CN104347761B - 晶体质量可控的氮化镓薄膜外延生长方法 - Google Patents
晶体质量可控的氮化镓薄膜外延生长方法 Download PDFInfo
- Publication number
- CN104347761B CN104347761B CN201310339724.4A CN201310339724A CN104347761B CN 104347761 B CN104347761 B CN 104347761B CN 201310339724 A CN201310339724 A CN 201310339724A CN 104347761 B CN104347761 B CN 104347761B
- Authority
- CN
- China
- Prior art keywords
- growth
- temperature
- gallium nitride
- pregrown
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000012010 growth Effects 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000010409 thin film Substances 0.000 title claims abstract description 13
- 239000013078 crystal Substances 0.000 title abstract description 22
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 57
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 50
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 238000010792 warming Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000005915 ammonolysis reaction Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000002441 X-ray diffraction Methods 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 abstract description 10
- 229910052594 sapphire Inorganic materials 0.000 abstract description 9
- 239000010980 sapphire Substances 0.000 abstract description 9
- 238000000407 epitaxy Methods 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract 1
- 230000007773 growth pattern Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- -1 thickness Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Led Devices (AREA)
Abstract
一种晶体质量可控的氮化镓薄膜外延生长方法。本发明所述方法的特征是:在常规两步法外延工艺中低温缓冲层生长之前加入两层氮化镓的预生长,一层是在1050‑1120℃烘烤过程中的进行氮化镓预生长,一层是在1050‑1120℃烘烤到500‑600℃缓氮化镓冲层生长的降温过程中或者在缓冲层生长温度下进行氮化镓预生长。通过优化这些预生长层的具体生长方式、温度、五三比和生长时间,并优化缓冲层的生长温度,提高在蓝宝石衬底上外延氮化镓薄膜的晶体质量。本发明的优点是,通过改变低温缓冲层的生长温度和预生长层的温度和五三比,能在保证氮化镓薄膜(002)面X射线衍射曲线半高宽值很低的情况下,平滑调整(102)面X射线衍射曲线半高宽值。
Description
技术领域
本发明涉及一种氮化镓(Gallium Nitride,GaN)基异质外延薄膜的生长方法,特别是一种晶体质量可控的氮化镓薄膜外延生长方法。
背景技术
氮化镓材料因其直接帯隙、热稳定性高、电子迁移率大等特性被称作第三代半导体材料受到了人们的关注,氮化镓基发光二极管(Light Emitting Diode,LED)更因其在照明领域的潜在应用而成为了广大研究人员以及政府部门的研究热点。氮化镓基LED作为白光照明的潜在替换材料具有寿命长、可靠性高、体积小、功耗低、响应速度快、易于调制和集成等优点。然而目前工业水平的氮化镓基外延薄膜的晶体质量没有得到很好的控制,影响了LED芯片发光效率的提高,对芯片电性能以及散热也有很大的影响。
目前工业上普遍采用“两步法”工艺在蓝宝石衬底上异质外延生长氮化镓薄膜,采用“两步法”工艺,即对蓝宝石衬底高温烘烤之后,降低到530℃左右氮化,然后生长一层低温氮化镓作为缓冲层,升温退火至1030℃再进行三维生长,最后过渡到二维生长。“两步法”工艺生长的外延片晶体质量具有可控性差的缺点,虽然通过生长参数,包括温度、厚度及五三比等的调节可以调整外延片质量(由(002)和(102)面X射线衍射曲线半高宽值表现),但这样的调整有较大的随机性和不稳定性,使得晶体质量的波动比较大,同时(002)面和(102)面晶体质量之间的相互干扰也非常大。研究表明在一定的条件下,(102)面X射线衍射曲线半高宽值较大的情况下,LED具有更高的发光效率和强度。因此,我们需要一种能较方便控制氮化镓薄膜晶体质量的生长工艺方法,能稳定可调地控制氮化镓外延薄膜的晶体质量,同时有效阻止(002)面和(102)面的晶体质量的相互干扰。
发明内容
本发明的目的是针对现有技术的问题,提供一种晶体质量可控的氮化镓薄膜生长工艺方法。本发明基于金属有机化合物气相沉积(MOCVD,Metalorganic Chemical VaporDeposition)技术。在外延生长过程中,通过射入635nm激光到外延片表面并监测其反射回来的干涉强度曲线可以在线实时反映外延片的生长情况。以在平片蓝宝石衬底上采用常规“两步法”工艺生长氮化镓薄膜为例(图1),可以从干涉曲线中间接观察到(i)缓冲层的生长、(ii)升温退火重结晶、(iii)高温生长初级阶段三维生长以及其后的(iv)二维生长。通过观察干涉曲线,我们能够间接的实时监测氮化镓外延薄膜的生长状态,包括厚度、晶体形态以及表面状态。
在氮化镓薄膜的生长过程中,极性面对表面的形态以及晶体质量具有非常大的影响。氮化镓薄膜具有两种极性面,分别是-c极性面和+c极性面。-c极性面的氮化镓薄膜具有六角刻面的特性,而+c极性面则是光滑的表面。生长过程中,界面要保持极性的一致性,同时各层之间应该保持一致的极性面,这样高温生长的氮化镓薄膜才具有光滑的表面和高的晶体质量。缓冲层之前的氮化温度和时间的选择、以及缓冲层的五三比等参数都对极性面的调整有非常大的影响。低于700℃氮化得到+c极性面氮化镓薄膜,而高五三比生长缓冲层则得到-c极性面,同时还要注意到蓝宝石衬底在低温不容易被氮化,过短的氮化时间会导致表面混合极性面的出现,从而使得外延表面不光滑,晶体质量也不好把握和调整。极性面的控制对在平片衬底上的外延生长尤为重要。
为了达到上述目的,在常规的两步生长方法的基础上,增加2步氮化镓的预生长,其特征在于:在氮化镓500-600℃缓冲层生长之前加入两层氮化镓的预生长,一层是在1050-1120℃烘烤过程中的进行氮化镓预生长,一层是在1050-1120℃烘烤到500-600℃氮化镓缓冲层生长的降温过程中或者在缓冲层生长温度下进行氮化镓预生长,其生长步骤是:
步骤1,升温至1050-1120℃,在H2气氛中烘烤60-600秒钟,然后预生长5-120秒钟的氮化镓,摩尔五三比为300-1000。然后再进行60-600秒钟的烘烤;
步骤2,在1050-1120℃烘烤过程到500-600℃氮化镓缓冲层生长的降温过程中或者在缓冲层生长温度下,进行氮化镓预生长,摩尔五三比为300-1000,时间为60-600秒;
步骤3,在缓冲层生长温度500-600℃下生长10-40nm厚氮化镓缓冲层,摩尔五三比为200-2000;
步骤4,在100-600秒内升温至900-1100℃,并恒温30-300秒;
步骤5进行高温氮化镓的初始生长,即三维生长,生长温度为900-1100℃,时间为300-1500秒;
步骤6,进行氮化镓三维转二维生长,温度升至1000-1100℃,时间为60-1200秒;
步骤7,进行氮化镓二维生长,生长温度为1000-1100℃。
所述氮化镓的预生长可以选择以下三种方式之一进行生长:在降温过程中的500-1050℃温度下进行恒温生长或者在整个降温过程中一个降温阶段中进行连续变温生长或者降温过程完成后进行恒温生长。
本发明的优点是:所述方法通过在低温缓冲层生长之前加入两层氮化镓的预生长,通过调整这些预生长层的温度、厚度和五三比等参数,使得工艺达到优化和稳定,最后基于优化的工艺配方,通过改变低温缓冲层的生长温度和预生长层的温度,能在保证(002)面X射线衍射曲线半高宽值很低的情况下,平滑调整(102)面X射线衍射曲线半高宽值。采用本发明在蓝宝石平片衬底和PSS衬底上生长的氮化镓薄膜都有很好的晶体质量和很好的可控性,并且采用本发明的工艺配方,能在蓝宝石平片衬底上得到非常好的晶体质量,接近PSS衬底上生长的外延片的晶体质量。
附图说明
图1为常规“两步法”外延工艺生长氮化镓薄膜实时激光干涉强度和温度曲线图,横坐标为时间(秒);
图2是本发明实施例氮化镓薄膜生长实时激光干涉强度和温度曲线图,横坐标为时间(秒),左边纵坐标为激光干涉强度,右边纵坐标为温度(℃)。
具体实施方式
下面结合附图进一步说明本发明的实施例:
实施例一
a)在MOCVD设备中放置满炉的蓝宝石平片衬底,升温至1050-1120℃,本实施例为1080℃,在H2气氛中烘烤60-600秒钟,本实施例为270秒钟,然后预生长5-120秒钟的氮化镓,本实施例为预生长30秒钟氮化镓(见图2 HT-Predose),NH3和TMGa的流量分别为49.1毫摩尔/分钟和71.4微摩尔/分钟,摩尔五三比为687。然后再进行60-600秒钟的烘烤,本实施例烘烤210秒钟。
b)在1050-1120℃烘烤过程中降温至730℃,然后再从730℃降温至555℃的过程中,进行500℃至1000℃预生长(见图2 LT-Predose),NH3和TMGa的流量分别为49.1毫摩尔/分钟和71.4微摩尔/分钟,摩尔五三比为687,时间为60-600秒,本实施例时间为100秒。
c)在缓冲层生长温度500-600℃下生长10-40nm厚氮化镓缓冲层,摩尔五三比为200-2000,本实施例在555℃下生长约25nm氮化镓缓冲层,NH3和TMGa的流量分别为446.0毫摩尔/分钟和276.3微摩尔/分钟,摩尔五三比为1614.4。
d)在100-600秒内升温至900-1100℃,并恒温30-300秒。本实施例在300秒内升温至1000℃,并恒温140秒。
e)进行高温氮化镓的初始生长,即三维生长,NH3和TMGa的流量分别为1070.4毫摩尔/分钟和762.1微摩尔/分钟,摩尔五三比为1404.6,生长温度为900-1100℃,本实施例生长温度为1000℃,时间为300-1500秒,本实施例时间为1200秒。
f)进行氮化镓三维转二维生长,温度升至1000-1100℃,本实施例温度升至1030℃,NH3和TMGa的流量分别为1070.4毫摩尔/分钟和905.0微摩尔/分钟,摩尔五三比为1182.8,时间为60-1200秒,本实施例时间为420秒。
g)进行氮化镓二维生长,NH3和TMGa的流量分别为1070.4毫摩尔/分钟和809.7微摩尔/分钟,摩尔五三比为1321.9,生长温度为1000-1100℃,本实施例生长温度为1030℃,时间为4200秒。
以上实施例生长过程中采用H2作为载气,总气量为72升/分钟,高温氮化镓的生长压力为256mbar。实施例中蓝宝石衬底平片外延片表明平滑,同时晶体质量达到了(002)面的X射线衍射曲线半高宽为237弧秒,(102)面的X射线衍射曲线半高宽为361弧秒,表明氮化镓外延薄膜晶体质量良好。最重要的是,通过调整所加入的两个生长层的温度和生长,能非常方便可控地将氮化镓薄膜(102)的X射线衍射曲线半高宽值在361弧秒至500弧秒之间调整,同时保证在整个调整过程中(002)面的X射线衍射曲线半高宽值都很好的保持在260弧秒以下。
Claims (2)
1.一种氮化镓薄膜外延生长方法,在常规的两步生长方法的基础上,增加2步氮化镓的预生长,其特征在于:在氮化镓500-600℃缓冲层生长之前加入两层氮化镓的预生长,一层是在1050-1120℃烘烤过程中的进行氮化镓预生长,一层是在1050-1120℃烘烤到500-600℃氮化镓缓冲层生长的降温过程中或者在缓冲层生长温度下进行氮化镓预生长,其生长步骤是:
步骤1,升温至1050-1120℃,在H2气氛中烘烤60-600秒钟,然后预生长5-120秒钟的氮化镓,摩尔五三比为300-1000,然后再进行60-600秒钟的烘烤;
步骤2,在1050-1120℃烘烤过程到500-600℃氮化镓缓冲层生长的降温过程中或者在缓冲层生长温度下,进行氮化镓预生长,摩尔五三比为300-1000,时间为60-600秒;
步骤3,在缓冲层生长温度500-600℃下生长10-40nm厚氮化镓缓冲层,摩尔五三比为200-2000;
步骤4,在100-600秒内升温至900-1100℃,并恒温30-300秒;
步骤5进行高温氮化镓的初始生长,即三维生长,生长温度为900-1100℃,时间为300-1500秒;
步骤6,进行氮化镓三维转二维生长,温度升至1000-1100℃,时间为60-1200秒;
步骤7,进行氮化镓二维生长,生长温度为1000-1100℃。
2.根据权利要求1所述的氮化镓薄膜外延生长方法,其特征在于所述氮化镓的预生长可以选择以下三种方式之一进行生长:在降温过程中的500-1050℃温度下进行恒温生长或者在整个降温过程中一个降温阶段中进行连续变温生长或者降温过程完成后进行恒温生长。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310339724.4A CN104347761B (zh) | 2013-08-06 | 2013-08-06 | 晶体质量可控的氮化镓薄膜外延生长方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310339724.4A CN104347761B (zh) | 2013-08-06 | 2013-08-06 | 晶体质量可控的氮化镓薄膜外延生长方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104347761A CN104347761A (zh) | 2015-02-11 |
CN104347761B true CN104347761B (zh) | 2017-02-15 |
Family
ID=52502941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310339724.4A Active CN104347761B (zh) | 2013-08-06 | 2013-08-06 | 晶体质量可控的氮化镓薄膜外延生长方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104347761B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106159046A (zh) * | 2015-03-26 | 2016-11-23 | 南通同方半导体有限公司 | 一种改善GaN晶体质量的LED外延结构 |
CN107039250B (zh) * | 2016-02-03 | 2018-08-21 | 中晟光电设备(上海)股份有限公司 | 一种在蓝宝石衬底上生长氮化镓材料的方法、氮化镓材料及其用途 |
CN107516629B (zh) * | 2017-06-27 | 2020-03-31 | 江苏能华微电子科技发展有限公司 | 提高氮化物外延层耐压特性的缓冲层生长方法 |
CN109860340B (zh) * | 2018-10-29 | 2020-07-07 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片的生长方法 |
CN109920722B (zh) * | 2019-01-28 | 2021-04-27 | 华灿光电(浙江)有限公司 | GaN基发光二极管外延片及其制备方法、发光二极管 |
CN111244233B (zh) * | 2020-01-26 | 2021-09-24 | 江苏明纳半导体科技有限公司 | Led制备工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1468974A (zh) * | 2001-11-17 | 2004-01-21 | 厦门三安电子有限公司 | 一种制作ⅲ族氮化物材料的方法 |
CN1500919A (zh) * | 2002-11-13 | 2004-06-02 | 中国科学院物理研究所 | 制备氮化镓单晶薄膜的方法 |
CN1588622A (zh) * | 2004-09-17 | 2005-03-02 | 同济大学 | 一种提高氮化镓基材料外延层质量的衬底处理方法 |
CN101962803A (zh) * | 2010-10-30 | 2011-02-02 | 北京大学 | 高质量单晶厚膜材料的异质外延生长方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100674829B1 (ko) * | 2004-10-29 | 2007-01-25 | 삼성전기주식회사 | 질화물계 반도체 장치 및 그 제조 방법 |
-
2013
- 2013-08-06 CN CN201310339724.4A patent/CN104347761B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1468974A (zh) * | 2001-11-17 | 2004-01-21 | 厦门三安电子有限公司 | 一种制作ⅲ族氮化物材料的方法 |
CN1500919A (zh) * | 2002-11-13 | 2004-06-02 | 中国科学院物理研究所 | 制备氮化镓单晶薄膜的方法 |
CN1588622A (zh) * | 2004-09-17 | 2005-03-02 | 同济大学 | 一种提高氮化镓基材料外延层质量的衬底处理方法 |
CN101962803A (zh) * | 2010-10-30 | 2011-02-02 | 北京大学 | 高质量单晶厚膜材料的异质外延生长方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104347761A (zh) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104347761B (zh) | 晶体质量可控的氮化镓薄膜外延生长方法 | |
CN102842659B (zh) | 一种氮化镓系半导体发光器件外延片的制作方法 | |
CN102534769B (zh) | 在图形衬底上生长氮化镓外延结构的方法 | |
CN104393125B (zh) | 一种发光元件的制备方法 | |
EP3107128B1 (en) | Preparation method of a non-polar blue led epitaxial wafer based on lao substrate | |
CN103887378B (zh) | 一种高光效紫外led的外延生长方法 | |
Zhu et al. | Solid-state lighting based on light emitting diode technology | |
CN101847673A (zh) | 一种氮化镓基led外延片及其生长方法 | |
CN103811601B (zh) | 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法 | |
CN102214739A (zh) | 一种氮化镓基发光二极管的外延粗化方法 | |
CN102427103B (zh) | 氮化镓基ⅲ-ⅴ族化合物半导体led外延片及其生长方法以及包括其的led显示装置 | |
CN104617487A (zh) | 氮化镓同质衬底上激光器量子阱有源区的同温生长方法 | |
CN104241464B (zh) | 一种提高p型氮化镓掺杂浓度的外延生长方法 | |
CN107768234A (zh) | 一种获得高质量AlN模板的方法 | |
CN104716236A (zh) | 一种提高发光效率的GaN基LED外延结构及生长方法 | |
CN103779465B (zh) | Led多量子阱结构装置及生长方法 | |
CN109244202A (zh) | 一种含有应变补偿结构的GaN基量子阱LED外延结构 | |
CN104952710B (zh) | 一种led外延层生长方法 | |
CN104157752B (zh) | N型层粗化的led生长方法 | |
CN207381425U (zh) | 一种紫外led外延结构 | |
CN102610713A (zh) | 一种mocvd生长氮化物发光二极管的方法 | |
CN104900774B (zh) | 一种提高led亮度的双缓冲层横向外延生长方法 | |
CN104485399B (zh) | 一种提高外延晶体质量的外延生长方法 | |
CN103137808A (zh) | 具有低温n型插入层的氮化镓系发光二极管及其制备方法 | |
CN107564999B (zh) | 一种提升发光效率的led外延生长方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240201 Address after: 528251, Zone C, 1st Floor, No. 5 Pingzhou Nangang Street, Guicheng Street, Nanhai District, Foshan City, Guangdong Province Patentee after: Guangdong Zhongyuan Semiconductor Technology Co.,Ltd. Country or region after: China Address before: 528251 C, first floor, west of Foshan Road, Nansha Road, Guangdong. Patentee before: Gan Zhiyin Country or region before: China |
|
TR01 | Transfer of patent right |