CN104355635A - Casting material and preparation method and use thereof - Google Patents
Casting material and preparation method and use thereof Download PDFInfo
- Publication number
- CN104355635A CN104355635A CN201410597925.9A CN201410597925A CN104355635A CN 104355635 A CN104355635 A CN 104355635A CN 201410597925 A CN201410597925 A CN 201410597925A CN 104355635 A CN104355635 A CN 104355635A
- Authority
- CN
- China
- Prior art keywords
- parts
- mould material
- corundum
- cinder
- mould
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 70
- 238000002360 preparation method Methods 0.000 title claims abstract 5
- 238000005266 casting Methods 0.000 title abstract description 8
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 28
- 239000010431 corundum Substances 0.000 claims abstract description 28
- 239000003818 cinder Substances 0.000 claims abstract description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 8
- 239000010959 steel Substances 0.000 claims abstract description 8
- 235000019832 sodium triphosphate Nutrition 0.000 claims abstract description 5
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims abstract description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims abstract description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims abstract description 3
- 239000002893 slag Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000007493 shaping process Methods 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 101710194948 Protein phosphatase PhpP Proteins 0.000 claims description 2
- 238000005056 compaction Methods 0.000 claims description 2
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 claims description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 239000002245 particle Substances 0.000 abstract description 12
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 14
- 230000003245 working effect Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 229910001021 Ferroalloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003886 thermite process Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- -1 and price is higher Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/74—Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
- C04B35/76—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/447—Phosphates or phosphites, e.g. orthophosphate or hypophosphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
The invention belongs to the field of metallurgy and particularly relates to a casting material and a preparation method and use thereof. The invention aims to provide the casting material of which the production cost is low. The casting material adopted by the invention comprises the following components in parts by weight: 30-35 parts of corundum cinder of which the particle diameter r is larger than 5mm, equal to or smaller than 10mm, 20-30 parts of the corundum cinder of which the particle diameter r is larger than 2mm, equal to or smaller than 5mm, 10-20 parts of the corundum cinder of which the particle diameter r is larger than 0.045mm, equal to or smaller than 2mm, 10-15 parts of the corundum cinder of which the particle diameter r is equal to or smaller than 0.045mm, 4-6 parts of aluminium oxide, 1-2 parts of heat resistant steel fibres and 0.05-0.15 part of at least one kind of sodium tripolyphosphate or sodium hexametaphosphate. The casting material disclosed by the invention has the advantages that the high temperature resistant property is good, the strength is high, and the service life of cinder spout casting materials which are manufactured with the casting material disclosed by the invention is prolonged to more than 30 days from 15-20 days by using an original material.
Description
Technical field
The invention belongs to field of metallurgy, be specifically related to a kind of mould material and its production and use.
Background technology
China is world steel output big country, consumes a large amount of refractory materialss.Domestic big-and-middle-sized blast furnace residue channel refractory materials general requirement is: high temperature resistant, resistant to corrosion, resistance to erosion, impermeabilisation, high thermal conductivity.Big-and-middle-sized Rafractory for molten iron discharge channel of blast furnace mainly Al
2o
3-SiC matter mould material, its raw material is based on corundum and silicon carbide, and price is higher, and corundum price is 3000-6000 per ton unit.
Thermite process is the main method of domestic production vanadium iron, produce high vanadium ferroalloy by thermite process and have maturation process, but accessory substance corundum furnace slag in process of production, be only limitted to the residual vanadium of second extraction at present and substitute a small amount of bauxitic clay produce alloy, there is utilization few, the shortcomings such as comprehensive utilization value is not high.Pan Gangfan industry company produces high vanadium ferroalloy, annual generation about 5000 tons, slag, and only inner processing broken a small amount of confession, outside hearth bottom material, is mainly taken out with form of waste, be not utilized effectively at present.
And corundum furnace slag is the accessory substance after Pan Gangfan industry company production high vanadium ferroalloy, it is cheap, effectively can replace general corundum as main raw material, at Under the market economy condition increasingly competitive now, raise labour productivity, the big-and-middle-sized Rafractory for molten iron discharge channel of blast furnace of research and production low-cost and high-performance is the basic goal that enterprise development is pursued.
Corundum furnace slag is with Al
2o
3be main component with MgO, Al
2o
3content is greater than 70%, and content of MgO is 10%-15%, CaO content is 8%-10%, and other is impurity component, wherein harmful to refractory materials impurity F e
2o
3content below 2.0%, Na
2o+K
2o content is below 0.5%.
Chinese patent CN201110453234.8 discloses a kind of blast furnace iron outlet groove refractory material casting material, and it is made up of following weight proportioning component: corundum furnace slag 25-50 part of 5-10mm; Corundum furnace slag 15-35 part of 2-5mm, corundum furnace slag 5-15 part of 0-2mm; Carborundum powder 5-15 part; Alundum cement or aluminous cement 1-5 part; Additive 0.1-0.3 part.But applicant finds that in actual production only there is 15-20 days in the work-ing life of this mould material, frequent mould material of changing causes that production cost is higher, workload is excessive.
Summary of the invention
Technical problem to be solved by this invention is to provide a kind of mould material of longer service life.
For solving technique scheme, mould material of the present invention, with weight parts, comprises following component:
Wherein, described water reducer can select at least one in tripoly phosphate sodium STPP or Sodium hexametaphosphate 99.
In raw material of the present invention, the corundum furnace slag of particle diameter r:5mm < r≤10mm uses as aggregate, plays the effect of skeletal support in mould material.
In raw material of the present invention, the corundum furnace slag of particle diameter r:2mm < r≤5mm uses as base-material, plays the effect of skeletal support on the one hand, plays the effect of stopping composition on the other hand.
In raw material of the present invention, the corundum furnace slag of particle diameter r:0.045mm < r≤2mm uses as stopping composition, the gap between filler aggregate and base-material, whole mould material is filled closely knit, seamless.
In raw material of the present invention, the corundum furnace slag of particle diameter r:r≤0.045mm uses as bonding agent and stopping composition, is combined closely by all raw materials on the one hand, uses on the other hand as stopping composition.
In raw material of the present invention, water reducer is for improving mould material setting rate and intensity, prevents mould material shrinkage cracking.
In raw material of the present invention, aluminum oxide is conducive to promoting high temperature resistant, the resistance to fouling of mould material.Preferably, for making mould material performance average, aluminum oxide preferred size≤200 order.Because the reactive behavior of activated alumina is stronger, result of use is better, and described aluminum oxide preferably adopts activated alumina.
In the principle of the invention, heat-resistant steel fiber can promote the intensity of mould material, resistance to elevated temperatures, enhanced stability and erosion resistance.Due to its poor heat resistance of ordinary steel fiber, intensity is low, does not reach service requirements, cannot use.
The manufacture method of mould material of the present invention comprises the steps:
A, the corundum furnace slag of different-grain diameter, aluminum oxide, heat-resistant steel fiber, water reducer, water are mixed to get compound;
B, pour in mould, shaping;
C, the demoulding, drying.
Concrete, step a amount of water is 4.5 parts ~ 7.5 parts.
Concrete, for making mould material more closely knit, shaping described in step b adopts vibratory compaction.
Especially, cinder spout mould material requires high to the resistance to elevated temperatures of mould material, and mould material of the present invention is particularly useful for manufacturing cinder spout mould material.
Beneficial effect of the present invention is as follows:
1, technique is simple, corundum furnace slag and other prepare burdens be mixed in proportion, namely shaping, dry, the demoulding obtain mould material, without the need to shaping, oven dry, fragmentation, also only need during use to mix with water.
2, production cost is lower, consuming time shorter, because the present invention is without the need to shaping, oven dry, fragmentation, because this reducing energy consumption and production cost.
3, mould material resistance to elevated temperatures of the present invention is good, intensity is high, through statistics, adopts brought up to more than 30 days by 15-20 days of original material the work-ing life of the cinder spout mould material of mould material manufacture of the present invention.
Embodiment
Below in conjunction with specific embodiment, the invention will be further described, but it should be understood that and protection scope of the present invention be not limited in this embodiment.
Raw material for standby is taken, wherein corundum furnace slag grade and specification of quality: Al by table 1
2o
3content is greater than 70%, and content of MgO is 10%-15%, CaO content is 8%-10%, Fe
2o
3content is less than 2%; Activated alumina powder grade and specification of quality: Al
2o
3content is greater than 99 parts, granularity-200 order.
Table 1
Raw material | Embodiment 1 | Embodiment 2 | Embodiment 3 |
The corundum furnace slag of particle diameter r:5mm < r≤10mm | 35 parts | 35 parts | 35 parts |
The corundum furnace slag of particle diameter r:2mm < r≤5mm | 30 parts | 30 parts | 30 parts |
The corundum furnace slag of particle diameter r:0.045mm < r≤2mm | 15 parts | 15 parts | 15 parts |
The corundum furnace slag of particle diameter r:r≤0.045mm | 10 parts | 12 parts | 13 parts |
Activated alumina | 7 parts | 6 parts | 5 parts |
Heat-resistant steel fiber | 3 parts | 2 parts | 2 parts |
Water reducer | 0.1 part | 0.1 part | 0.1 part |
Embodiment 1
Batching:
By above-mentioned various raw material in table 1 ratio batching, then agitating-bagging in stirrer, add water during use stirring more than 5 minutes again.
Shaping:
The material be uniformly mixed is poured in the mould of cinder spout cast, applies the object that vibration reaches flowing forming by vibrating head to mould material.
Drying and thermal treatment:
The demoulding after air-set drying of this mould material, naturally dries and can come into operation for 6 hours under in situ temperature condition.
Gained mould material performance: 110 DEG C of volume densities are greater than 2.6g/cm
3, dry compressive strength for 110 DEG C and be greater than 22Mpa, after being incubated 3 hours under 1100 DEG C of conditions, compressive strength is greater than 55Mpa; Dry folding strength for 110 DEG C and be greater than 5Mpa, after being incubated 3 hours under 1100 DEG C of conditions, folding strength is greater than 10Mpa.Gained mould material is used as ironmaking cinder spout mould material, reaches 30 days work-ing life.
Embodiment 2
Batching:
By above-mentioned various raw material in table 1 ratio batching, then agitating-bagging in stirrer, add water during use stirring more than 5 minutes again.
Shaping:
The material be uniformly mixed is poured in the mould of cinder spout cast, applies the object that vibration reaches flowing forming by vibrating head to mould material.
Drying and thermal treatment:
The demoulding after air-set drying of this mould material, naturally dries and can come into operation for 6 hours under in situ temperature condition.
Gained mould material performance: 110 DEG C of volume densities are greater than 2.8g/cm
3, dry compressive strength for 110 DEG C and be greater than 20Mpa, after being incubated 3 hours under 1100 DEG C of conditions, compressive strength is greater than 60Mpa; Dry folding strength for 110 DEG C and be greater than 8Mpa, after being incubated 3 hours under 1100 DEG C of conditions, folding strength is greater than 10Mpa.Gained mould material is used as ironmaking cinder spout mould material, reaches 35 days work-ing life.
Embodiment 3
Batching:
By above-mentioned various raw material in table 1 ratio batching, then agitating-bagging in stirrer, add water during use stirring more than 5 minutes again.
Shaping:
The material be uniformly mixed is poured in the mould of cinder spout cast, applies the object that vibration reaches flowing forming by vibrating head to mould material.
Drying and thermal treatment:
The demoulding after air-set drying of this mould material, naturally dries and can come into operation for 6 hours under in situ temperature condition.
Gained mould material performance: 110 DEG C of volume densities are greater than 2.85g/cm
3, dry compressive strength for 110 DEG C and be greater than 16Mpa, after being incubated 3 hours under 1100 DEG C of conditions, compressive strength is greater than 65Mpa; Dry folding strength for 110 DEG C and be greater than 8.5Mpa, after being incubated 3 hours under 1100 DEG C of conditions, folding strength is greater than 12Mpa.Gained mould material is used as ironmaking cinder spout mould material, reaches 38 days work-ing life.
Comparative example
Prepare mould material by CN201110453234.8 embodiment 1 to use as ironmaking cinder spout mould material, work-ing life is 18 days.
Add up discovery by experiment, mould material of the present invention is compared with patent CN201110453234.8 mould material, by the additional proportion of the corundum furnace slag of adjustment 0.045mm < r≤2mm and the corundum furnace slag of r≤0.045mm, corundum furnace slag is filled more closely knit.Substitute silicon carbide with heat-resistant steel fiber, not only add-on significantly reduces compared with the add-on of silicon carbide, and can also promote intensity and the resistance to elevated temperatures of mould material, and keeps good anti-scour property, makes obtain remarkable lifting the work-ing life of mould material.Work-ing life is equal >=and 30 days, the work-ing life of more existing cinder spout mould material extends at least 10 days, obviously progressive.
Claims (7)
1. mould material, is characterized in that, with weight parts, comprises following component:
Wherein, at least one in tripoly phosphate sodium STPP or Sodium hexametaphosphate 99 selected by described water reducer.
2. mould material according to claim 1, is characterized in that: described aluminum oxide grain size≤200 order.
3. the mould material described in claim 1 or 2, is characterized in that: described aluminum oxide is activated alumina.
4. the preparation method of the mould material described in any one of claims 1 to 3, is characterized in that, comprises the following steps:
A, the corundum furnace slag of different-grain diameter, activated alumina, heat-resistant steel fiber, water reducer, water are mixed to get compound;
B, compound is poured in mould, shaping;
C, the demoulding, drying.
5. the preparation method of mould material according to claim 4, is characterized in that: step a amount of water is 4.5 parts ~ 8 parts.
6. the preparation method of the mould material according to claim 4 or 5, is characterized in that: the shaping employing vibratory compaction described in step b.
7. the mould material described in any one of claims 1 to 3 is as the purposes of ironmaking cinder spout mould material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410597925.9A CN104355635A (en) | 2014-10-30 | 2014-10-30 | Casting material and preparation method and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410597925.9A CN104355635A (en) | 2014-10-30 | 2014-10-30 | Casting material and preparation method and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104355635A true CN104355635A (en) | 2015-02-18 |
Family
ID=52522975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410597925.9A Pending CN104355635A (en) | 2014-10-30 | 2014-10-30 | Casting material and preparation method and use thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104355635A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106588053A (en) * | 2016-12-19 | 2017-04-26 | 攀枝花钢城集团有限公司 | Castable for blast furnace slag spout |
CN108033799A (en) * | 2017-12-14 | 2018-05-15 | 钢城集团凉山瑞海实业有限公司 | Half cylinder of steel tank mouth castable |
CN109516818A (en) * | 2018-12-03 | 2019-03-26 | 攀枝花钢城集团有限公司 | Hot-metal bottle bottom castable and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102515808A (en) * | 2011-12-30 | 2012-06-27 | 攀枝花钢城集团有限公司 | Recycling method of blast furnace tapping channel refractory material castable and corundum furnace slag |
CN104119082A (en) * | 2013-04-28 | 2014-10-29 | 上海梅山钢铁股份有限公司 | Chromium-free casting material for outer lining of RH (Relative Humidity) furnace inserting tube |
-
2014
- 2014-10-30 CN CN201410597925.9A patent/CN104355635A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102515808A (en) * | 2011-12-30 | 2012-06-27 | 攀枝花钢城集团有限公司 | Recycling method of blast furnace tapping channel refractory material castable and corundum furnace slag |
CN104119082A (en) * | 2013-04-28 | 2014-10-29 | 上海梅山钢铁股份有限公司 | Chromium-free casting material for outer lining of RH (Relative Humidity) furnace inserting tube |
Non-Patent Citations (4)
Title |
---|
徐平坤 等: "《刚玉耐火材料》", 30 June 1999, 冶金工业出版社 * |
许晓海 等: "《耐火材料技术手册》", 31 January 2000, 冶金工业出版社 * |
陆厚根: "《粉体工程导论》", 31 August 1993, 同济大学出版社 * |
韩行禄: "《不定形耐火材料(第2版)》", 31 January 2003, 冶金工业出版社 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106588053A (en) * | 2016-12-19 | 2017-04-26 | 攀枝花钢城集团有限公司 | Castable for blast furnace slag spout |
CN108033799A (en) * | 2017-12-14 | 2018-05-15 | 钢城集团凉山瑞海实业有限公司 | Half cylinder of steel tank mouth castable |
CN108033799B (en) * | 2017-12-14 | 2021-01-26 | 钢城集团凉山瑞海实业有限公司 | Castable for semi-steel tank nozzle |
CN109516818A (en) * | 2018-12-03 | 2019-03-26 | 攀枝花钢城集团有限公司 | Hot-metal bottle bottom castable and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101851103B (en) | Production method of environment-friendly and energy-saving type regenerative magnesia-carbon brick | |
CN107973610B (en) | Silicon carbide ramming mass taking waste silicon carbide saggar as main raw material | |
CN103011862B (en) | Environment-friendly carbon-free tundish dry material | |
CN112456973B (en) | Magnesium current stabilizer for tundish and preparation method thereof | |
CN103482989A (en) | Magnesium aluminate spinel castable and method for producing prefabricated brick by using castable | |
CN103864448A (en) | Water-free stemming for medium and large blast furnace | |
CN102701762B (en) | Regeneration repairing material for blast-furnace casting runner and preparation method for regeneration repairing material | |
CN103553656A (en) | Low-cost magnesium-silicon based castable for tundish prefabricated component and preparation method thereof | |
CN110204301B (en) | Deformation-resistant large-size ceramic sanitary appliance and preparation method thereof | |
CN114163222A (en) | Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof | |
CN106810282B (en) | Method for producing ramming mass by using waste fused zirconia corundum bricks | |
CN110563449A (en) | Environment-friendly magnesia-carbon gunning mix for RH furnace and preparation method thereof | |
CN104402472A (en) | Tundish dry vibrating refractory and preparation method, as well as special additive and preparation method | |
CN112358302B (en) | Self-repairing anhydrous stemming | |
CN113233908A (en) | Regenerated carbon-free brick and preparation method thereof | |
CN104355635A (en) | Casting material and preparation method and use thereof | |
CN108863313A (en) | A kind of low-carbon MgO-C refractory material and preparation method thereof | |
CN106518043A (en) | Preparing method of low-cost Al-Ca-Si tin bath bottom block | |
CN109095902B (en) | Paving brick for glass kiln and production process thereof | |
CN103922759B (en) | Preparation method of silicon carbide wear-resistant fireproof wind-guiding wall crossbeam and wind-guiding wall brick | |
CN109987950A (en) | A kind of unburned composite aluminum-carbon SiClx carbon brick | |
CN109279906A (en) | A kind of castable and preparation method thereof | |
CN105130480A (en) | High alumina refractory castable for rotary kiln | |
CN102515808B (en) | Recycling method of blast furnace tapping channel refractory material castable and corundum furnace slag | |
CN107488040A (en) | One kind is exempted to toast pouring basket lid and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150218 |
|
RJ01 | Rejection of invention patent application after publication |