Nothing Special   »   [go: up one dir, main page]

CN104467857B - Gradually-appoximant analog-digital converter system - Google Patents

Gradually-appoximant analog-digital converter system Download PDF

Info

Publication number
CN104467857B
CN104467857B CN201410837097.1A CN201410837097A CN104467857B CN 104467857 B CN104467857 B CN 104467857B CN 201410837097 A CN201410837097 A CN 201410837097A CN 104467857 B CN104467857 B CN 104467857B
Authority
CN
China
Prior art keywords
analog
digital converter
adc
successive approximation
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410837097.1A
Other languages
Chinese (zh)
Other versions
CN104467857A (en
Inventor
姚兵兵
刘力源
刘剑
吴南健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410837097.1A priority Critical patent/CN104467857B/en
Publication of CN104467857A publication Critical patent/CN104467857A/en
Application granted granted Critical
Publication of CN104467857B publication Critical patent/CN104467857B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

本发明提供了一种逐次逼近模数转换器系统。该逐次逼近模数转换器系统中,模数转换器阵列采用分组设计,并采用链式循环的估计方法,可以消除单通道SAR ADC本身的电容失配,SAR ADC阵列之间的增益失配和失调电压失配等非理想因素引入的非线性,能够快速高效的完成模数转换器阵列的校准,大大降低了设计复杂度并降低了功耗。

The present invention provides a successive approximation analog-to-digital converter system. In this successive approximation analog-to-digital converter system, the array of analog-to-digital converters is designed in groups, and the estimation method of the chain loop is used, which can eliminate the capacitance mismatch of the single-channel SAR ADC itself, the gain mismatch between the SAR ADC arrays and Non-linearity introduced by non-ideal factors such as offset voltage mismatch can quickly and efficiently complete the calibration of the analog-to-digital converter array, greatly reducing design complexity and power consumption.

Description

逐次逼近模数转换器系统Successive Approximation Analog-to-Digital Converter System

技术领域technical field

本发明涉及电子行业电子元器件技术领域,尤其涉及一种逐次逼近模数转换器(SAR ADC)系统。The invention relates to the technical field of electronic components in the electronics industry, in particular to a successive approximation analog-to-digital converter (SAR ADC) system.

背景技术Background technique

模数转换器是信号处理过程中模拟电路与数字电路的接口电路。其中SAR ADC因为适合于工艺尺寸缩小,结构简单,是近年来非常受欢迎的结构。在中等精度的阵列传感器中,它也因此得到了广泛应用。The analog-to-digital converter is the interface circuit between the analog circuit and the digital circuit in the signal processing process. Among them, SAR ADC is a very popular structure in recent years because it is suitable for process size reduction and has a simple structure. It is therefore widely used in medium precision array sensors.

然而在阵列模数转换器中,失配导致了严重的非线性。除了电容失配引起的单通道模数转换器本身的非线性,通道之间的增益失配,失调电压失配等,更进一步地限制了阵列模数转换器的线性度。In array ADCs, however, mismatches lead to severe nonlinearities. In addition to the nonlinearity of the single-channel ADC itself caused by capacitance mismatch, gain mismatch between channels, offset voltage mismatch, etc., further limit the linearity of the array ADC.

近年来,冗余概念及LMS滤波器的引入为校准SARADC提供了新的思路,在相应的辅助电路的支持下,这些技术已经在单通道及时间交织SAR ADC的校准中得到了应用。In recent years, the introduction of redundancy concepts and LMS filters has provided new ideas for calibrating SARADCs. With the support of corresponding auxiliary circuits, these techniques have been applied in the calibration of single-channel and time-interleaved SAR ADCs.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

鉴于上述技术问题,本发明提供了一种逐次逼近模数转换器系统,以消除单通道SAR ADC本身的电容失配,SAR ADC阵列之间的增益失配和失调电压失配等非理想因素引入的非线性。In view of the above-mentioned technical problems, the present invention provides a successive approximation analog-to-digital converter system to eliminate the capacitance mismatch of the single-channel SAR ADC itself, and the introduction of non-ideal factors such as gain mismatch and offset voltage mismatch between SAR ADC arrays of non-linearity.

(二)技术方案(2) Technical solution

本发明逐次逼近模数转换器系统包括:寄存器单元,用于存储失配参数矩阵,其中,该失配参数矩阵为2×Z的矩阵;逐次逼近模数转换器阵列,其包括2Z个模数转换器,该2Z个模数转换器分为两组-组M和组N,每组包含Z个模数转换器,其中,相邻的两模数转换器分属不同的组,同一组的模数转换器采用相同的电容设计,不同组的模数转换器采用不同的电容设计,在一个信号周期内,该逐次逼近模数转换器阵列中的每一个模数转换器分别对输入模拟信号进行初步量化,得到0-1码向量;以及LMS滤波器组,连接于所述逐次逼近模数转换器阵列和寄存器单元,其在所述信号周期中执行以下操作,对寄存器内的失配参数矩阵的各个元素进行更新:依次接收两相邻的属于不同组的模数转换器输出的0-1码向量,完成失配参数矩阵中该两模数转换器对应的参数向量的估计,在执行完所述信号周期后,完成对失配参数矩阵的一次估计与更新。其中,所述逐次逼近模数转换器阵列中的模数转换器均为逐次逼近模数转换器。The successive approximation analog-to-digital converter system of the present invention includes: a register unit for storing a mismatch parameter matrix, wherein the mismatch parameter matrix is a 2×Z matrix; a successive approximation analog-to-digital converter array, which includes 2Z modulus Converters, the 2Z analog-to-digital converters are divided into two groups - group M and group N, each group contains Z analog-to-digital converters, wherein, two adjacent analog-to-digital converters belong to different groups, and the same group The analog-to-digital converters use the same capacitor design, and different groups of analog-to-digital converters use different capacitor designs. In one signal period, each ADC in the successive approximation ADC array respectively performs a Preliminary quantization is performed to obtain a 0-1 code vector; and an LMS filter bank is connected to the successive approximation analog-to-digital converter array and the register unit, which performs the following operations during the signal period, and the mismatch parameters in the register Each element of the matrix is updated: sequentially receive the 0-1 code vectors output by two adjacent analog-to-digital converters belonging to different groups, and complete the estimation of the parameter vectors corresponding to the two analog-to-digital converters in the mismatch parameter matrix. After the signal period is completed, an estimation and update of the mismatch parameter matrix is completed. Wherein, the analog-to-digital converters in the successive-approximation analog-to-digital converter array are all successive-approximation analog-to-digital converters.

(三)有益效果(3) Beneficial effects

本发明逐次逼近模数转换器系统中,模数转换器阵列采用分组设计,并采用链式循环的估计方法,能够快速高效的完成模数转换器阵列的校准,大大降低了设计复杂度并降低了功耗。In the successive approximation analog-to-digital converter system of the present invention, the array of analog-to-digital converters is designed in groups, and the estimation method of chain loop is adopted, which can quickly and efficiently complete the calibration of the array of analog-to-digital converters, greatly reducing the design complexity and reducing the power consumption.

附图说明Description of drawings

图1为根据本发明实施例逐次逼近模数转换器系统的结构示意图;FIG. 1 is a schematic structural diagram of a successive approximation analog-to-digital converter system according to an embodiment of the present invention;

图2为本实施例逐次逼近模数转换器系统中模数转换器阵列中一模数转换器的示意图;FIG. 2 is a schematic diagram of an analog-to-digital converter in the analog-to-digital converter array in the successive approximation analog-to-digital converter system of the present embodiment;

图3为图1逐次逼近模数转换器系统中LMS滤波器组进行失配参数校正的示意图;FIG. 3 is a schematic diagram of mismatch parameter correction performed by an LMS filter bank in the successive approximation analog-to-digital converter system in FIG. 1;

图4为LMS滤波器进行失配参数校正的流程图。FIG. 4 is a flow chart of mismatch parameter correction performed by the LMS filter.

具体实施方式detailed description

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明的保护范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings. It should be noted that, in the drawings or descriptions of the specification, similar or identical parts all use the same figure numbers. Implementations not shown or described in the accompanying drawings are forms known to those of ordinary skill in the art. Additionally, while illustrations of parameters including particular values may be provided herein, it should be understood that the parameters need not be exactly equal to the corresponding values, but rather may approximate the corresponding values within acceptable error margins or design constraints. The directional terms mentioned in the embodiments, such as "upper", "lower", "front", "rear", "left", "right", etc., are only referring to the directions of the drawings. Therefore, the directional terms used are for illustration and not for limiting the protection scope of the present invention.

本发明逐次逼近模数转换器系统中,模数转换器阵列采用分组设计,采用链式循环的估计方法进行模数转换器阵列的校准。具体来讲:In the successive approximation analog-to-digital converter system of the present invention, the array of analog-to-digital converters is designed in groups, and the calibration of the array of analog-to-digital converters is performed by a chained cycle estimation method. Specifically:

(1)模数转换器阵列中模数转换器内的电容阵列:C=(CMSB,CMSB-1,......C2,C1,C0)满足以下条件:(1) The capacitor array in the ADC in the ADC array: C=(C MSB , C MSB-1 , ...... C 2 , C 1 , C 0 ) satisfy the following conditions:

1、对于i∈{1,2,......,MSB-1,MSB},满足 1. For i ∈ {1, 2, ..., MSB-1, MSB}, satisfy

2、 2,

3、MSB>log2c3. MSB>log 2 c

其中,式1是模数转换器具有良好微分非线性(DNL)的充分条件。Ci表示第i个电容的电容值,c是电容总面积(大小),在设计时结合系统的噪声等指标给定。Among them, Equation 1 is a sufficient condition for the analog-to-digital converter to have good differential nonlinearity (DNL). C i represents the capacitance value of the i-th capacitor, and c is the total area (size) of the capacitor, which is given in combination with system noise and other indicators during design.

理论上,基于式1、式2、式3的约束条件对电容阵列C有不同的解,而且基于每个解设计的电容阵列有相同的分辨率。Theoretically, there are different solutions to the capacitor array C based on the constraints of Equation 1, Equation 2, and Equation 3, and the capacitor array designed based on each solution has the same resolution.

模数转换器阵列采用分组设计是指:在模数转换器阵列中,相同组的模数转换器的电容阵列采用相同的C设计,不同组采用不同的C设计。The grouping design of the AD converter array means that in the AD converter array, the capacitor arrays of the same group of AD converters adopt the same C design, and different groups adopt different C designs.

(2)采用链式循环的估计方法进行模数转换器阵列的校准是指:将不同组的模数转换器采样量化相同输入信号的输出结果,输入LMS(least mean square)滤波器组,链式循环估计模数转换器阵列的失配参数;当失配参数收敛到一定精度,校准结束。(2) Calibration of the AD converter array using the chained loop estimation method means: the output results of the same input signal are sampled and quantized by different groups of AD converters, input into the LMS (least mean square) filter bank, and the chain The formula cyclically estimates the mismatch parameters of the analog-to-digital converter array; when the mismatch parameters converge to a certain accuracy, the calibration ends.

以下采用多个实施例对本发明逐次逼近模数转换器系统进行详细说明。The following uses a plurality of embodiments to describe the successive approximation analog-to-digital converter system of the present invention in detail.

在本发明的一个示例性实施例中,提供了一种逐次逼近模数转换器系统。图1为根据本发明实施例逐次逼近模数转换器系统的结构示意图。如图1所示,本实施例逐次逼近模数转换器系统包括:寄存器单元、逐次逼近模数转换器(SARADC)阵列、LMS滤波器组和输出电路及控制模块。In an exemplary embodiment of the present invention, a successive approximation analog-to-digital converter system is provided. FIG. 1 is a schematic structural diagram of a successive approximation analog-to-digital converter system according to an embodiment of the present invention. As shown in FIG. 1 , the successive approximation analog-to-digital converter system of this embodiment includes: a register unit, a successive approximation analog-to-digital converter (SARADC) array, an LMS filter bank, an output circuit, and a control module.

以下分别对本实施例逐次逼近模数转换器系统的各个组成部分进行详细说明。Each component of the successive approximation analog-to-digital converter system of this embodiment will be described in detail below.

请参照图1,逐次逼近模数转换器(SAR ADC)阵列,其包括4个模数转换器,该4个模数转换器被分为两组-组M和组N,每组包含2个模数转换器。该4个模数转换器分别被标记为:ADC-M0、ADC-N0、ADC-M1、ADC-N1Please refer to Figure 1, the successive approximation analog-to-digital converter (SAR ADC) array, which includes 4 analog-to-digital converters, the 4 analog-to-digital converters are divided into two groups - group M and group N, each group contains 2 analog-to-digital converter. The 4 ADCs are labeled as: ADC-M 0 , ADC-N 0 , ADC-M 1 , ADC-N 1 .

其中,同一组中的模数转换器采用相同的电容设计,即采用相同的DAC设计。在一个信号周期内,该逐次逼近模数转换器(SAR ADC)阵列中的每一个模数转换器分别对输入模拟信号进行初步量化,得到0-1码向量。Wherein, the analog-to-digital converters in the same group adopt the same capacitor design, that is, adopt the same DAC design. In one signal period, each analog-to-digital converter in the successive approximation analog-to-digital converter (SAR ADC) array performs preliminary quantization on the input analog signal to obtain a 0-1 code vector.

图2为本实施例逐次逼近模数转换器系统中模数转换器阵列中一模数转换器的示意图。如图2所示,该模数转换器包括:FIG. 2 is a schematic diagram of an ADC in the ADC array in the SAC system of the present embodiment. As shown in Figure 2, the ADC includes:

DAC电容序列,在ADC的采样阶段作为采样保持电路对模拟信号进行采样,在逐次逼近阶段提供合适的参考电平以完成模拟信号的量化;The DAC capacitor sequence is used as a sample-and-hold circuit to sample the analog signal in the sampling stage of the ADC, and provides a suitable reference level in the successive approximation stage to complete the quantization of the analog signal;

开关网络,通过控制DAC电容序列中电容的连接方式以控制逐次逼近过程中的进程;A switch network that controls the progression of the successive approximation process by controlling how capacitors are connected in the DAC capacitor train;

比较器,连接于DAC电容阵列的后端,用于完成每次比较并得到一位二进制输出结果(“0”或“1”);A comparator, connected to the back end of the DAC capacitor array, is used to complete each comparison and obtain a binary output result ("0" or "1");

输出控制电路,用于控制模数转换器有序准确地工作。The output control circuit is used to control the analog-to-digital converter to work orderly and accurately.

请参照图2,设MSB=6。如上所述,对于组M和组N,同一组的模数转换器采用相同的电容设计,不同组的模数转换器采用不同的电容设计。Please refer to FIG. 2 , set MSB=6. As mentioned above, for group M and group N, the analog-to-digital converters of the same group adopt the same capacitor design, and the analog-to-digital converters of different groups adopt different capacitor designs.

对于组M中的每一个模数转换器,其包括7个电容。以LSB位电容为单位电容的情况下,该7个电容的电容值组成的向量为:For each ADC in group M, it includes 7 capacitors. In the case of taking the LSB bit capacitor as the unit capacitor, the vector composed of the capacitance values of the seven capacitors is:

CM=(11,7,7,3,2,1,1)=(10+1,7,6+1,3,2,1,1)C M = (11, 7, 7, 3, 2, 1, 1) = (10+1, 7, 6+1, 3, 2, 1, 1)

对于组N中的每一个模数转换器,其包括7个电容。以LSB位电容为单位电容的情况下,该7个电容的电容值组成的向量为:For each ADC in group N, it includes 7 capacitors. In the case of taking the LSB bit capacitor as the unit capacitor, the vector composed of the capacitance values of the seven capacitors is:

CN=(10,8,6,4,2,1,1)=(10,7+1,6,3+1,2,1,1)C N = (10, 8, 6, 4, 2, 1, 1) = (10, 7+1, 6, 3+1, 2, 1, 1)

需要说明的是,此处仅给出了一种特定的电容组合,本领域技术人员还可以根据实际情况,选用其他的满足式1-式3的其他电容组合,而不应局限于本实施例中的7个电容,同样能够实现本发明,此处不再详述。It should be noted that only a specific capacitor combination is given here, and those skilled in the art can also choose other capacitor combinations that satisfy the formula 1-3 according to the actual situation, and should not be limited to this embodiment The seven capacitors in the capacitor can also realize the present invention, and will not be described in detail here.

此外,设工艺中电容值的大小满足正态分布,且标准差为LSB电容值的10%,其它电容的分布满足中心极限定理。In addition, it is assumed that the capacitance value in the process satisfies a normal distribution, and the standard deviation is 10% of the LSB capacitance value, and the distribution of other capacitances satisfy the central limit theorem.

如图1所示,相同的输入测试信号通过2×2的SAR ADC阵列(ADC-M0,ADC-N0,ADC-M1,ADC-N1)量化,每个模数转换器得到相应的6维输出0-1码向量。四个模数转换器得到的6维0-1码向量-DM0,DN0,DM1,DN1。考虑到存在失调电压,逐次逼近模数转换器阵列在每个向量最后增加一维,且赋值为1(失调电压一直存在),用D‘M0,D‘N0,D‘M1,D‘N1表示。增益失配对参数矩阵表达式没有影响。As shown in Figure 1, the same input test signal is quantized by a 2×2 array of SAR ADCs (ADC-M 0 , ADC-N 0 , ADC-M 1 , ADC-N 1 ), and each ADC gets its corresponding The 6-dimensional output 0-1 code vector. 6-dimensional 0-1 code vectors obtained by the four analog-to-digital converters-D M0 , D N0 , D M1 , D N1 . Considering the existence of offset voltage, the successive approximation analog-to-digital converter array adds one dimension at the end of each vector, and the assignment value is 1 (the offset voltage always exists), represented by D' M0 , D' N0 , D' M1 , D' N1 . Gain mismatch has no effect on the parameter matrix expression.

寄存器单元用于存储失配参数矩阵。在本实施例中,模数转换器阵列包括4个模数转换器,该4个模数转换器被分为两组-组M和组N,每组包含2个模数转换器。相对应地,寄存器中存储的失配参数矩阵为2×2矩阵:其中:The register unit is used to store the mismatch parameter matrix. In this embodiment, the AD converter array includes 4 AD converters, the 4 AD converters are divided into two groups - group M and group N, and each group contains 2 analog-to-digital converters. Correspondingly, the mismatch parameter matrix stored in the register is a 2×2 matrix: in:

WMi=(gMi*CM·eMi,VOSMi)W Mi =(g Mi *C M e Mi ,V OSMi )

WNi=(gNi*CN·eNi,VOSNi)W Ni =(g Ni *C N e Ni ,V OSNi )

其中,gMi及gNi是增益参数,VOSMi及VOSNi是失调电压参数,eMi及eNi是电容阵列的失配参数构成的对角矩阵,i=0,1。Wherein, g Mi and g Ni are gain parameters, V OSMi and V OSNi are offset voltage parameters, e Mi and e Ni are diagonal matrices formed by mismatch parameters of capacitor arrays, i=0,1.

需要说明的是,本实施例将寄存器和LMS滤波器组分开设置。但在有些情况下,在LMS滤波器组中内置有寄存器。在这种情况下,该失配参数矩阵将存储于LMS滤波器组内置的寄存器中,同样应当在本发明的保护范围之内。It should be noted that, in this embodiment, the register and the LMS filter bank are set separately. But in some cases, there are registers built into the LMS filter bank. In this case, the mismatch parameter matrix will be stored in the built-in register of the LMS filter bank, which should also be within the protection scope of the present invention.

请参照图1,LMS滤波器组连接于所述逐次逼近模数转换器阵列和寄存器单元,其在所述信号周期中执行以下操作,对寄存器内的失配参数矩阵的各个元素进行更新:依次接收两相邻的属于不同组的模数转换器输出的0-1码向量,完成失配参数矩阵中该两模数转换器对应的参数向量的估计,在执行完所述信号周期后,完成对失配参数矩阵的一次估计与更新Referring to Fig. 1, the LMS filter bank is connected to the successive approximation analog-to-digital converter array and the register unit, and it performs the following operations in the signal cycle to update each element of the mismatch parameter matrix in the register: Receive the 0-1 code vectors output by two adjacent analog-to-digital converters belonging to different groups, complete the estimation of the parameter vectors corresponding to the two analog-to-digital converters in the mismatch parameter matrix, and complete the An Estimation and Update of the Mismatch Parameter Matrix

图3为图1逐次逼近模数转换器系统中LMS滤波器组进行失配参数校正的示意图。请参照图3,在对模数转换器阵列中的4个模数转换器进行分组的基础上,LMS滤波器组执行以下操作,对寄存器内的失配参数矩阵的各个元素进行更新:FIG. 3 is a schematic diagram of mismatch parameter correction performed by an LMS filter bank in the successive approximation analog-to-digital converter system in FIG. 1 . Referring to Figure 3, on the basis of grouping the 4 ADCs in the ADC array, the LMS filter bank performs the following operations to update each element of the mismatch parameter matrix in the register:

步骤A:利用模数转换器ADC-M0和ADC-N0输出的7维向量D‘M0、D‘N0,完成对前两个模数转换器对应的参数(WM0,WN0)的估计与更新;Step A: Use the 7-dimensional vectors D' M0 and D' N0 output by the analog-to-digital converters ADC-M 0 and ADC-N 0 to complete the parameters (W M0 , W N0 ) corresponding to the first two analog-to-digital converters estimates and updates;

图4为LMS滤波器进行失配参数校正的流程图。如图4所示,对参数(WM0,WN0)的估计的基本流程包括:FIG. 4 is a flow chart of mismatch parameter correction performed by the LMS filter. As shown in Figure 4, the basic process of estimating parameters (W M0 , W N0 ) includes:

子步骤A1:计算误差函数e=D‘M0·WM0-D‘N0·WN0Sub-step A1: Calculate the error function e=D' M0 ·W M0 -D' N0 ·W N0 ;

子步骤A2:更新寄存器中存储的参数向量:Sub-step A2: Update the parameter vector stored in the register:

WM0=WM0-u·e·(D‘M0-D‘N0)W M0 =W M0 -u·e·(D' M0 -D' N0 )

WN0=WN0+u·e·(D‘M0-D‘N0)W N0 =W N0 + u·e·(D' M0 -D' N0 )

其中,u为学习速率参数,根据模数转换器精度,校准过程的收敛速度和收敛精度折中选择,一般取0.001~0.1之间的数值。该估计过程一般的LMS滤波器组,此处不再详细展开。Among them, u is the learning rate parameter. According to the accuracy of the analog-to-digital converter, the convergence speed and convergence accuracy of the calibration process are chosen as a compromise, and generally take a value between 0.001 and 0.1. The estimation process is a general LMS filter bank, which will not be expanded in detail here.

步骤B:利用模数转换器ADC-N0和ADC-M1输出的7维向量D‘N0、D‘M1,完成对两个模数转换器对应的参数(WN0,WM1)的估计与更新;Step B: Use the 7-dimensional vectors D' N0 and D' M1 output by the ADC-N 0 and ADC-M 1 to complete the estimation of the corresponding parameters (W N0 , W M1 ) of the two ADCs and update;

其中,参数WN0,WM1与步骤A中的相关子步骤一致,此处不再重述。Wherein, the parameters W N0 and W M1 are consistent with the relevant sub-steps in step A, and will not be repeated here.

步骤C:利用模数转换器ADC-M1和ADC-N1输出的7维向量D‘M1、D‘N1,完成对两个模数转换器的参数(WM1,WN1)的估计与更新;Step C: use the 7-dimensional vectors D' M1 , D' N1 output by the analog-to-digital converters ADC-M 1 and ADC-N 1 to complete the estimation and calculation of the parameters (W M1 , W N1 ) of the two analog-to-digital converters renew;

其中,参数WM1,WN1与步骤A中的相关子步骤一致,此处不再重述。Wherein, the parameters W M1 and W N1 are consistent with the relevant sub-steps in step A, and will not be repeated here.

步骤D:利用模数转换器ADC-N1和ADC-M0输出的7维向量D‘N1、D‘M0,完成对两个模数转换器的参数(WN1,WM0)的估计与更新。Step D: use the 7-dimensional vectors D' N1 and D' M0 output by the analog-to-digital converters ADC-N 1 and ADC-M 0 to complete the estimation and calculation of the parameters (W N1 , W M0 ) of the two analog-to-digital converters renew.

其中,参数WN1,WM0与步骤A中的相关子步骤一致,此处不再重述。Wherein, the parameters W N1 and W M0 are consistent with the relevant sub-steps in step A, and will not be repeated here.

至此,完成了第一个信号周期的参数向量的估计和更新。So far, the estimation and update of the parameter vector of the first signal cycle are completed.

改变输入信号,在下一个信号周期中,重复上述估计过程,直到参数矩阵收敛到设计要求的精度。Change the input signal, in the next signal cycle, repeat the above estimation process until the parameter matrix Converge to the accuracy required by the design.

需要说明的是,参数矩阵的校准需要一定的收敛条件。一个充分条件是,如果将LMS滤波器多次迭代时输入的多组二进制码构成矩阵,那么该矩阵的秩必须等于待校准的失配参数矩阵中未知参数向量的个数。It should be noted that the calibration of the parameter matrix requires certain convergence conditions. A sufficient condition is that if multiple sets of binary codes input during multiple iterations of the LMS filter form a matrix, then the rank of the matrix must be equal to the number of unknown parameter vectors in the mismatch parameter matrix to be calibrated.

输出电路及控制模块,连接于LMS滤波器组的后端,用于控制SARADC阵列以及LMS滤波器组有序准确地工作,并输出逐次逼近模数转换器系统的最终数字信号:(WM0·D’M0,WN0·D”N0,WM1·D’M1,WN1·D’N1)。The output circuit and the control module are connected to the back end of the LMS filter bank, and are used to control the SARADC array and the LMS filter bank to work orderly and accurately, and output the final digital signal of the successive approximation analog-to-digital converter system: (W M0 · D' M0 , W N0 D" N0 , W M1 D' M1 , W N1 D' N1 ).

在实际工作中,参数矩阵的更新与整个逐次逼近模数转换器阵列的输出过程是独立的。本领域技术人员很清楚相关过程,此处不再详细说明。In actual work, the update of the parameter matrix is independent of the output process of the whole successive approximation analog-to-digital converter array. Those skilled in the art are well aware of the relevant process, and will not be described in detail here.

需要说明的是,现有技术的LMS滤波器往往用来实现只含有两组参数向量系统的校准。而在本实施例中通过SAR ADC阵列的分组设计,并采用链式循环的方式进行参数校准,一是大大降低了收敛条件,二是能够在LMS滤波器组对参数校准实现局部收敛的同时保证全局收敛。It should be noted that the LMS filter in the prior art is often used to realize the calibration of a system containing only two sets of parameter vectors. However, in this embodiment, through the group design of the SAR ADC array and the parameter calibration in a chained loop mode, the first is to greatly reduce the convergence condition, and the second is to ensure that the local convergence of the parameter calibration is achieved by the LMS filter bank. global convergence.

本实施例中,模数转换器阵列包括4个模数转换器,该4个模数转换器被分为两组-组M和组N,但本发明并不以此为限。In this embodiment, the A/D converter array includes 4 A/D converters, and the 4 A/D converters are divided into two groups—group M and group N, but the present invention is not limited thereto.

在本发明其他实施例中,模数转换器阵列可以包括2Z个模数转换器,Z为整数。该2Z个模数转换器同样可以被分为两组-组M和组N,并且相邻的两模数转换器分属不同的组。寄存器中存储的失配参数矩阵为2×Z的矩阵。In other embodiments of the present invention, the array of analog-to-digital converters may include 2Z analog-to-digital converters, where Z is an integer. The 2Z analog-to-digital converters can also be divided into two groups—group M and group N, and two adjacent analog-to-digital converters belong to different groups. The mismatch parameter matrix stored in the register is a 2×Z matrix.

在这种情况下,LMS滤波器组在一个信号周期中执行以下操作,对寄存器内的失配参数矩阵的各个元素进行更新:从两模数转换器(ADC-M0,ADC-N0)开始,依次将两相邻模数转换器输出的7维0-1码向量输入LMS滤波器,完成两个模数转换器的参数的估计与更新,其中,模数转换器ADC-NZ与模数转换器ADC-M0视为相邻模数转换器。在执行完预设周期后,完成对失配参数矩阵的估计与更新。In this case, the LMS filter bank performs the following operations during one signal cycle, updating each element of the mismatch parameter matrix in the register : At the beginning, the 7-dimensional 0-1 code vectors output by two adjacent analog-to-digital converters are input into the LMS filter in turn to complete the estimation and update of the parameters of the two analog-to-digital converters, wherein the analog-to-digital converters ADC-N Z and The analog-to-digital converter ADC-M 0 is considered as an adjacent analog-to-digital converter. After the preset period is executed, the estimation and updating of the mismatch parameter matrix is completed.

至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明逐次逼近模数转换器系统有了清楚的认识。So far, the present embodiment has been described in detail with reference to the drawings. Based on the above description, those skilled in the art should have a clear understanding of the SAC system of the present invention.

综上所述,本发明逐次逼近模数转换器系统中,模数转换器阵列采用分组设计,并采用链式循环的估计方法,能够快速高效的完成模数转换器阵列的校准,大大降低了设计复杂度并降低了功耗。In summary, in the successive approximation analog-to-digital converter system of the present invention, the array of analog-to-digital converters is designed in groups, and the estimation method of chain loop is adopted, which can quickly and efficiently complete the calibration of the array of analog-to-digital converters, greatly reducing the Design complexity and reduced power consumption.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (7)

1.一种逐次逼近模数转换器系统,其特征在于,包括:1. A successive approximation analog-to-digital converter system, characterized in that, comprising: 寄存器单元,用于存储失配参数矩阵,其中,该失配参数矩阵为2×Z的矩阵;A register unit, configured to store a mismatch parameter matrix, where the mismatch parameter matrix is a 2×Z matrix; 逐次逼近模数转换器阵列,其包括2Z个模数转换器,该2Z个模数转换器分为两组-组M和组N,每组包含Z个模数转换器,其中,相邻的两模数转换器分属不同的组,同一组的模数转换器采用相同的电容设计,不同组的模数转换器采用不同的电容设计,在一个信号周期内,该逐次逼近模数转换器阵列中的每一个模数转换器分别对输入模拟信号进行初步量化,得到0-1码向量;以及A successive approximation analog-to-digital converter array comprising 2Z analog-to-digital converters divided into two groups - group M and group N, each group containing Z analog-to-digital converters, wherein adjacent The two A/D converters belong to different groups. The A/D converters in the same group use the same capacitor design, and the A/D converters in different groups use different capacitor designs. In one signal cycle, the successive approximation A/D converter Each analog-to-digital converter in the array performs preliminary quantization on the input analog signal to obtain a 0-1 code vector; and LMS滤波器组,连接于所述逐次逼近模数转换器阵列和寄存器单元,其在所述信号周期中执行以下操作,对寄存器内的失配参数矩阵的各个元素进行更新:依次接收两相邻的属于不同组的模数转换器输出的0-1码向量,完成失配参数矩阵中该两模数转换器对应的参数向量的估计,在执行完所述信号周期后,完成对失配参数矩阵的一次估计与更新;The LMS filter bank is connected to the successive approximation analog-to-digital converter array and the register unit, and it performs the following operations in the signal cycle to update each element of the mismatch parameter matrix in the register: receive two adjacent The 0-1 code vectors output by the analog-to-digital converters belonging to different groups complete the estimation of the parameter vectors corresponding to the two analog-to-digital converters in the mismatch parameter matrix, and complete the mismatch parameter after executing the signal cycle An estimation and update of the matrix; 其中,所述逐次逼近模数转换器阵列中的模数转换器均为逐次逼近模数转换器;Wherein, the analog-to-digital converters in the successive approximation analog-to-digital converter array are all successive approximation analog-to-digital converters; 其中,所述逐次逼近模数转换器阵列中的2Z个模数转换器依次为:ADC-M0,ADC-N0,……,ADC-Mi,ADC-Ni,……,ADC-Mz-1,ADC-Nz-1;ADC-Mi,ADC-Ni分别为逐次逼近模数转换器阵列组M和组N中的第i个模数转换器;所述ADC-Nz-1与ADC-M0视为相邻模数转换器;Wherein, the 2Z analog-to-digital converters in the successive approximation analog-to-digital converter array are: ADC-M 0 , ADC-N 0 , ..., ADC-M i , ADC-N i , ..., ADC- M z-1 , ADC-N z-1 ; ADC-M i , ADC-N i are respectively the i-th analog-to-digital converter in the successive approximation analog-to-digital converter array group M and group N; the ADC-N z-1 and ADC-M 0 are regarded as adjacent analog-to-digital converters; 其中,所述模数转换器输出MSB维的0-1码向量;所述逐次逼近模数转换器阵列在该MSB维的0-1码向量的最后增加一维,且赋值为1,并将该MSB+1维的0-1码向量输入至LMS滤波器组;Wherein, the analog-to-digital converter outputs a 0-1 code vector of the MSB dimension; the successive approximation analog-to-digital converter array adds one dimension at the end of the 0-1 code vector of the MSB dimension, and assigns a value of 1, and The 0-1 code vector of the MSB+1 dimension is input to the LMS filter bank; 其中,所述LMS滤波器组依次接收两相邻的属于不同组的模数转换器输出的0-1码向量,按照以下方式完成失配参数矩阵中该两模数转换器对应的参数向量的估计:Wherein, the LMS filter bank sequentially receives the 0-1 code vectors output by two adjacent analog-to-digital converters belonging to different groups, and completes the parameter vector corresponding to the two analog-to-digital converters in the mismatch parameter matrix in the following manner estimate: 子步骤A1:计算误差函数e=D‘Mp·WMp-D‘Nq·WNqSub-step A1: Calculate the error function e=D' Mp ·W Mp -D' Nq ·W Nq ; 子步骤A2:更新寄存器中存储的参数向量:Sub-step A2: Update the parameter vector stored in the register: WMp=WMp-u·e·(D‘Mp-D‘Nq)W Mp =W Mp -u·e·(D' Mp -D' Nq ) WNq=WNq+u·e·(D‘Mp-D‘Nq)W Nq =W Nq + u·e·(D' Mp -D' Nq ) 其中,D‘Mp为组M中第p个模数转换器-ADC-Mp对应的MSB+1维的0-1码向量,WMp为失配参数矩阵中ADC-Mp对应的参数向量;D‘Nq为组N中第q个模数转换器-ADC-Nq对应的MSB+1维的0-1码向量,WNq为失配参数矩阵中ADC-Nq对应的参数向量;u为学习速率参数;p=q或|p-q|=1。Among them, D' Mp is the MSB+1-dimensional 0-1 code vector corresponding to the p-th analog-to-digital converter-ADC-M p in group M, and W Mp is the parameter vector corresponding to ADC-M p in the mismatch parameter matrix ; D' Nq is the MSB+1-dimensional 0-1 code vector corresponding to the qth analog-to-digital converter-ADC-N q in the group N, and W Nq is the parameter vector corresponding to the ADC-N q in the mismatch parameter matrix; u is the learning rate parameter; p=q or |pq|=1. 2.根据权利要求1所述的逐次逼近模数转换器系统,其特征在于,所述逐次模数转换器阵列中的每一个模数转换器均为MSB维的模数转换器,其包括DAC电容序列C=(CMSB,CMSB-1,……C2,C1,C0),该DAC电容序列C满足以下条件:2. The successive approximation analog-to-digital converter system according to claim 1, wherein each analog-to-digital converter in the successive analog-to-digital converter array is an analog-to-digital converter of MSB dimension, which includes a DAC Capacitance sequence C=(C MSB , C MSB-1 ,...C 2 , C 1 , C 0 ), the DAC capacitance sequence C satisfies the following conditions: ①对于i∈{1,2,……,MSB-1,MSB},满足 ①For i∈{1,2,...,MSB-1,MSB}, satisfy ③MSB>log2 c;③MSB>log 2 c; 其中,Ci表示DAC电容序列C中第i个电容的电容值,c是电容总面积,同一组的模数转换器对应满足上述条件的一个解,不同组的模数转换器对应满足上述条件的不同解。Among them, C i represents the capacitance value of the i-th capacitor in the DAC capacitance sequence C, c is the total area of the capacitor, the analog-to-digital converters of the same group correspond to a solution that satisfies the above conditions, and the analog-to-digital converters of different groups correspond to the above conditions different solutions. 3.根据权利要求2所述的逐次逼近模数转换器系统,其特征在于,对于所述逐次模数转换器阵列中的每一个模数转换器,其还包括:3. The successive approximation analog-to-digital converter system according to claim 2, wherein, for each analog-to-digital converter in the array of successive analog-to-digital converters, it further comprises: 开关网络,通过控制DAC电容序列中电容的连接方式以控制逐次逼近过程中的进程;A switch network that controls the progression of the successive approximation process by controlling how capacitors are connected in the DAC capacitor train; 比较器,连接于DAC电容阵列的后端,用于完成每次比较并得到一位二进制输出结果;A comparator, connected to the back end of the DAC capacitor array, is used to complete each comparison and obtain a binary output result; 输出控制电路,用于控制模数转换器有序准确地工作。The output control circuit is used to control the analog-to-digital converter to work orderly and accurately. 4.根据权利要求1所述的逐次逼近模数转换器系统,其特征在于,所述学习速率参数u介于0.001~0.1之间。4. The successive approximation analog-to-digital converter system according to claim 1, wherein the learning rate parameter u is between 0.001-0.1. 5.根据权利要求1所述的逐次逼近模数转换器系统,其特征在于,通过K个信号周期,实现所述失配参数矩阵的收敛,其中,每一信号周期对应一输入模拟信号,所述K≥20。5. The successive approximation analog-to-digital converter system according to claim 1, wherein, through K signal periods, the convergence of the mismatch parameter matrix is realized, wherein each signal period corresponds to an input analog signal, so Said K≥20. 6.根据权利要求1至5中任一项所述的逐次逼近模数转换器系统,其特征在于,还包括:6. The successive approximation analog-to-digital converter system according to any one of claims 1 to 5, further comprising: 输出电路及控制模块,连接于LMS滤波器组的后端,用于控制SAR ADC阵列以及LMS滤波器组有序准确地工作,并输出逐次逼近模数转换器系统的最终数字信号。The output circuit and control module are connected to the back end of the LMS filter bank, and are used to control the SAR ADC array and the LMS filter bank to work orderly and accurately, and output the final digital signal of the successive approximation analog-to-digital converter system. 7.根据权利要求1至5中任一项所述的逐次逼近模数转换器系统,其特征在于,所述寄存器单元单独设置,或设置于所述逐次逼近模数转换器阵列或LMS滤波器组中。7. The successive-approximation analog-to-digital converter system according to any one of claims 1 to 5, wherein the register unit is set independently, or arranged in the successive-approximation analog-to-digital converter array or LMS filter group.
CN201410837097.1A 2014-12-29 2014-12-29 Gradually-appoximant analog-digital converter system Active CN104467857B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410837097.1A CN104467857B (en) 2014-12-29 2014-12-29 Gradually-appoximant analog-digital converter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410837097.1A CN104467857B (en) 2014-12-29 2014-12-29 Gradually-appoximant analog-digital converter system

Publications (2)

Publication Number Publication Date
CN104467857A CN104467857A (en) 2015-03-25
CN104467857B true CN104467857B (en) 2017-12-22

Family

ID=52913324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410837097.1A Active CN104467857B (en) 2014-12-29 2014-12-29 Gradually-appoximant analog-digital converter system

Country Status (1)

Country Link
CN (1) CN104467857B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912343B1 (en) * 2016-12-07 2018-03-06 Analog Devices, Inc. Analog to digital converter with background calibration techniques
CN108141219B (en) * 2017-12-12 2021-07-09 深圳市汇顶科技股份有限公司 Method for analog-to-digital conversion and analog-to-digital converter
CN110380729B (en) * 2019-09-02 2022-04-22 电子科技大学 A successive approximation analog-to-digital converter quantization method based on prediction and local oversampling
CN112865798B (en) * 2021-01-15 2024-05-07 中国科学院半导体研究所 Noise shaping successive approximation analog-to-digital converter and noise shaping method
CN116318142B (en) * 2023-02-08 2024-05-03 北京士模微电子有限责任公司 Analog-to-digital converter calibration method and analog-to-digital converter
CN117439604B (en) * 2023-12-18 2024-04-09 杭州晶华微电子股份有限公司 Analog-to-digital converter, fully differential analog-to-digital converter and sensor measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746693A (en) * 2013-12-19 2014-04-23 北京时代民芯科技有限公司 Calibration circuit eliminating capacitor mismatch error
CN103929178A (en) * 2014-04-29 2014-07-16 中国电子科技集团公司第二十四研究所 Successive approximation analog-digital converter and conversion method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451151B2 (en) * 2011-08-15 2013-05-28 Himax Technologies Limited Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746693A (en) * 2013-12-19 2014-04-23 北京时代民芯科技有限公司 Calibration circuit eliminating capacitor mismatch error
CN103929178A (en) * 2014-04-29 2014-07-16 中国电子科技集团公司第二十四研究所 Successive approximation analog-digital converter and conversion method thereof

Also Published As

Publication number Publication date
CN104467857A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104467857B (en) Gradually-appoximant analog-digital converter system
CN103873059B (en) Digital calibration method for high-precision SAR ADC (successive approximation register analog to digital converter)
CN101977058B (en) Sequential approximation analog to digital converter with digital correction and processing method thereof
TWI467924B (en) Successive approximation register analog to digital converter and conversion method thereof
CN112202448B (en) Successive approximation type analog-to-digital converter, calibration method thereof and electronic equipment
CN104168020B (en) The electric capacity gamma correction circuit and method of a kind of analog-digital converter of approach type by turn
US10581443B2 (en) Method and apparatus for offset correction in SAR ADC with reduced capacitor array DAC
US10069506B2 (en) Calibration circuit and calibration method for DAC
CN107437944B (en) Capacitive successive approximation analog-to-digital converter and self-calibration method thereof
CN110350918B (en) A Digital Background Correction Method Based on Least Mean Square Algorithm
CN104320140A (en) No-load multi-stage successive approximation register-assisted pipelined analog-to-digital converter
CN113037287B (en) Background calibration method and system for high-precision successive approximation analog-to-digital converter
CN104639164A (en) Binary capacitor array applied to single-terminal SARADC (Successive Approximation Analog-to-Digital Converter) and redundancy calibrating method of binary capacitor array
US9413374B2 (en) Method and apparatus for calibrating comparator offset of successive-approximation-register analog-to-digital converter
CN113794475B (en) Calibration method of capacitor array type successive approximation analog-digital converter
CN103281083A (en) Successive approximation fully differential analog-digital converter with figure correction function and processing method thereof
CN104917527A (en) Capacitance mismatch calibrating circuit and calibrating method applied to single-end SAR ADC
CN107306135B (en) Correction circuit and correction method for digital-to-analog converter
CN107302359B (en) Variable weight sub-DAC (digital-to-analog converter) correction method of high-precision successive approximation structure ADC (analog-to-digital converter)
CN110649924B (en) A digital self-calibration device and method for successive approximation analog-to-digital converters
CN105049049A (en) Capacitor exchange method for improving DNL (Differential Nonlinearity)/INL (Integral Nonlinearity) of successive approximation analog to digital converter
TW201424273A (en) Digital-to-analog converter circuit and weight errorestimation/calibration method thereof
CN104811205A (en) Digital-to-analog converter device and operation and calibration method of digital-to-analog converter device
RU2335844C2 (en) Analog-to-digital converter and method of calibration thereof
CN113938135A (en) Successive approximation analog-to-digital converter and calibration method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant