构,采用手眼分离的结构可以有效减少由于机械臂运动造成相机拍照的抖动,并且可以清晰的观察机械臂的全局运动,得到特征点的全局信息,通过计算机的运动控制卡可以发送指令到运动控制模块控制机械臂运动。Fig. 3 is a schematic diagram of the physical structure of the hand-eye separation visual servo used in the present invention. The camera is installed at a fixed position convenient for observing the characteristic points at the end of the mechanical arm. The mechanical arm and the camera are connected to the computer through a bus to exchange information. Compared with the structure where the camera is installed at the end of the manipulator, the structure of separating the hands and eyes can effectively reduce the camera shake caused by the movement of the manipulator, and can clearly observe the global movement of the manipulator, and obtain the global information of the feature points. Through the computer The motion control card can send instructions to the motion control module to control the movement of the robotic arm.
图4为模拟输入力矩通过死区逆死区模型后再通过死区约束的示意图。死区非线性可以描述为:Fig. 4 is a schematic diagram of the simulated input torque passing through the dead zone inverse dead zone model and then passing through the dead zone constraint. Dead zone nonlinearity can be described as:
其中ud、vd为死区输出以及输入,kr、kl、hr、hl为常数。对上述的模型进行参数化,且定义βd=[kr,krhr,kl,klhl]T、可以得到参数化后的死区模型为:
构建一个平滑的死区逆模型如下:Construct a smooth dead zone inverse model as follows:
其中vd、ud为逆模型的输出和输入,δr(ud)和δl(ud)为连续的指示函数。由于死区模型的参数是未知的,故在设计是只能采用参数的预估值,也即去构建平滑的死区逆模型:Among them, v d and u d are the output and input of the inverse model, and δ r (u d ) and δ l (u d ) are continuous indicator functions. Since the parameters of the dead zone model are unknown, only the estimated values of the parameters can be used in the design, that is, To build a smooth deadzone inverse model:
其中vo和uo未预估逆模型的输出与输入。从上面的式子可以看出构建的逆模型是否能够最大的消除死区约束影响取决于参数的预估值是够准确。下面详细讲解如何应用自适应律求取参数向量的预估值:Among them, v o and u o do not predict the output and input of the inverse model. From the above formula, it can be seen that whether the constructed inverse model can eliminate the influence of the dead zone constraint to the greatest extent depends on the parameters The estimates are accurate enough. The following explains in detail how to apply the adaptive law to obtain the estimated value of the parameter vector:
1)根据死区逆模型的初始化参数以及后续的输入输出测量值,定义预估的死区逆模型乘积因子为:1) According to the initialization parameters of the dead zone inverse model and the subsequent input and output measurement values, the estimated dead zone inverse model multiplication factor is defined as:
其中vo为死区逆模型的输出,与的定义如上述所示。where v o is the output of the dead zone inverse model, and is defined as above.
2)由速度模块位置模块可以采集到机械臂的角度q、角速度角加速度以及末端的位置x、末端速度设机械臂第一第二个关节的杆长为l1,l2。得到机械臂的雅各比矩阵为J(q(t)):2) The angle q and angular velocity of the manipulator can be collected by the speed module and the position module angular acceleration And the position x of the end, the speed of the end Let the rod lengths of the first and second joints of the mechanical arm be l 1 , l 2 . The Jacobian matrix of the manipulator is obtained as J(q(t)):
其中q(1),q(2),q(3)为q中的第1,第2,第3个元素,同理根据采集到的图像坐标y=[u,v]T,期望图像轨迹yd=[ud,vd]T,以及自适应相机标定装置传递的预估参数矩阵可以构建出图像深度独立相互作用矩阵为一下形式:Among them, q(1), q(2), and q(3) are the first, second, and third elements in q. Similarly, according to the collected image coordinates y=[u, v] T , the expected image trajectory y d =[u d , v d ] T , and the estimated parameter matrix delivered by the adaptive camera calibration device The image depth-independent interaction matrix can be constructed for the following form:
其中为矩阵的第一第二第三行。进而可以得到如下的参数矩阵in for the matrix The first, second and third lines of the Then the following parameter matrix can be obtained
根据采集到的末端位置信息,可以得到相机相对于投影平面的预估深度为:According to the collected end position information, the estimated depth of the camera relative to the projection plane can be obtained as:
下面定义图像平面的域参考图像速度,根据图像误差Δy=y-yd,有域参考图像速度为:The domain reference image speed of the image plane is defined below. According to the image error Δy=yy d , the domain reference image speed is:
进而可以得到如下的参数矩阵为:Then the following parameter matrix can be obtained:
3)从上述的参数矩阵中,我们可以进一步定义域参考关节速度为:3) From the above parameter matrix, we can further define the domain reference joint velocity for:
其中为的广义逆,故可以得到关节速度误差向量 in for The generalized inverse of , so the joint velocity error vector can be obtained
4)根据上诉的定义以及采集到的变量值,可以构建出关于死区参数向量的预估值自适应律:4) According to the definition of the appeal and the collected variable values, the estimated value adaptive law about the dead zone parameter vector can be constructed:
其中Λβ为正定对称矩阵,由上诉的自适应律可以将数据传递到运算控制模块中进行运算,得到的值,再有死区逆模型模块通过构建出死区逆模型。Where Λ β is a positive definite symmetric matrix, and the adaptive law of the appeal can transfer the data to the operation control module for operation, and get value, and the dead zone inverse model module is used to construct the dead zone inverse model.
至此,我们已经完成了死区逆模型的构建,应该注意到上诉的几个步骤是在自适应死区逆模型发生装置里完成的,通过各模块之间的信息互换,可以有效的预估死区参数,确保设计的控制力矩可以准确的施加到机械臂中,消除死区非线性带来的影响。下面我们通过实验来验证设计的自适应死区逆模型发生装置的性能。要跟踪的图像轨迹选取如下:So far, we have completed the construction of the inverse model of the dead zone. It should be noted that several steps of the appeal are completed in the generation device of the inverse model of the adaptive dead zone. Through the information exchange between the modules, it can be effectively estimated The dead zone parameter ensures that the designed control torque can be accurately applied to the manipulator, eliminating the influence of dead zone nonlinearity. Next, we verify the performance of the designed adaptive dead zone inverse model generator through experiments. The image trajectory to be tracked is selected as follows:
选取的死区参数预估初始值为βd0=[1,-4,1,-4]T。The estimated initial value of the selected dead zone parameter is β d0 =[1, -4, 1, -4] T .
图5为未采用自适应死区逆模型发生装置跟踪轨迹示意图。其中红色曲线为实际图像轨迹,蓝色为期望的图像轨迹曲线。可以看出实际的轨迹难以跟踪期望轨迹,具有较大的图像误差,体现了死区非线性约束对视觉伺服机械臂系统产生的性能影响,所以设计一个自适应死区逆模型发生装置显得尤其有必要。Fig. 5 is a schematic diagram of the tracking trajectory of the device not using the adaptive dead zone inverse model generator. Among them, the red curve is the actual image trajectory, and the blue curve is the expected image trajectory curve. It can be seen that the actual trajectory is difficult to track the desired trajectory, and there is a large image error, which reflects the performance impact of the dead zone nonlinear constraint on the visual servo manipulator system, so it is particularly useful to design an adaptive dead zone inverse model generator necessary.
图6为采用了自适应死区逆模型发生装置跟踪轨迹示意图。可以清晰看到实际轨迹在开始阶段就迅速跟踪期望轨迹,在后续阶段更是渐进跟踪期望轨迹,体现除了设计的自适应死区逆模型发生装置的良好性能。Fig. 6 is a schematic diagram of tracking trajectory of the device adopting the adaptive dead zone inverse model generation device. It can be clearly seen that the actual trajectory quickly tracks the desired trajectory in the initial stage, and gradually tracks the desired trajectory in the subsequent stage, which reflects the good performance of the designed adaptive dead zone inverse model generator.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410601411.6A CN104476544A (en) | 2014-10-23 | 2014-10-23 | Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410601411.6A CN104476544A (en) | 2014-10-23 | 2014-10-23 | Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104476544A true CN104476544A (en) | 2015-04-01 |
Family
ID=52751215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410601411.6A Pending CN104476544A (en) | 2014-10-23 | 2014-10-23 | Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104476544A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104858168A (en) * | 2015-04-28 | 2015-08-26 | 国家电网公司 | Water washing robot aiming system and method based on laser ranging and image recognition |
CN104950683A (en) * | 2015-06-23 | 2015-09-30 | 广东工业大学 | Self-adaptive gap inverse model generating device for visual servo manipulator system |
CN104942809A (en) * | 2015-06-23 | 2015-09-30 | 广东工业大学 | Mechanical arm dynamic fuzzy approximator based on visual servo system |
CN106406097A (en) * | 2016-11-08 | 2017-02-15 | 长春工业大学 | Distributed adaptive coordinated control method for multi-manipulator systems |
CN106602971A (en) * | 2015-10-20 | 2017-04-26 | 沈阳新松机器人自动化股份有限公司 | Motor control method, device and system |
CN106926234A (en) * | 2015-12-29 | 2017-07-07 | 哈尔滨恒誉名翔科技有限公司 | A kind of REbot-V-6R robot arm devices |
CN109588400A (en) * | 2019-01-03 | 2019-04-09 | 甘肃农业大学 | A kind of electricity drive formula pesticide spraying machinery arm and control method |
CN111037557A (en) * | 2019-12-20 | 2020-04-21 | 扬州哈工科创机器人研究院有限公司 | System and control system for mechanical arm LED display deduction |
CN114043484A (en) * | 2021-11-29 | 2022-02-15 | 青岛理工大学 | A vision-based imitation learning system and method for industrial robot assembly |
CN114072256A (en) * | 2019-06-26 | 2022-02-18 | 富兰卡爱米卡股份有限公司 | System for input on a robotic manipulator |
WO2022138340A1 (en) * | 2020-12-21 | 2022-06-30 | ファナック株式会社 | Safety vision device, and safety vision system |
CN115042209A (en) * | 2022-05-18 | 2022-09-13 | 上海飒智智能科技有限公司 | Robot joint module servo controller with digital twin model |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618236A (en) * | 1985-05-16 | 1986-01-14 | Fujitsu Ltd | Mobile control device |
CN101612062A (en) * | 2008-06-26 | 2009-12-30 | 北京石油化工学院 | Method for navigating and positioning multi-joint arm mechanical sensing type ultrasonic image |
CN201814653U (en) * | 2010-01-15 | 2011-05-04 | 广东工业大学 | Self-adapting filter of master-slave minimally invasive surgery robot system |
US20120022690A1 (en) * | 2010-07-22 | 2012-01-26 | Kabushiki Kaisha Toshiba | Robot control apparatus |
CN103066909A (en) * | 2013-01-14 | 2013-04-24 | 杭州电子科技大学 | Control method and yarn constant tension control system of proportional-integral-derivative (PID) controller with dead zone |
CN103684179A (en) * | 2013-12-17 | 2014-03-26 | 清华大学 | Compensation device and compensation method of current filtering and dead zone of permanent magnet synchronous motor |
CN103963065A (en) * | 2013-01-24 | 2014-08-06 | 发那科株式会社 | Electric hand having force sensor |
CN104216284A (en) * | 2014-08-14 | 2014-12-17 | 浙江工业大学 | Limit time cooperative control method of mechanical arm servo system |
-
2014
- 2014-10-23 CN CN201410601411.6A patent/CN104476544A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618236A (en) * | 1985-05-16 | 1986-01-14 | Fujitsu Ltd | Mobile control device |
CN101612062A (en) * | 2008-06-26 | 2009-12-30 | 北京石油化工学院 | Method for navigating and positioning multi-joint arm mechanical sensing type ultrasonic image |
CN201814653U (en) * | 2010-01-15 | 2011-05-04 | 广东工业大学 | Self-adapting filter of master-slave minimally invasive surgery robot system |
US20120022690A1 (en) * | 2010-07-22 | 2012-01-26 | Kabushiki Kaisha Toshiba | Robot control apparatus |
CN103066909A (en) * | 2013-01-14 | 2013-04-24 | 杭州电子科技大学 | Control method and yarn constant tension control system of proportional-integral-derivative (PID) controller with dead zone |
CN103963065A (en) * | 2013-01-24 | 2014-08-06 | 发那科株式会社 | Electric hand having force sensor |
CN103684179A (en) * | 2013-12-17 | 2014-03-26 | 清华大学 | Compensation device and compensation method of current filtering and dead zone of permanent magnet synchronous motor |
CN104216284A (en) * | 2014-08-14 | 2014-12-17 | 浙江工业大学 | Limit time cooperative control method of mechanical arm servo system |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104858168A (en) * | 2015-04-28 | 2015-08-26 | 国家电网公司 | Water washing robot aiming system and method based on laser ranging and image recognition |
CN104950683A (en) * | 2015-06-23 | 2015-09-30 | 广东工业大学 | Self-adaptive gap inverse model generating device for visual servo manipulator system |
CN104942809A (en) * | 2015-06-23 | 2015-09-30 | 广东工业大学 | Mechanical arm dynamic fuzzy approximator based on visual servo system |
CN106602971B (en) * | 2015-10-20 | 2019-10-11 | 沈阳新松机器人自动化股份有限公司 | Motor control method, apparatus and system |
CN106602971A (en) * | 2015-10-20 | 2017-04-26 | 沈阳新松机器人自动化股份有限公司 | Motor control method, device and system |
CN106926234A (en) * | 2015-12-29 | 2017-07-07 | 哈尔滨恒誉名翔科技有限公司 | A kind of REbot-V-6R robot arm devices |
CN106406097A (en) * | 2016-11-08 | 2017-02-15 | 长春工业大学 | Distributed adaptive coordinated control method for multi-manipulator systems |
CN106406097B (en) * | 2016-11-08 | 2019-05-14 | 长春工业大学 | The distributed self-adaption control method for coordinating of Multi-arm robots |
CN109588400B (en) * | 2019-01-03 | 2021-11-02 | 甘肃农业大学 | Electric-driven pesticide spraying robotic arm and control method |
CN109588400A (en) * | 2019-01-03 | 2019-04-09 | 甘肃农业大学 | A kind of electricity drive formula pesticide spraying machinery arm and control method |
CN114072256A (en) * | 2019-06-26 | 2022-02-18 | 富兰卡爱米卡股份有限公司 | System for input on a robotic manipulator |
CN114072256B (en) * | 2019-06-26 | 2024-05-31 | 富兰卡爱米卡股份有限公司 | System for input on robotic manipulator |
CN111037557A (en) * | 2019-12-20 | 2020-04-21 | 扬州哈工科创机器人研究院有限公司 | System and control system for mechanical arm LED display deduction |
CN111037557B (en) * | 2019-12-20 | 2022-07-22 | 扬州哈工科创机器人研究院有限公司 | System and control system for mechanical arm LED display deduction |
WO2022138340A1 (en) * | 2020-12-21 | 2022-06-30 | ファナック株式会社 | Safety vision device, and safety vision system |
JP7427115B2 (en) | 2020-12-21 | 2024-02-02 | ファナック株式会社 | Anshin Vision Device and Anshin Vision System |
CN114043484A (en) * | 2021-11-29 | 2022-02-15 | 青岛理工大学 | A vision-based imitation learning system and method for industrial robot assembly |
CN114043484B (en) * | 2021-11-29 | 2023-10-03 | 青岛理工大学 | A vision-based imitation learning system and method for industrial robot assembly |
CN115042209A (en) * | 2022-05-18 | 2022-09-13 | 上海飒智智能科技有限公司 | Robot joint module servo controller with digital twin model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104476544A (en) | Self-adaptive dead zone inverse model generating device of visual servo mechanical arm system | |
CN105014667B (en) | A Relative Pose Calibration Method of Camera and Robot Based on Pixel Space Optimization | |
CN107627303A (en) | A kind of PD SMC control methods based on vision servo system of the eye in structure on hand | |
Wang et al. | Vision servoing of robot systems using piecewise continuous controllers and observers | |
CN103406909B (en) | Tracking control device and method of mechanical arm system | |
CN105196292B (en) | Visual servo control method based on iterative duration variation | |
CN114536346B (en) | Mechanical arm accurate path planning method based on man-machine cooperation and visual detection | |
CN104942809A (en) | Mechanical arm dynamic fuzzy approximator based on visual servo system | |
CN111975771A (en) | A Manipulator Motion Planning Method Based on Bias Redefinition Neural Network | |
Taryudi et al. | Eye to hand calibration using ANFIS for stereo vision-based object manipulation system | |
JP2013180380A (en) | Control device, control method, and robot apparatus | |
CN110744541A (en) | Vision-guided underwater mechanical arm control method | |
Chang et al. | Image feature command generation of contour following tasks for SCARA robots employing Image-Based Visual Servoing—A PH-spline approach | |
CN112894812A (en) | Visual servo trajectory tracking control method and system for mechanical arm | |
CN117944055B (en) | Humanoid robot limb cooperative balance control method and device | |
CN107932502A (en) | A kind of SCARA method for planning track of robot based on binocular stereo vision | |
CN106777876A (en) | A kind of rotating the arc weld seam tracking system information processing method for robot | |
CN104267598A (en) | Method for designing fuzzy PI controller of Delta robot movement mechanism | |
CN104950683A (en) | Self-adaptive gap inverse model generating device for visual servo manipulator system | |
CN105345824A (en) | Self-adaption hysteresis eliminating device of visual servo mechanical arm | |
CN113910218A (en) | Robot calibration method and device based on kinematics and deep neural network fusion | |
CN107894709A (en) | Controlled based on Adaptive critic network redundancy Robot Visual Servoing | |
Nikitenko et al. | Single Robot Localisation Approach for Indoor Robotic Systems through Integration of Odometry and Artificial Landmarks. | |
Axelrod et al. | Improving hand-eye calibration for robotic grasping and manipulation | |
Liu et al. | A new method for mobile robot arm blind grasping using ultrasonic sensors and Artificial Neural Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150401 |