Nothing Special   »   [go: up one dir, main page]

CN104459315A - Inter-harmonic detection method based on non-base 2FFT transformation - Google Patents

Inter-harmonic detection method based on non-base 2FFT transformation Download PDF

Info

Publication number
CN104459315A
CN104459315A CN201410620585.7A CN201410620585A CN104459315A CN 104459315 A CN104459315 A CN 104459315A CN 201410620585 A CN201410620585 A CN 201410620585A CN 104459315 A CN104459315 A CN 104459315A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
data
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410620585.7A
Other languages
Chinese (zh)
Inventor
程玉华
陈凯
刘葱茜
张旭霞
张�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410620585.7A priority Critical patent/CN104459315A/en
Publication of CN104459315A publication Critical patent/CN104459315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention discloses an inter-harmonic detection method based on non-base 2FFT transformation. When the number N of FFT points is equal to 2<M>*N', N1 is made to be equal to 2<M>, N2 is made to be equal to N', the FFT operation data are divided into N2 groups, each group has N1 point data, the data serial number n extracted from original FFT operation data is equal to N2n1+n2, 2FFT transformation is carried out on the N1 point data in each group, the k is equal to k1+N1k2, and the kth FFT transformation result in the original FFT operation data is obtained according to the calculation formula. The new non-base 2FFT algorithm is provided, FFT transformation of data with the point number N equal to 2<M>*N' is achieved, no interpolation zero-padding is needed, inter-harmonic detection precision can be improved, the frequency resolution meets national standard requirements, a transformation result needing to be calculated can be selected according to actual requirements, and operation time is saved.

Description

Inter-harmonic detection method based on non-basis 2FFT (fast Fourier transform)
Technical Field
The invention belongs to the technical field of inter-harmonic detection, and particularly relates to an inter-harmonic detection method based on non-basis 2FFT (fast Fourier transform).
Background
With the rapid development of scientific technology and the wide application of a large number of impact loads, current conversion and other electric equipment, the harmonic pollution of a power grid is increasingly serious, the safety of an electric power system is greatly influenced, and particularly with the continuous popularization of various complex and precise electric equipment sensitive to the quality of electric energy, fractional harmonics (inter-harmonics) become objects of continuous attention in the engineering and research fields increasingly. Inter-harmonics can cause voltage flicker, television image roll and noise of radio or other audio equipment, and can also cause strong noise and vibration of a motor to cause waveform distortion of a power grid, so that the power factor of a load is reduced, various energy losses are increased, and accurate detection of inter-harmonics is required to be enhanced to ensure the quality and safety of the power grid so as to be convenient for the treatment of the power quality of the power grid.
At present, the most widely applied harmonic measurement method is Fourier transform, amplitude and phase of harmonic can be obtained simultaneously through Fourier transform, functions are multiple, and hardware is easy to implement. The Fourier transform method of the inter-harmonics comprises the following steps: extending the sample sequence to adjacent 2 by interpolation zero-fillingMPoint, then proceed to 2 using the base 2 algorithmMPoint FFT (Fast Fourier Transform). The frequency domain decimated radix-2 FFT algorithm is described below.
Defined by DFT (Discrete Fourier Transform):
<math> <mrow> <mi>F</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mi>kn</mi> </msubsup> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>k</mi> <mo>&le;</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
where N represents the number of points, f [ N ]]Which represents a discrete signal that is,representing the twiddle factor.
Dividing fn into two halves, i.e. fn and fn + N/2 (N is more than or equal to 0 and less than or equal to N/2-1), substituting into formula (1) to obtain
<math> <mrow> <mi>F</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mi>kn</mi> </msubsup> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>]</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <mi>k</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>k</mi> <mo>&le;</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Due to the fact that W N k ( n + N / 2 ) = W N kn W N kN / 2 = ( - 1 ) k W N kn , (2) Two terms in the formula can be combined into:
<math> <mrow> <mi>F</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>{</mo> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>k</mi> </msup> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>]</mo> <mo>}</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mi>kn</mi> </msubsup> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>k</mi> <mo>&le;</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
when k is an even number, 2r, note (-1)k=1, <math> <mrow> <msubsup> <mi>W</mi> <mi>N</mi> <mi>kn</mi> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <mn>2</mn> <mi>rn</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>i</mi> <mn>2</mn> <mi>&pi;</mi> <mn>2</mn> <mi>rn</mi> <mo>/</mo> <mi>N</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> <mo>,</mo> </mrow> </math> (3) The formula becomes:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>F</mi> <mo>[</mo> <mn>2</mn> <mi>r</mi> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <mo>+</mo> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>]</mo> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mi>G</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>r</mi> <mo>&le;</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
when k is an odd number 2r +1, <math> <mrow> <msubsup> <mi>W</mi> <mi>N</mi> <mi>kn</mi> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>i</mi> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n</mi> <mo>/</mo> <mi>N</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mi>n</mi> </msubsup> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> <mo>,</mo> </mrow> </math> (3) the formula becomes:
<math> <mfenced open='' close='' separators=' '> <mtable> <mtr> <mtd> <mi>F</mi> <mo>[</mo> <mn>2</mn> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>{</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <mo>-</mo> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>]</mo> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mi>N</mi> <mi>n</mi> </msubsup> <mo>}</mo> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>p</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msubsup> <mi>W</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>2</mn> </mrow> <mi>rn</mi> </msubsup> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>r</mi> <mo>&le;</mo> <mi>N</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </mfenced> </math>
thus, an N point sequence (f [ N ]) is formed]) N-point DFT (F [ k ]) of (1)]) Calculated as two N/2 point sequences (g [ N ]]And p [ n ]]) N/2 point DFT (G [ r ]) of]And P [ r ]]) And (4) calculating. From f [ n ]]Is divided into g [ n ]]And p [ n ]]Is calculated as N additions (i.e., f N]+f[n+N/2]And f [ n ]]-f[n+N/2]0. ltoreq. n.ltoreq.N/2-1) and N/2 multiplications (i.e., (N ≦ N/2-1)0≤n≤N/2-1)。
Since the N/2-point DFT calculated by g [ N ] is half of the N-point DFT (Fk) of F [ N ] in which k is an even number and half of k is an even number calculated by p [ N ], it is necessary to extract and put the even-numbered K F [ k ] together as the DFT (G (r)) of g [ N ] and extract and put the odd-numbered K F [ k ] together as the DFT (P (r)) of p [ N ] for output. Since k is a frequency domain variable, this algorithm is called the FFT algorithm of frequency domain decimation.
Then, the two N/2 point DFTs can still be divided into two N/4 point DFTs (simultaneously, corresponding frequency domain extraction is also carried out) by N/4 times N/2 additions by the method, so that the DFTs are divided into 4N/2 point DFTs in total, and the total division calculation amount is still N additions and N/2 times. Such partitioning can be done step by step, and it can be seen that the total partition computation amount of each step is N sums and N/2 multiples.
When N is 2MAfter M-1 step division, N/2 DFTs are calculated
<math> <mrow> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <mi>A</mi> <mo>=</mo> <mi>a</mi> <msubsup> <mi>W</mi> <mn>2</mn> <mrow> <mn>0</mn> <mo>&CenterDot;</mo> <mn>0</mn> </mrow> </msubsup> <mo>+</mo> <mi>b</mi> <msubsup> <mi>W</mi> <mn>2</mn> <mrow> <mn>0</mn> <mo>&CenterDot;</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> <mo>=</mo> <mi>a</mi> <msubsup> <mi>W</mi> <mn>2</mn> <mrow> <mn>1</mn> <mo>&CenterDot;</mo> <mn>0</mn> </mrow> </msubsup> <mo>+</mo> <mi>b</mi> <msubsup> <mi>W</mi> <mn>2</mn> <mrow> <mn>1</mn> <mo>&CenterDot;</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>a</mi> <mo>-</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msubsup> <mi>W</mi> <mn>2</mn> <mn>0</mn> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Fig. 1 is a schematic diagram of an 8-point FFT computation for frequency domain decimation. According to fig. 1, an 8-point FFT is divided into 4 two-point DFTs through 2 steps. (6) The amount of computation required for the equation is 2 summations and 1 multiplication, so the total amount of computation to complete N/2 two-point DFTs is still N summations and N/2 multiplications. Thereby completing the total calculation amount M × N ═ Nlog of all N-point DFTs2N sums MxN/2 ═ N/2 (log)2N multiplications, the ratio being calculated by definition directly for the required N2The number of multiplications and additions is much less. For example, N ═ 210When it is 1024, M is 10, the number of multiplications required for the calculation by the radix-2 FFT algorithm is mxn/2, 5 × 1024, and the number of multiplications required for the calculation by definition is N21024 × 1024, the difference between the two is 1024/5 ≈ 200 times, and the larger N is, the more significant the efficiency improvement of FFT is.
In general, since M-1 parity extraction is performed, F [ k ] calculated by the last N/2 two-point DFTs of the algorithm is not extracted sequentially. The change in order can be illustrated by a binary code: the parity divided by the first extraction is distinguished by that the 1 st bit of the binary code is 1 or 0, when the bit is 0, the bit is even, when the bit is 1, the bit is odd, the parity extracted by the second extraction is … … distinguished by that the 2 nd bit of the binary code is 1 or 0, each extraction places the even number item on the front (left) side and the odd number item on the back (right) side, so that the binary codes for extracting the subsequent numbers are arranged in sequence from left to right according to the binary bits, and the rule of arranging the common binary numbers in sequence from right to left is just opposite, so the extraction is called the inverted order. The order of inversion is changed to order after F [ k ] is calculated.
In inter-harmonic detection, since the amplitude of the inter-harmonics is to be calculated, it is necessary to process data for several cycles, fromTo reach 2 based on the radix-2 FFT algorithmMIn general, the number of sampling points in each signal period is a power of 2, but the number of data processing periods is not necessarily a power of 2, so that some values of inter-harmonics may be obtained by interpolation, which causes inaccurate measurement precision.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a non-base 2 FFT-based inter-harmonic detection method, which realizes non-base 2FFT conversion, does not need zero padding, improves the accuracy of inter-harmonic detection, ensures that a detection result can completely accord with the IEC standard, and ensures that the frequency resolution can obtain an accurate value at 5Hz under the conditions that the fundamental wave is 50Hz and the width of a sampling window is 10 cycles.
In order to achieve the above object, the present invention provides a non-basis 2FFT transform-based inter-harmonic detection method, comprising the steps of:
s1: sampling the signal, and setting the number of sampling points N to 2MX N', let N1=2M,N2Dividing the sampled data into N ═ N2Groups of N1Dot data, n-th2N in the group1The point data is denoted as f [ n ]1,n2]The data number N extracted from the sample data is N2n1+n2Wherein n is1Has a value range of n not less than 01≤N1-1,n2Has a value range of n not less than 02≤N2-1;
S2: respectively for N in each group1Performing base 2FFT on the point data to obtain the n-th data2Kth in group1The transformation result is denoted as F' [ k ]1,n2],k1K is not less than 01≤N1-1;
S3: let k equal to k1+N1k2,k2K is not less than 02≤N2-1, computing the kth Fourier transform junction of the sampled dataFruit F [ k ]1,k2]And outputting as a detection result, wherein the calculation formula is as follows:
<math> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msup> <mi>F</mi> <mo>&prime;</mo> </msup> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>n</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>.</mo> </mrow> </math>
the invention discloses a non-basis 2FFT (fast Fourier transform) -based inter-harmonic detection method, wherein when the number N of FFT points is 2MX N', let N1=2M,N2Dividing FFT calculation data into N ═ N2Groups of N1Dot data, where N is the data number extracted from the original FFT-calculated data2n1+n2For N in each group respectively1The point data is subjected to a radix-2 FFT transform, and then k is k1+N1k2And obtaining the kth FFT transformation result in the original FFT operation data according to a calculation formula. The invention provides a new non-radix 2FFT algorithm, which realizes the point number N-2MThe FFT conversion of the data of x N' does not need interpolation zero filling, can improve the detection precision of inter-harmonic, enable the frequency resolution to meet the national standard requirement, and can also select the conversion result that needs to be calculated according to the actual need, save the operating time.
Drawings
FIG. 1 is a schematic diagram of an 8-point FFT calculation for frequency domain decimation;
FIG. 2 is a flow chart of an embodiment of the method for detecting inter-harmonics based on non-basis 2 FFT;
fig. 3 is a diagram illustrating the result of inter-harmonic detection using the present invention.
Detailed Description
The following description of the embodiments of the present invention is provided in order to better understand the present invention for those skilled in the art with reference to the accompanying drawings. It is to be expressly noted that in the following description, a detailed description of known functions and designs will be omitted when it may obscure the subject matter of the present invention.
Fig. 2 is a flow chart of an embodiment of the non-basis 2FFT transform-based inter-harmonic detection method of the present invention. As shown in fig. 2, the method for detecting inter-harmonic based on non-basis 2FFT of the present invention includes the following steps:
s201: sampling data packet:
sampling the signal, and setting the number of sampling points N to 2MX N', let N1=2M,N2Dividing FFT calculation data into N ═ N2Groups of N1Dot data, n-th2N in the group1The point data is denoted as f [ n ]1,n2]The data number N extracted from the sample data is N2n1+n2Wherein n is1Has a value range of n not less than 01≤N1-1,n2Has a value range of n not less than 02≤N2-1。
S202: and performing radix-2 FFT on each group of data:
for N in each group1Performing base 2FFT on the point data to obtain the n-th data2Kth in group1The transformation result is denoted as F' [ k ]1,n2],k1K is not less than 01≤N1-1。
S203: calculating a Fourier transform result:
let k equal to k1+N1k2,k2K is not less than 02≤N2-1, computing the kth Fourier transform result F [ k ] of the sampled data1,k2]And outputting a detection result, wherein the calculation formula is as follows:
<math> <mrow> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msup> <mi>F</mi> <mo>&prime;</mo> </msup> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>n</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>.</mo> </mrow> </math>
the principles and derivation of the present invention are explained below.
In the present invention, when performing an N-point FFT, N is 2MX N', let N1=2M,N2N', then by f [ N]DFT of (2):
<math> <mrow> <mi>F</mi> <mo>[</mo> <mi>k</mi> <mo>]</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mi>nk</mi> </msubsup> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <mi>k</mi> <mo>&le;</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
by mapping:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>n</mi> <mo>=</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> <mo>&le;</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>&le;</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>&le;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>&le;</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>=</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> <mo>&le;</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>&le;</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1,0</mn> <mo>&le;</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>&le;</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
it is possible to obtain: W N nk = W N ( N 2 n 1 + n 2 ) ( k 1 + N 1 k 2 ) = W N ( N 2 n 1 k 1 + N 1 N 2 n 1 k 2 + n 2 k 1 + N 1 n 2 k 2 ) , and N is equal to N1N2 W N N 1 = W N 2 , W N N 2 = W N 1 , Can be simplified as follows:
W N nk = W N 1 n 1 k 1 W N n 2 k 1 W N 2 n 2 k 2 - - - ( 10 )
thereby converting formula (8) to:
<math> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein k is not less than 01≤N1-1,0≤k2≤N2-1。
Combining the first two twiddle factors in the formula (11) according to WNAvailability of reducibility of
W N 2 n 2 k 2 W N n 2 k 1 = W N 1 N 2 N 1 n 2 k 2 W N n 2 k 1 = W N N 1 n 2 k 2 + n 2 k 1 = W N n 2 ( N 1 k 2 + k 1 ) - - - ( 12 )
Substituting the formula (9) into the formula (12) to obtain
<math> <mrow> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>&times;</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mi>k</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <msup> <mi>W</mi> <mo>&prime;</mo> </msup> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Equation (11) can thus be:
<math> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo>[</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
it can be seen that according to n2Is selected from the group consisting of]Is divided into N2Group data f [ n ]1,n2]Each group of data has N1Point of formula (14)Indicates that will2K-th obtained after group data conversion1The transformation result is denoted as F' [ k ]1,n2]. Due to N1=2MThus N is1The FFT transformation of the point data can be found by the radix-2 FFT algorithm. This pattern (14) can be:
<math> <mrow> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msup> <mi>F</mi> <mo>&prime;</mo> </msup> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
equation (15) is analogous to the DFT calculation, whereNot a rotation factor in the strict sense but <math> <mrow> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>.</mo> </mrow> </math>
Examples
The present invention was simulated to illustrate the technical effects of the present invention. The signal expression is y-0.8 sin (10 π t) +0.6sin (80 π t) + sin (100 π t). According to the IEC standard, the fundamental frequency of the signal is 50 Hz. The intermediate harmonic frequencies in this embodiment are 5Hz and 40 Hz. The window width is 10 cycles. The signal is sampled 1024 points per cycle for a total of 10240 points. Fig. 3 is a diagram illustrating the result of inter-harmonic detection using the present invention. As shown in fig. 3, the inter-harmonic detection result obtained by the present invention is consistent with the signal.
In practical application, according to signal characteristics and IEC standard requirements, it is not necessary to change all results, but only to select a part of results, if the traditional FFT method is used, it is necessary to calculate all results and then select them1+N1k2The mapping of the transformation result is performed, so that corresponding data can be selected and calculated according to the sequence number of the required result, taking this embodiment as an example, the data is divided into 5 groups, the FFT transformation result of 2048 data in 5 groups is calculated first, and assuming that the sequence number of the currently required transformation result is 511, then k is equal to k according to the formula1+N1k2Then k can be obtained1And k2And then selecting 5 groups of data corresponding to the FFT transformation results for calculation. In this way, further savings in computation time may be achieved. The time required to complete 10240 points using the present invention was 0.062962 seconds as verified by MATLAB simulation. According to the IEC standard requirements for measuring frequency ranges, only a limited number of points can be calculated, for example, 2000 points, which requires 0.021317 seconds. The invention has high operation speed and can meet the measurement speed requirement of inter-harmonic detection.
According to the current national standard, the fundamental frequency f of a signal is 50Hz, the width D of a sampling window is 10 periods, and the frequency resolution is required to be 5 Hz. Counting the number of sampling points in each period as X, then samplingSample frequency fsIf Xf, the total number of samples N is DX, then the frequency resolution f0Xf DX f D. If the radix-2 FFT algorithm is adopted, interpolation zero filling is needed, and the sampling period is prolonged to reach the nearest 2M′Point, namely D 'is 16, so the frequency resolution f D' is 3.125Hz, and the detection precision can not be ensured when the frequency value of 5Hz multiple is the estimated value obtained by interpolation; by adopting the inter-harmonic detection method based on the non-basis 2FFT algorithm, the frequency resolution f D is 5Hz, so that the inter-harmonic detection precision can be met, and the national standard requirement is met.
The invention aims at the point number N is 2M×N′=N1×N2Due to N1=2MIs the integer power number of 2, and can call the FFT library function of the DSP to calculate N2Group N1Point-based 2FFT conversion with fast operation speed, and then calculating N1Group N2The point DFT is similar to the operation, and the Fourier transform of the non-base 2 is completed. Compared with the traditional method, the method for detecting the inter-harmonic wave has the advantages that the frequency resolution can reach the national standard, the detection precision is higher, and the operation speed can also meet the requirements of the existing detection equipment. In addition, the present invention can calculate N-2MThe number of multiplied N' points, and the application range is wider.
Although illustrative embodiments of the present invention have been described above to facilitate the understanding of the present invention by those skilled in the art, it should be understood that the present invention is not limited to the scope of the embodiments, and various changes may be made apparent to those skilled in the art as long as they are within the spirit and scope of the present invention as defined and defined by the appended claims, and all matters of the invention which utilize the inventive concepts are protected.

Claims (1)

1. A non-basis 2FFT transform-based inter-harmonic detection method is characterized by comprising the following steps:
s1: sampling the signal, and setting the number of sampling points N to 2MX N', let N1=2M,N2Dividing the sampled data into N ═ N2Groups of N1Dot data, n-th2N in the group1The point data is denoted as f [ n ]1,n2]The data number N extracted from the sample data is N2n1+n2Wherein n is1The value range of (A) is not more than 0n1≤N1-1,n2Has a value range of n not less than 02≤N2-1;
S2: for N in each group1Performing non-base 2FFT on the point data to obtain the n-th data2Kth in group1The transformation result is denoted as F' [ k ]1,n2],k1K is not less than 01≤N1-1;
S3: let k equal to k1+N1k2,k2K is not less than 02≤N2-1, computing the kth Fourier transform result F [ k ] of the sampled data1,k2]And outputting as a detection result, wherein the calculation formula is as follows:
<math> <mrow> <mi>F</mi> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>]</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msup> <mi>F</mi> <mo>&prime;</mo> </msup> <mo>[</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mo>]</mo> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <mo>&prime;</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <msub> <mi>N</mi> <mn>2</mn> </msub> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </msubsup> <msubsup> <mi>W</mi> <mi>N</mi> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>.</mo> </mrow> </math>
CN201410620585.7A 2014-11-06 2014-11-06 Inter-harmonic detection method based on non-base 2FFT transformation Pending CN104459315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410620585.7A CN104459315A (en) 2014-11-06 2014-11-06 Inter-harmonic detection method based on non-base 2FFT transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410620585.7A CN104459315A (en) 2014-11-06 2014-11-06 Inter-harmonic detection method based on non-base 2FFT transformation

Publications (1)

Publication Number Publication Date
CN104459315A true CN104459315A (en) 2015-03-25

Family

ID=52905692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410620585.7A Pending CN104459315A (en) 2014-11-06 2014-11-06 Inter-harmonic detection method based on non-base 2FFT transformation

Country Status (1)

Country Link
CN (1) CN104459315A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425038A (en) * 2015-11-23 2016-03-23 广东工业大学 Measurement method for inter-harmonics of electric power system
CN106526318A (en) * 2016-12-05 2017-03-22 中国船舶重工集团公司第七〇九研究所 Device and method of detecting interharmonic peak fluctuation flicker based on spectral separation
CN107632963A (en) * 2017-08-08 2018-01-26 浙江运达风电股份有限公司 Length is the power system sampled signal Hilbert transform method based on FFT of composite number
CN108776264A (en) * 2018-07-26 2018-11-09 电子科技大学 The fft analysis device of digital oscilloscope
CN109581056A (en) * 2018-11-12 2019-04-05 国网江西省电力有限公司电力科学研究院 A kind of time varying signal harmonic analysis method and system based on fundamental frequency prediction
CN113567788A (en) * 2021-07-30 2021-10-29 北京易艾斯德科技有限公司 Application method, device, equipment and medium of mixed base FFT (fast Fourier transform) in power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008145263A (en) * 2008-11-17 2010-05-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" (RU) METHOD FOR DETERMINING THE PERIOD OF MULTI-FREQUENCY SIGNALS WITH INTERHARMONICS REPRESENTED BY DIGITAL REPORTS
CN102222911A (en) * 2011-04-19 2011-10-19 哈尔滨工业大学 Power system interharmonic estimation method based on auto-regression (AR) model and Kalman filtering
CN102830282A (en) * 2012-09-04 2012-12-19 国电南京自动化股份有限公司 2560-point grouping 2-based rapid fast Fourier transform method
CN103235180A (en) * 2013-04-08 2013-08-07 国家电网公司 Inter-harmonics measuring method for power grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008145263A (en) * 2008-11-17 2010-05-27 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" (RU) METHOD FOR DETERMINING THE PERIOD OF MULTI-FREQUENCY SIGNALS WITH INTERHARMONICS REPRESENTED BY DIGITAL REPORTS
CN102222911A (en) * 2011-04-19 2011-10-19 哈尔滨工业大学 Power system interharmonic estimation method based on auto-regression (AR) model and Kalman filtering
CN102830282A (en) * 2012-09-04 2012-12-19 国电南京自动化股份有限公司 2560-point grouping 2-based rapid fast Fourier transform method
CN103235180A (en) * 2013-04-08 2013-08-07 国家电网公司 Inter-harmonics measuring method for power grid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425038A (en) * 2015-11-23 2016-03-23 广东工业大学 Measurement method for inter-harmonics of electric power system
CN106526318A (en) * 2016-12-05 2017-03-22 中国船舶重工集团公司第七〇九研究所 Device and method of detecting interharmonic peak fluctuation flicker based on spectral separation
CN106526318B (en) * 2016-12-05 2018-11-20 中国船舶重工集团公司第七一九研究所 The detection device and method of m-Acetyl chlorophosphonazo peak value fluctuation flickering based on frequency spectrum separation
CN107632963A (en) * 2017-08-08 2018-01-26 浙江运达风电股份有限公司 Length is the power system sampled signal Hilbert transform method based on FFT of composite number
CN108776264A (en) * 2018-07-26 2018-11-09 电子科技大学 The fft analysis device of digital oscilloscope
CN108776264B (en) * 2018-07-26 2020-04-14 电子科技大学 FFT analysis device of digital oscilloscope
CN109581056A (en) * 2018-11-12 2019-04-05 国网江西省电力有限公司电力科学研究院 A kind of time varying signal harmonic analysis method and system based on fundamental frequency prediction
CN113567788A (en) * 2021-07-30 2021-10-29 北京易艾斯德科技有限公司 Application method, device, equipment and medium of mixed base FFT (fast Fourier transform) in power system

Similar Documents

Publication Publication Date Title
CN104459315A (en) Inter-harmonic detection method based on non-base 2FFT transformation
CN103454497B (en) Based on the method for measuring phase difference improving windowed DFT
CN103245832B (en) Based on harmonic wave time-frequency characteristic method for parameter estimation and the analyser of quick S-transformation
CN104375111B (en) The method that quick high accuracy refinement correction is carried out to intensive spectrum
CN108051189B (en) Rotating machinery fault feature extraction method and device
CN109521275B (en) Synchronous phasor determination method, system, device and readable storage medium
CN103197141A (en) Method of measuring electrical power system signal frequency and harmonic wave parameters
CN110020452B (en) Electromagnetic compatibility test simulation analysis method and system thereof
CN104897962A (en) Single-frequency signal short sample high precision frequency measurement method and device based on relatively prime perception
CN102955068A (en) Harmonic detection method based on compressive sampling orthogonal matching pursuit
Donciu et al. An alternative method to zero-padded DFT
CN112051446A (en) Mixed base FFT implementation method and device for broadband measurement of power system
Yao et al. Improved discrete Fourier transform algorithm for harmonic analysis of rotor system
CN103543331B (en) A kind of method calculating electric signal harmonic wave and m-Acetyl chlorophosphonazo
CN106680585A (en) Detection method of harmonics/inter-harmonics
Matusiak et al. Noniterative method for frequency estimation based on interpolated DFT with low-order harmonics elimination
CN104991119B (en) A kind of coprime spectral analysis method and its device for eliminating pseudo- peak, composing leakage effect
Yi et al. Instantaneous harmonic decomposition technique for three‐phase current based on multiple reference coordinates
CN111624399A (en) Electric energy metering method and system for nonlinear load
US8600687B2 (en) Signal analyzer for analyzing dynamic behavior of a target system
CN103592513A (en) Power signal harmonic analysis method and device
CN104764930B (en) Harmonic emission level estimation method based on correlation properties
CN107632963A (en) Length is the power system sampled signal Hilbert transform method based on FFT of composite number
CN105842536A (en) Improved ZoomFFT and ApFFT algorithm integrated method for analyzing dense harmonics and inter-harmonics
Wang et al. Method for frequency measurement with ApFFT based on FPGA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150325

RJ01 Rejection of invention patent application after publication