CN104318099B - The mobile analogue experiment method of dynamic point on two-dimensional random road network - Google Patents
The mobile analogue experiment method of dynamic point on two-dimensional random road network Download PDFInfo
- Publication number
- CN104318099B CN104318099B CN201410564504.6A CN201410564504A CN104318099B CN 104318099 B CN104318099 B CN 104318099B CN 201410564504 A CN201410564504 A CN 201410564504A CN 104318099 B CN104318099 B CN 104318099B
- Authority
- CN
- China
- Prior art keywords
- random
- moving point
- time
- moving
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000002474 experimental method Methods 0.000 title description 9
- 230000033001 locomotion Effects 0.000 claims abstract description 84
- 238000004458 analytical method Methods 0.000 claims abstract description 41
- 238000004088 simulation Methods 0.000 claims abstract description 31
- 238000004364 calculation method Methods 0.000 claims abstract description 17
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 16
- 230000003068 static effect Effects 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 6
- 230000001174 ascending effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000007405 data analysis Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005295 random walk Methods 0.000 description 4
- 238000013499 data model Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011423 initialization method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种二维随机路网上的动点移动模拟实验方法,具体步骤如下:随机数生成模块生成随机数;建模模块建立随机模型构架,将路径模型的信息保存至文件;运算模块建立随机模型,采用时间队列算法计算和模拟每一时刻运动对象的实时状态,将运算结果以文件形式保存;分析模块读取数据对随机运动的特征进行分析和统计,通过图形的方式将分析结果显示到界面中。本发明解决了现有移动模型无法模拟随机运动对象在每一时刻的状态信息的问题,是一种多簇马氏链的启发平台,可灵活配置,为多种问题提供实验环境。
The invention discloses a moving point movement simulation experiment method on a two-dimensional random road network. The specific steps are as follows: a random number generating module generates random numbers; a modeling module establishes a random model framework, and saves path model information to a file; Establish a random model, use the time queue algorithm to calculate and simulate the real-time state of the moving object at each moment, and save the calculation results in the form of files; the analysis module reads the data to analyze and count the characteristics of the random movement, and graphically reports the analysis results displayed in the interface. The invention solves the problem that the existing mobile model cannot simulate the state information of random moving objects at each moment, is an inspiration platform for multi-cluster Markov chains, can be flexibly configured, and provides an experimental environment for various problems.
Description
技术领域technical field
本发明属于动点移动模拟实验方法技术领域,具体涉及一种二维随机路网上的动点移动模拟实验方法。The invention belongs to the technical field of moving point movement simulation experiment methods, and in particular relates to a moving point movement simulation experiment method on a two-dimensional random road network.
背景技术Background technique
古典的随机游动理论,出现在许多数学和物理模型中,主要是考虑简单但无限制的图上的随机游动。以格点图为例,如果让质点无限期游动下去,质点是否以概率1返回起点?是否会无穷多次返回起点?1921年,Pólya证明了当n=1,2时,质点以概率1无穷多次返回到起点,但当n>3时,质点只会有限多次返回到起点。The classical theory of random walks, which appears in many mathematical and physical models, mainly considers random walks on simple but unrestricted graphs. Taking the lattice diagram as an example, if the particle is allowed to swim indefinitely, will the particle return to the starting point with probability 1? Will it return to the starting point infinitely many times? In 1921, Pólya proved that when n=1,2, the particle returns to the starting point infinitely many times with probability 1, but when n>3, the particle will only return to the starting point finitely many times.
联通无向图上的随机游动,即可逆的马尔可夫链,和电网络的内在联系,以及矩阵分析和调和分析方法的成功应用,使它成为近年来组合图论界研究最多,成果最丰富的课题之一。可逆的马尔科夫链,在多种领域有着应用。面向随机动点移动的研究,主要集中于位置索引模型的建立。假定对象在二维空间中做任意运动,根据需要的不同,陆续出现了以下索引结构:针对移动对象当前和未来位置信息,产生了一类进行信息位置管理的模型;随着人们对过去现象关注度的提高,能够处理移动对象历史位置信息的模型有了一定发展;作为近年来的发展趋势,能够同时处理移动对象过去、当前以及未来位置信息等的模型也应运而生,这极大丰富了动点移动的应用层面。The random walk on the Unicom undirected graph, that is, the reversible Markov chain, the internal connection with the electrical network, and the successful application of matrix analysis and harmonic analysis methods make it the most researched and most fruitful in the field of combinatorial graph theory in recent years. One of the rich subjects. Reversible Markov chains have applications in various fields. Research on the movement of random moving points mainly focuses on the establishment of position index models. Assuming that the object moves arbitrarily in two-dimensional space, according to different needs, the following index structures have emerged one after another: for the current and future position information of the moving object, a type of model for information position management has been generated; as people pay attention to past phenomena With the improvement of the accuracy, the model that can process the historical position information of the moving object has developed to a certain extent; as a development trend in recent years, the model that can simultaneously process the past, current and future position information of the moving object has also emerged, which greatly enriches the The application layer of Modo Mobile.
在移动模型的研究中,二维网络移动对象的时空数据模型起步较晚。现有的时空数据模型主要着眼于记录移动对象的运动状态,如路网数据模型中加入时间索引的记录集。时空网络移动对象这一研究领域对于网络经典分析意义重大。实际应用中,移动对象的运动模式可以分为无限制运动(如船舶在大海中行驶)、限制运动(如行人的运动)和在固定网络的运动(如火车、汽车在一定的区域中沿固定线路移动),其中固定网络运动是应用中最普遍的模式。当移动对象的运动模式定义为在固定网络上的无限制运动时,其运动轨迹可以理解为一条保存了过去、当前以及未来信息,运动发展与过去无关的马氏链。In the study of mobile models, the spatio-temporal data model of moving objects in 2D network started relatively late. Existing spatio-temporal data models mainly focus on recording the motion state of moving objects, such as adding time-indexed record sets to road network data models. The research field of moving objects in spatio-temporal networks is of great significance to the classic analysis of networks. In practical applications, the motion patterns of moving objects can be divided into unrestricted motion (such as a ship driving in the sea), restricted motion (such as the motion of pedestrians), and motion in a fixed network (such as a train, a car moving along a fixed line mobile), of which fixed network movement is the most prevalent mode in application. When the motion pattern of a moving object is defined as unlimited motion on a fixed network, its motion trajectory can be understood as a Markov chain that preserves past, current, and future information, and its motion development has nothing to do with the past.
目前在固定网络上的动点移动模拟实验,大多设定二维路径网固定,对环境变化以及可移植性的研究较少。动点移动的模拟实验以随机游动研究较多,更多的是从索引角度出发,面向动点定位进行研究,提供一个良好的模拟实验环境的平台设计较少,环境条件多变时无法模拟随机运动对象在每一时刻的状态信息。At present, most of the moving point movement simulation experiments on a fixed network set the two-dimensional path network to be fixed, and there are few studies on environmental changes and portability. The simulation experiment of moving point movement is mostly researched on random walk, more is from the index point of view, and the research is oriented to the positioning of moving point. There are few platform designs to provide a good simulation experiment environment, and it cannot be simulated when the environmental conditions are changeable. The state information of the random moving object at each moment.
发明内容Contents of the invention
本发明的目的在于提供一种二维随机路网上的动点移动模拟实验方法,解决了现有移动模型无法模拟随机运动对象在每一时刻的状态信息的问题。The purpose of the present invention is to provide a moving point movement simulation experiment method on a two-dimensional random road network, which solves the problem that the existing movement model cannot simulate the state information of a random moving object at each moment.
本发明所采用的技术方案是,二维随机路网上的动点移动模拟实验方法,基于二维随机路网上的动点移动模拟实验平台,具体步骤如下:The technical solution adopted in the present invention is that the moving point moving simulation experiment method on the two-dimensional random road network is based on the moving point moving simulation experiment platform on the two-dimensional random road network, and the specific steps are as follows:
第1步:随机数生成模块接收命令后生成随机数,为建模模块和运算模块提供随机数据源;Step 1: The random number generation module generates a random number after receiving the command, and provides a random data source for the modeling module and the operation module;
第2步:建模模块获得随机数生成模块的数据源,建立随机模型构架,并将随机模型构架以类的方式封装,保存在内存中,同时将路径模型的信息保存至文件;Step 2: The modeling module obtains the data source of the random number generation module, establishes a random model framework, encapsulates the random model framework in a class, saves it in memory, and saves the information of the path model to a file;
第3步:运算模块负责运行时的数据运算,根据第2步建立的随机模型构架建立随机运动模型,采用时间队列算法计算和模拟每一时刻运动对象的实时状态,同时将实时随机的运算结果以类的方式封装,保存在内存中,并通过数据输出接口将运算结果以文件形式保存;Step 3: The calculation module is responsible for the data calculation at runtime. According to the random model framework established in the second step, a random motion model is established, and the time queue algorithm is used to calculate and simulate the real-time state of the moving object at each moment. At the same time, the real-time random calculation results It is encapsulated in the form of a class, stored in memory, and the operation result is saved in the form of a file through the data output interface;
第4步:将第2步保存的文件和第3步保存的文件输出至分析模块,分析模块读取数据,能够重现整个随机运动过程,并对随机运动的特征进行分析和统计,通过文件的方式保存分析结果,通过图形的方式将实时随机运动模型、动点在每一时刻的状态以及分析结果进行显示。Step 4: Output the file saved in step 2 and the file saved in step 3 to the analysis module, the analysis module reads the data, can reproduce the entire random motion process, and analyze and count the characteristics of random motion, through the file The analysis results are saved in a graphical way, and the real-time random motion model, the state of the moving point at each moment and the analysis results are displayed graphically.
本发明的特点还在于,The present invention is also characterized in that,
第1步中随机数生成模块包括命令接收接口、随机数生成器和数据发送接口,所述随机数生成器通过调用CryptGenRandom函数生成一个健壮的随机数。The random number generating module in the first step includes a command receiving interface, a random number generator and a data sending interface, and the random number generator generates a robust random number by calling the CryptGenRandom function.
第2步建模模块建立随机模型构架的流程为:Step 2 The process of building a random model framework in the modeling module is as follows:
步骤2.1:首先设置建模参数,然后读取建模参数,根据建模范围创建随机节点位置;Step 2.1: First set the modeling parameters, then read the modeling parameters, and create random node positions according to the modeling range;
步骤2.2:采用Waxman建模方法为随机节点之间创建随机路径,节点间的路径满足泊松分布;Step 2.2: Use the Waxman modeling method to create random paths between random nodes, and the paths between nodes satisfy the Poisson distribution;
步骤2.3:通过广度优先算法对步骤2.2创建的随机路径进行连通性测试,若没有孤立节点,执行步骤2.4;若出现孤立节点,则返回步骤2.2,重新创建随机路径;若步骤2.2重复多次后仍出现孤立节点,则返回步骤2.1,重新设置建模参数;Step 2.3: Test the connectivity of the random path created in step 2.2 through the breadth-first algorithm. If there is no isolated node, perform step 2.4; if there is an isolated node, return to step 2.2 and recreate the random path; If there are still isolated nodes, return to step 2.1 and reset the modeling parameters;
步骤2.4:进行动点的创建,根据模拟需求设置每个动点参数,将所有模型数据保存至外部文件,建模结束。Step 2.4: Create moving points, set the parameters of each moving point according to the simulation requirements, save all model data to external files, and the modeling is completed.
Waxman建模方法,如式(1)所示:Waxman modeling method, as shown in formula (1):
其中P(u,v)是结点u和结点v直接的连接概率,建模参数α>0,β<=1,d是顶点u和顶点v之间的距离,L是平面内所有顶点中相距最远的距离;α值越大,图中边越多;β值越大,图中长边比短边的比值越大,Waxman认为结点之间的连接概率与其距离相关,出度频率服从泊松分布,距离越近,概率越大。Where P(u, v) is the direct connection probability between node u and node v, modeling parameters α>0, β<=1, d is the distance between vertex u and vertex v, L is all vertices in the plane The farthest distance among them; the larger the α value, the more edges in the graph; the larger the β value, the larger the ratio of the long side to the short side in the graph. Waxman believes that the connection probability between nodes is related to its distance, and the out-degree The frequency follows a Poisson distribution, and the closer the distance, the greater the probability.
第3步运算模块的具体运算流程为:The specific operation process of the operation module in step 3 is as follows:
步骤3.1:运算模块获得随机运动模型,Step 3.1: The operation module obtains the random motion model,
步骤3.2:根据随机运动模型创建时间队列,将所有动态节点加入到时间队列中,并将其运行时间初始化为0;Step 3.2: Create a time queue according to the random motion model, add all dynamic nodes to the time queue, and initialize their running time to 0;
步骤3.3:判断动点运动时间是否超过初始创建模型时设定的总时间限制,若运动时间超限,则结束运算,执行步骤3.7;若运动时间未超限,则进行步骤3.4;Step 3.3: Determine whether the movement time of the moving point exceeds the total time limit set when initially creating the model. If the movement time exceeds the limit, end the calculation and perform step 3.7; if the movement time does not exceed the limit, proceed to step 3.4;
步骤3.4:计算时间队列队头动点的即将发生状态,即动点在下一时刻是否运动及其运动方向,并根据动点下一个时刻状态,计算动点下一次状态改变时的时间,更新动点的状态;Step 3.4: Calculate the upcoming state of the moving point at the head of the time queue, that is, whether the moving point will move at the next moment and its direction of movement, and calculate the time when the next state of the moving point changes according to the state of the moving point at the next moment, and update the moving point state of the point;
式中,li表示动点当前所在的路径;与表示li路径的两端点;(xii(t),yii(t))表示动点在li路径处的坐标;t'为间隔采样时间;vci为随机分配给动点的速率;Δtm是关于间隔采样时间t'内的细分函数;vi表示动点运动速度,Δtm-1是一种指代,指代对t'进行等分划分;m为对t'的划分区间数;其中,离散随机变量ζl={l1,…,li,…,lk}表示路径li的长度,其中,k表示路径的条数;Δtp表示走过第p条路径的时间;p表示经过路径的次数;In the formula, l i represents the current path of the moving point; and Indicates the two ends of the l i path; (x ii (t), y ii (t)) indicates the coordinates of the moving point on the l i path; t' is the interval sampling time; v ci is the rate randomly assigned to the moving point; Δt m is the subdivision function within the interval sampling time t'; v i represents the speed of the moving point, Δt m-1 is a reference, which refers to the equal division of t'; m is the division of t' interval number; among them, the discrete random variable ζ l ={l 1 ,…,l i ,…,l k } represents the length of the path l i , among which, k represents the number of paths; Δt p represents the pth path The time; p represents the number of times through the path;
由公式(2)和公式(3)获得动点下一时刻移动的位置;根据当前位置与下一时刻的位置可以获得路径长度li;由公式(4)和公式(5)更新下一时刻的Δtm;The position of the moving point at the next moment is obtained by formula (2) and formula (3); the path length l i can be obtained according to the current position and the position of the next moment; the next moment is updated by formula (4) and formula (5) Δt m ;
步骤3.5:根据更新后动点的状态,更新时间队列,即将更新后动点按照其Δtm值的大小,按升序重新插入到时间队列中,保证下一次更新的动点排列在时间队列的最前方;Step 3.5: According to the state of the updated moving point, update the time queue, that is, the updated moving point is reinserted into the time queue in ascending order according to the size of its Δt m value, so that the next updated moving point is arranged at the end of the time queue ahead;
步骤3.6:返回步骤3.3;Step 3.6: return to step 3.3;
步骤3.7:最后将实时随机的运算结果以类的方式封装,保存在内存中,并通过数据输出接口将运算结果以文件形式保存。Step 3.7: Finally, encapsulate the real-time random operation result in a class, save it in the memory, and save the operation result in the form of a file through the data output interface.
第4步中对随机运动的特征的分析包括随机动点的运行过程图形化重现、动点的运行轨迹分析、动点在整个模型平台中的出现概率统计、多个动点之间的追踪关系分析、动点在动态与静态转换的状态下的移动分析。The analysis of the characteristics of random motion in the fourth step includes the graphical reproduction of the running process of the random moving point, the analysis of the running track of the moving point, the probability statistics of the occurrence of the moving point in the entire model platform, and the tracking between multiple moving points Relationship analysis, movement analysis of moving points in the state of dynamic and static transition.
二维随机路网上的动点移动模拟实验平台包括随机数生成模块和分别与随机数生成模块相连的建模模块和运算模块,建模模块和运算模块均与分析模块相连。The moving point movement simulation experiment platform on the two-dimensional random road network includes a random number generation module, a modeling module and an operation module respectively connected with the random number generation module, and both the modeling module and the operation module are connected with the analysis module.
本发明的有益效果是:本发明二维随机路网上的动点移动模拟实验方法,采用随机数驱动,创建随机路径模型,并通过时间队列算法,模拟随机动点在每一时刻的状态,解决了现有移动模型无法模拟随机运动对象在每一时刻的状态信息的问题,采用面向对象的思想,封装路径模型与动点对象,增加代码的可复用性,采用文件形式保存路径模型、动点状态数据,分析与统计数据,并最终以图形方式显示分析结果,是一种多簇马氏链的启发平台,可灵活配置,为多种问题提供实验环境。The beneficial effects of the present invention are: the moving point movement simulation experiment method on the two-dimensional random road network of the present invention adopts random number drive to create a random path model, and simulates the state of the random moving point at each moment through the time queue algorithm, solving the problem of To solve the problem that the existing mobile model cannot simulate the state information of random moving objects at each moment, adopt the object-oriented idea, encapsulate the path model and the moving point object, increase the reusability of the code, and save the path model and moving point in the form of files. Point state data, analysis and statistical data, and finally graphically display the analysis results. It is an inspiration platform for multi-cluster Markov chains, which can be flexibly configured to provide an experimental environment for various problems.
附图说明Description of drawings
图1是二维随机路网上的动点移动模拟实验平台构架图;Fig. 1 is a frame diagram of a moving point moving simulation experiment platform on a two-dimensional random road network;
图2是本发明二维随机路网上的动点移动模拟实验方法建模模块流程图;Fig. 2 is the flow chart of the modeling module of the moving point moving simulation experiment method on the two-dimensional random road network of the present invention;
图3是本发明二维随机路网上的动点移动模拟实验方法运算模块的运算流程图;Fig. 3 is the operation flowchart of the moving point mobile simulation experiment method operation module on the two-dimensional random road network of the present invention;
图4是本发明二维随机路网上的动点移动模拟实验方法的逻辑分层图;Fig. 4 is the logical hierarchical diagram of the moving point moving simulation experiment method on the two-dimensional random road network of the present invention;
图5是本发明二维随机路网上的动点移动模拟实验方法数据驱动层与运算层的关系图;Fig. 5 is the relationship diagram of the data-driven layer and the operation layer of the moving point moving simulation experiment method on the two-dimensional random road network of the present invention;
图6是本发明二维随机路网上的动点移动模拟实验方法随机模型构架文件结构图;Fig. 6 is the random model frame file structure diagram of the moving point moving simulation experiment method on the two-dimensional random road network of the present invention;
图7是本发明二维随机路网上的动点移动模拟实验方法随机模型统计文件结构图。Fig. 7 is a structure diagram of a random model statistical file of the moving point moving simulation experiment method on a two-dimensional random road network of the present invention.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明二维随机路网上的动点移动模拟实验方法,基于二维随机路网上的动点移动模拟实验平台,如图1所示,包括随机数生成模块和分别与随机数生成模块相连的建模模块和运算模块,建模模块和运算模块均与分析模块相连,具体步骤如下:The moving point movement simulation experiment method on the two-dimensional random road network of the present invention is based on the moving point movement simulation experiment platform on the two-dimensional random road network, as shown in Figure 1, including a random number generation module and building blocks connected to the random number generation module The modeling module and the calculation module, the modeling module and the calculation module are all connected with the analysis module, and the specific steps are as follows:
第1步:随机数生成模块接收命令后生成随机数,为建模模块和运算模块提供随机数据源;随机数生成模块包括命令接收接口、随机数生成器和数据发送接口,随机数生成器使用CryptographicServiceProvider(CSP)技术,通过调用CryptGenRandom函数生成一个健壮的随机数,为建模模块与运算模块提供随机数据源;随机数生成模块作为平台基础,为建模模块和运算模块提供随机数驱动,保证运动模型的随机性;Step 1: The random number generation module generates a random number after receiving the command, and provides a random data source for the modeling module and the operation module; the random number generation module includes a command receiving interface, a random number generator and a data sending interface, and the random number generator uses The CryptographicServiceProvider (CSP) technology generates a robust random number by calling the CryptGenRandom function to provide a random data source for the modeling module and the operation module; Randomness of motion model;
第2步:建模模块获得随机数生成模块的数据源,建立随机模型构架,其中包括模型节点参数、动点参数以及路径模型,如图2所示,建模模块建立随机模型构架的具体流程为:Step 2: The modeling module obtains the data source of the random number generation module, and establishes a random model framework, including model node parameters, moving point parameters and path models, as shown in Figure 2, the specific process of the modeling module establishing a random model framework for:
步骤2.1:通过参数设置界面设置建模参数,对建模时的关键参数进行设置,其中包括模型的大小、模型中节点的数量、生成路径采用Waxman建模方法的α和β参数等;读取建模参数,根据建模范围创建随机节点位置;Step 2.1: Set the modeling parameters through the parameter setting interface, and set the key parameters during modeling, including the size of the model, the number of nodes in the model, the α and β parameters of the Waxman modeling method used for the generation path, etc.; read Modeling parameters to create random node positions according to the modeling scope;
步骤2.2:采用Waxman建模方法为随机节点之间创建随机路径,但不是所有节点间都有路径,根据Waxman建模方法,节点间的路径将满足泊松分布,即距离越近的节点之间越有可能有路径连接,分布的曲线由参数α和β来控制;Step 2.2: Use the Waxman modeling method to create random paths between random nodes, but not all nodes have paths. According to the Waxman modeling method, the paths between nodes will satisfy the Poisson distribution, that is, the closer the distance between nodes The more likely there is a path connection, the curve of the distribution is controlled by the parameters α and β;
步骤2.3:由于整个模型必须保证由任意节点出发,能够到达其它任何节点,而使用Waxman建模方法生成的路径只保证满足泊松分布,不能保证每个节点都能连通,所以在生成路径后,通过广度优先算法对步骤2.2创建的随机路径进行连通性测试:若没有孤立节点,执行步骤2.4;若出现孤立节点,则返回步骤2.2,使用Waxman建模方法重新创建随机路径;若步骤2.2重复多次后仍出现孤立节点,则返回步骤2.1,通过修正α和β参数改变概率分布,重新设置建模参数;Step 2.3: Since the entire model must be guaranteed to start from any node and reach any other node, the path generated by using the Waxman modeling method is only guaranteed to satisfy the Poisson distribution, and every node cannot be guaranteed to be connected, so after generating the path, Use the breadth-first algorithm to test the connectivity of the random path created in step 2.2: if there is no isolated node, perform step 2.4; if there is an isolated node, return to step 2.2 and use the Waxman modeling method to recreate the random path; If there are still isolated nodes after three times, return to step 2.1, change the probability distribution by modifying the α and β parameters, and reset the modeling parameters;
Waxman建模方法是一种随机模型,作为网络拓扑生成的基本常用算法,通常用来产生随机网络,能够保证二维随机路网的路径生成满足泊松分布,Waxman建模方法,如式(1)所示:The Waxman modeling method is a stochastic model. As a basic common algorithm for network topology generation, it is usually used to generate random networks, which can ensure that the path generation of the two-dimensional random road network satisfies the Poisson distribution. The Waxman modeling method, such as formula (1 ) as shown:
其中P(u,v)是结点u和结点v直接的连接概率,建模参数α>0,β<=1,d是顶点u和顶点v之间的距离,L是平面内所有顶点中相距最远的距离;α值越大,图中边越多;β值越大,图中长边比短边的比值越大,Waxman认为结点之间的连接概率与其距离相关,出度频率服从泊松分布,距离越近,概率越大;Where P(u, v) is the direct connection probability between node u and node v, modeling parameters α>0, β<=1, d is the distance between vertex u and vertex v, L is all vertices in the plane The farthest distance among them; the larger the α value, the more edges in the graph; the larger the β value, the larger the ratio of the long side to the short side in the graph. Waxman believes that the connection probability between nodes is related to its distance, and the out-degree The frequency obeys the Poisson distribution, the closer the distance, the greater the probability;
步骤2.4:路径模型创建结束后,进行动点的创建,需要设置每个动点(即移动对象)的起始位置、动点的移动速度等参数,模型参数设计灵活,根据需要模拟的具体移动对象设置,例如,若需要模拟动态车辆路径问题,可以为动点设置需求,为车辆设置负载,最后将所有模型数据保存至外部文件,建模结束;Step 2.4: After the path model is created, create the moving point. It is necessary to set the starting position of each moving point (that is, the moving object), the moving speed of the moving point and other parameters. The design of the model parameters is flexible, and the specific movement simulated according to the needs Object settings, for example, if you need to simulate dynamic vehicle routing problems, you can set requirements for moving points, set loads for vehicles, and finally save all model data to external files, and the modeling is over;
将随机模型构架以类的方式封装,保存在内存中,同时将路径模型的信息保存至XML格式的文件,使模型具有可重现性,在同一个模型中可多次进行随机运动实验,并且为实验分析提供模型数据;Encapsulate the random model framework in the form of a class and save it in the memory, and save the information of the path model to a file in XML format to make the model reproducible, and random motion experiments can be performed multiple times in the same model, and Provide model data for experimental analysis;
第3步:运算模块负责运行时的数据运算,根据第2步采用Waxman建模方法建立的随机模型构架建立随机运动模型,采用时间队列算法计算和模拟每一时刻运动对象的实时状态,如图3所示,具体运算流程为:Step 3: The calculation module is responsible for the data calculation at runtime. According to the random model framework established by the Waxman modeling method in the second step, a random motion model is established, and the time queue algorithm is used to calculate and simulate the real-time state of the moving object at each moment, as shown in the figure 3, the specific operation process is as follows:
步骤3.1:运算模块获得随机运动模型;Step 3.1: The operation module obtains a random motion model;
步骤3.2:根据随机运动模型创建时间队列,将所有动态节点加入到时间队列中,并将其运行时间初始化为0;Step 3.2: Create a time queue according to the random motion model, add all dynamic nodes to the time queue, and initialize their running time to 0;
步骤3.3:判断动点运动时间是否超过初始创建模型时设定的总时间限制,若运动时间超限,则结束运算,执行步骤3.7;若运动时间未超限,则进行步骤3.4;Step 3.3: Determine whether the movement time of the moving point exceeds the total time limit set when initially creating the model. If the movement time exceeds the limit, end the calculation and perform step 3.7; if the movement time does not exceed the limit, proceed to step 3.4;
步骤3.4:计算时间队列队头动点的即将发生状态,即动点在下一时刻是否运动及其运动方向,并根据动点下一个时刻状态,计算动点下一次状态改变时的时间,更新动点的状态;Step 3.4: Calculate the upcoming state of the moving point at the head of the time queue, that is, whether the moving point will move at the next moment and its direction of movement, and calculate the time when the next state of the moving point changes according to the state of the moving point at the next moment, and update the moving point state of the point;
式中,li表示动点当前所在的路径;与表示li路径的两端点;(xii(t),yii(t))表示动点在li路径处的坐标;t'为间隔采样时间;vci为随机分配给动点的速率;Δtm是关于间隔采样时间t'内的细分函数;vi表示动点运动速度,Δtm-1是一种指代,指代对t'进行等分划分;m为对t'的划分区间数;其中,离散随机变量ζl={l1,…,li,…,lk}表示路径li的长度,其中,k表示路径的条数;Δtp表示走过第p条路径的时间;p表示经过路径的次数;In the formula, l i represents the current path of the moving point; and Indicates the two ends of the l i path; (x ii (t), y ii (t)) indicates the coordinates of the moving point on the l i path; t' is the interval sampling time; v ci is the rate randomly assigned to the moving point; Δt m is the subdivision function within the interval sampling time t'; v i represents the speed of the moving point, Δt m-1 is a reference, which refers to the equal division of t'; m is the division of t' interval number; among them, the discrete random variable ζ l ={l 1 ,…,l i ,…,l k } represents the length of the path l i , among which, k represents the number of paths; Δt p represents the pth path The time; p represents the number of times through the path;
动点的运动时间以t'进行时间轮询,每一个t'时间里面的运动情况由Δtm来进行判断,具体判断方法为:由公式(2)和公式(3)获得动点下一时刻移动的位置;根据当前位置与下一时刻的位置可以获得路径长度li;由公式(4)和公式(5)更新下一时刻的Δtm;The movement time of the moving point is polled by t', and the movement situation in each t' time is judged by Δt m . The specific judgment method is: the next moment of the moving point is obtained by formula (2) and formula (3) The moving position; the path length l i can be obtained according to the current position and the position at the next moment; Δt m at the next moment is updated by formula (4) and formula (5);
步骤3.5:根据更新后动点的状态,更新时间队列,即将更新后动点按照其Δtm值的大小,按升序重新插入到时间队列中,保证下一次更新的动点排列在时间队列的最前方;Step 3.5: According to the state of the updated moving point, update the time queue, that is, the updated moving point is reinserted into the time queue in ascending order according to the size of its Δt m value, so that the next updated moving point is arranged at the end of the time queue ahead;
步骤3.6:返回步骤3.3;Step 3.6: return to step 3.3;
步骤3.7:最后将实时随机的运算结果以类的方式封装,保存在内存中,并通过数据输出接口将运算结果以XML和TXT文件形式保存;Step 3.7: Finally, encapsulate the real-time random operation result in a class, save it in the memory, and save the operation result in the form of XML and TXT files through the data output interface;
时间队列为整个实验方法的核心,它的推进代表着所有动点在整个模型空间中的运动,时间队列要求队列中的所有对象都必须实现时间接口,所有动点都能加入到时间队列中,时间队列是一个有序的队列,所有对象按照状态发生改变的时刻排序,状态改变时刻与当前时刻最接近的动点排在队列最前端,成为下一个被处理的动点,当动点被处理后,计算出下一个状态改变的时刻,并将其按照顺序再次插入到时间队列中;根据实验要求,可以为时间队列添加采样时间点,采样点的插入频率代表了采样间隔,也是采样频率,可在输入实验参数时设置;The time queue is the core of the entire experimental method. Its advancement represents the movement of all moving points in the entire model space. The time queue requires that all objects in the queue must implement the time interface, and all moving points can be added to the time queue. The time queue is an ordered queue. All objects are sorted according to the moment when the state changes. The moving point that is closest to the current time at the state change time is at the front of the queue and becomes the next moving point to be processed. When the moving point is processed Finally, calculate the moment of the next state change, and insert it into the time queue again in order; according to the experimental requirements, you can add sampling time points to the time queue. The insertion frequency of the sampling point represents the sampling interval and is also the sampling frequency. Can be set when inputting experimental parameters;
第4步:将第2步得到的XML文件、第3步得到的XML和TXT文件输出至分析模块,由于生成一个随机运动实例时,并不一定需要进行数据分析,或者还不知道该进行怎样的数据分析,所以在本发明中,随机运动实例的模拟与数据分析是分开的,即在模拟随机运动的同时,不进行数据分析,而是通过文件输出接口,将数据保存起来,保存的数据文件为XML格式或TXT格式,文件内容可进行阅读,通过数据文件的读取,能够重现整个随机运动过程,同时也可作为分析模块的数据源,对运算结果进行不同角度的分析,包括随机动点的运行过程图形化重现、动点的运行轨迹分析、动点在整个模型平台中的出现概率统计、多个动点之间的追踪关系分析、动点在动态与静态转换的状态下的移动分析,通过文件的方式保存分析结果,通过图形的方式将实时随机运动模型、动点在每一时刻的状态以及分析结果显示到界面中。Step 4: Output the XML file obtained in step 2, the XML and TXT files obtained in step 3 to the analysis module, because when generating a random motion instance, data analysis is not necessarily required, or it is not known how to do it data analysis, so in the present invention, the simulation of the random motion instance is separated from the data analysis, that is, the data analysis is not performed while simulating the random motion, but the data is saved through the file output interface, and the saved data The file is in XML format or TXT format, and the content of the file can be read. By reading the data file, the entire random motion process can be reproduced. At the same time, it can also be used as the data source of the analysis module to analyze the operation results from different angles, including random motion. Graphical reproduction of the running process of the moving point, analysis of the running track of the moving point, probability statistics of the appearance of the moving point in the entire model platform, analysis of the tracking relationship between multiple moving points, and the dynamic and static conversion state of the moving point The analysis results are saved in the form of files, and the real-time random motion model, the state of the moving point at each moment and the analysis results are displayed on the interface in the form of graphics.
二维随机路网上的动点移动模拟实验平台的逻辑结构:The logical structure of the moving point movement simulation experiment platform on the two-dimensional random road network:
如图4所示,模拟实验平台从逻辑层次分为三个层次:数据驱动层(对应随机数生成模块)、运算层(对应建模模块和运算模块)和分析层(对应分析模块)。As shown in Figure 4, the simulation experiment platform is divided into three levels from the logical level: data-driven layer (corresponding to the random number generation module), computing layer (corresponding to the modeling module and computing module) and analysis layer (corresponding to the analysis module).
数据驱动层提供数据驱动接口,运算层通过此接口获得随机数驱动,进行随机运算;运算层主要负责建立随机模型,进行动点实时运算,并通过输出接口,保存实时随机数据,为分析层提供数据源;分析层由实时随机数据源获得数据,并对其分析,最终将分析结果以图形方式显示到界面中。The data-driven layer provides a data-driven interface, through which the operation layer obtains random number drive and performs random operations; the operation layer is mainly responsible for establishing a random model, performing real-time operation of moving points, and saving real-time random data through the output interface, providing analysis layer Data source; the analysis layer obtains data from real-time random data sources, analyzes it, and finally displays the analysis results in the interface in a graphical manner.
数据驱动层为基础,运算层为核心,他们之间的关系主要体现在实时随机运动模型的创建,以及实施状态的模拟。如图5所示,数据驱动层与运算层之间通过命令接口和数据接口相联系,接口由一组方法组成,数据的读取与命令的传输通过接口来执行。使用接口可降低每个模块之间的耦合度,增加代码的复用性。数据驱动层采用了事件同步机制,同一时刻只执行一个请求,控制了数据读写的单一性,保证了生成随机数的质量。The data-driven layer is the foundation, and the operation layer is the core. The relationship between them is mainly reflected in the creation of real-time random motion models and the simulation of the implementation state. As shown in Figure 5, the data-driven layer and the computing layer are connected through a command interface and a data interface. The interface is composed of a set of methods, and data reading and command transmission are executed through the interface. The use of interfaces can reduce the coupling between each module and increase the reusability of code. The data-driven layer adopts an event synchronization mechanism, and only one request is executed at the same time, which controls the singleness of data reading and writing, and ensures the quality of generated random numbers.
模型利用面向对象的思想,抽象模型的特征,通过类的继承,增加代码的复用性,模型结构中类的继承关系为:The model uses object-oriented thinking, abstracts the characteristics of the model, and increases the reusability of the code through class inheritance. The inheritance relationship of classes in the model structure is:
a.节点基类a. Node base class
节点基类是整个模型的基础,由节点基类可派生出固定节点和动态节点类。节点基类中包含私有属性:索引,索引是每个节点的全局唯一标示,在检索、保存或读取模型时使用;The node base class is the basis of the whole model, and the fixed node and dynamic node classes can be derived from the node base class. The node base class contains private attributes: index, the index is the globally unique identifier of each node, used when retrieving, saving or reading the model;
b.固定节点类b. Fixed node class
固定节点类继承自节点基类,在模型中表示一条路径的两个端点,也是多条路径之间的连接点。此类中包含了固定节点的位置、相邻路径,以及相邻节点等属性。由于涉及的模型处于二维欧式空间中,所以位置为一个二维坐标值。相邻路径,指的是以当前节点为起点或终点的路径,每个固定节点必须拥有至少一条相邻路径,以保证此固定节点不会成为孤立节点。相邻节点,指的是当前节点的相邻路径拥有的另一个固定节点,由于每个固定节点拥有至少一条相邻路径,所以同时也至少拥有一个相邻节点。The fixed node class inherits from the node base class, and represents the two endpoints of a path in the model, and is also the connection point between multiple paths. This class contains properties such as the position of fixed nodes, adjacent paths, and adjacent nodes. Since the model involved is in 2D Euclidean space, the position is a 2D coordinate value. Adjacent paths refer to paths starting or ending at the current node. Each fixed node must have at least one adjacent path to ensure that the fixed node will not become an isolated node. The adjacent node refers to another fixed node owned by the adjacent path of the current node. Since each fixed node has at least one adjacent path, it also has at least one adjacent node.
固定节点类中包含添加路径、删除路径,以及保存节点信息的方法。在建模时,通过添加路径与删除路径的方法,创建整个模型;建模结束后,通过保存节点信息的方法,将节点信息保存至硬盘。The fixed node class contains methods for adding paths, deleting paths, and saving node information. When modeling, create the entire model by adding paths and deleting paths; after modeling, save node information to the hard disk by saving node information.
c.时间接口c. Time interface
时间接口定义了动态节点的时间方法,包括计算下一时刻的方法和更新当前时间的方法。所有的动态节点都必须实现此接口。The time interface defines the time methods of dynamic nodes, including methods for calculating the next moment and methods for updating the current time. All dynamic nodes must implement this interface.
d.动态节点类d. Dynamic node class
动态节点类继承自节点基类,同时实现了时间接口,在模型中表示游动于路径模型上的运动对象,根据实验的不同,可派生出不同的运动对象。此类中包含了动态节点的速度、出发节点、目标节点、所在路径等属性。速度,指的是动态节点的运动速度,此属性在建模时随机产生,速度下限与上限在设置建模参数时指定。出发节点,指的是动态节点在当前运动过程中,由哪一个固定节点出发。目标节点,指的是动态节点在当前运动过程中,向哪一个固定节点运动。所在路径,指的是当前节点正在哪条路径上运动。The dynamic node class inherits from the node base class, and realizes the time interface at the same time. In the model, it represents the moving object swimming on the path model. According to different experiments, different moving objects can be derived. This class contains properties such as the speed of the dynamic node, the starting node, the target node, and the path. Speed refers to the movement speed of dynamic nodes. This property is randomly generated during modeling, and the lower limit and upper limit of the speed are specified when setting the modeling parameters. The starting node refers to which fixed node the dynamic node starts from during the current movement process. The target node refers to which fixed node the dynamic node moves to during the current movement process. The current path refers to which path the current node is moving on.
动态节点类中包含保存节点信息的方法,并实现了时间接口中计算下一时刻的方法和更新当前时间的方法。The dynamic node class contains the method of saving node information, and implements the method of calculating the next moment and the method of updating the current time in the time interface.
e.路径类e. Path class
路径类在模型中表示两个固定节点之间的连接路径。此类中包含了路径的长度、端点、索引等属性。长度,指的是路径两端点之间的欧式距离。端点,指的是路径所连接的两个固定节点。索引,指的是路径的全局唯一标示,在检索、保存或读取模型时使用。The Path class represents a connection path between two fixed nodes in the model. This class contains attributes such as the length, endpoint, and index of the path. Length, which refers to the Euclidean distance between the two endpoints of the path. Endpoints refer to two fixed nodes that a path connects. Index refers to the globally unique identifier of the path, which is used when retrieving, saving or reading the model.
路径类中包含设置路径端点、计算路径长度,以及保存路径信息的方法。在建模时通过设置路径端点的方法创建路径;建模结束后使用保存路径信息的方法,将节点信息保存至硬盘。计算路径长度的方法将在实验运行时使用。The path class contains methods for setting path endpoints, calculating path length, and saving path information. Create paths by setting path endpoints during modeling; use the method of saving path information after modeling to save node information to the hard disk. The method to calculate the path length will be used when the experiment is run.
f.路径模型类f. Path model class
路径模型类保存了模型中所有的静态对象,即建模时创建后就不再改变的对象。此类包含了固定节点集合与路径集合。The path model class saves all static objects in the model, that is, objects that will not change after being created during modeling. This class contains a collection of fixed nodes and paths.
路径模型类中包含清除、创建等公用方法。通过创建方法可为模型创建所有静态对象;通过清除方法可清除模型中所有的静态对象。The path model class contains public methods such as clearing and creating. All static objects can be created for the model through the creation method; all static objects in the model can be cleared through the cleanup method.
在创建模型静态对象时,可能会产生没有连接的孤立点,此类通过广度优先遍历的私有方法,对所有固定节点和路径进行遍历,当发现出现孤立点时,清除所有静态对象,重新建模。When creating model static objects, there may be unconnected isolated points. This type of private method traverses all fixed nodes and paths through breadth-first traversal. When isolated points are found, all static objects are cleared and remodeled. .
g.实例接口g. Instance interface
一个实时随机运动模型实验平台实例必须拥有两个方法:初始化实例的方法和运行实例的方法,实例接口对此进行了定义。实时随机运动模型实验平台实例都必须实现此接口。A real-time random motion model experiment platform instance must have two methods: the method of initializing the instance and the method of running the instance, which are defined in the instance interface. All real-time random motion model experiment platform instances must implement this interface.
h.实例类h.Instance class
实例类包含了一个实时随机运动模型实验的静态数据与动态数据,其中包括路径模型对象、动点、当前时间节点,以及时间队列。路径模型对象,通过实例初始化的方法进行建模,为整个实例提供静态数据支持。动点在建模时创建并初始化,在实例运行时,随着时间队列的推移,计算每个动点的实时状态。当前时间节点,当实例运行时,表示当前处于的时间点。时间队列,实时随机运动模型实验平台的核心,所有的动点均依据时间队列进行运动。The instance class contains the static data and dynamic data of a real-time random motion model experiment, including path model objects, moving points, current time nodes, and time queues. The path model object is modeled by the instance initialization method and provides static data support for the entire instance. Motion points are created and initialized at modeling time, and the real-time state of each motion point is calculated as the time queue progresses while the instance is running. The current time node, when the instance is running, indicates the current point in time. Time queue, the core of the real-time random motion model experiment platform, all moving points move according to the time queue.
建模模块创建路径模型结束后,会将路径模型的信息保存至XML文件中,为分析模块提供静态对象数据的支持,当运算模块计算每一个动点的状态时,实时保存当前动点的状态到XML文件中,文件格式如图6所示;计算每个动点状态的同时,对所有动点进行统计,也对所有静止的动点的被访问情况进行统计,如路径和固定节点被访问的次数,在所有运算结束后,将统计信息保存至文本文件,文件格式如图7所示。After the path model is created by the modeling module, the information of the path model will be saved in the XML file to provide static object data support for the analysis module. When the calculation module calculates the state of each moving point, the state of the current moving point will be saved in real time Into the XML file, the file format is shown in Figure 6; while calculating the status of each moving point, statistics are made on all moving points, and also statistics on the visits of all stationary moving points, such as paths and fixed nodes are visited After all calculations are completed, save the statistical information to a text file, and the file format is shown in Figure 7.
文件输出接口的继承关系:文件输出类实现了文件输出接口,其中包含了保存文件的两个方法,其后派生出的各种文件输出类中,都复写了这两个方法;文件输出类的派生类包括:参数输出类、时间输出类、路径模型输出类和运动点输出类;每个派生类针对不同的对象进行文件存储,并且可以将文件存储为XML格式或TXT格式。Inheritance relationship of the file output interface: the file output class implements the file output interface, which contains two methods for saving files, and these two methods are rewritten in various file output classes derived thereafter; the file output class Derived classes include: parameter output class, time output class, path model output class and motion point output class; each derived class stores files for different objects, and can store files in XML format or TXT format.
本发明是针对二维欧式空间中随机联通图上的随机运动设计的,所以对于不同的随机运动模型,可能采取不同的数据分析方法,以及对于同一组数据或同一个实例进行不同角度的数据分析。针对数据分析模块的不确定性,本发明为数据分析模块提供了接口。在接口中通过对数据文件的读取,可获得整个随机运动实例的状态信息,然后调用接口中的分析方法,对数据进行分析。接口使用动态链接库的形式,将数据分析模块与整个动点移动模拟实验平台分离,降低了模块间的耦合度,使得分析模块可以采用不同的语言进行编写。The present invention is designed for the random motion on the random connected graph in the two-dimensional Euclidean space, so for different random motion models, different data analysis methods may be adopted, and data analysis from different angles for the same set of data or the same instance . Aiming at the uncertainty of the data analysis module, the invention provides an interface for the data analysis module. By reading the data file in the interface, the state information of the entire random motion instance can be obtained, and then the analysis method in the interface is called to analyze the data. The interface uses the form of a dynamic link library, which separates the data analysis module from the entire moving point movement simulation experiment platform, reduces the coupling degree between modules, and enables the analysis module to be written in different languages.
本发明二维随机路网上的动点移动模拟实验方法,使用面向对象的方法,将模型中的路线、节点和运动对象封装到类中,通过类的抽象、封装、继承、多态等特性,进行数据运算,为模型提供对外的标准接口,增加模型的可扩展性,模型中数据采用XML格式与文本格式进行保存,为数据分析提供数据源,是一种多簇马氏链的启发平台,可灵活配置,为多种问题提供实验环境。The moving point movement simulation experiment method on the two-dimensional random road network of the present invention uses an object-oriented method to encapsulate the routes, nodes and moving objects in the model into classes, and through the characteristics of class abstraction, encapsulation, inheritance, and polymorphism, Perform data calculations, provide external standard interfaces for the model, increase the scalability of the model, save the data in the model in XML format and text format, and provide data sources for data analysis. It is an inspiration platform for multi-cluster Markov chains. It can be flexibly configured to provide an experimental environment for a variety of problems.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410564504.6A CN104318099B (en) | 2014-10-22 | 2014-10-22 | The mobile analogue experiment method of dynamic point on two-dimensional random road network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410564504.6A CN104318099B (en) | 2014-10-22 | 2014-10-22 | The mobile analogue experiment method of dynamic point on two-dimensional random road network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104318099A CN104318099A (en) | 2015-01-28 |
CN104318099B true CN104318099B (en) | 2016-04-20 |
Family
ID=52373330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410564504.6A Active CN104318099B (en) | 2014-10-22 | 2014-10-22 | The mobile analogue experiment method of dynamic point on two-dimensional random road network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104318099B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108037731B (en) * | 2017-11-09 | 2019-08-20 | 西安理工大学 | A high-resolution subdivision system of frequency difference interference signal transformed by phase integral operation |
CN108614417B (en) * | 2018-04-28 | 2021-03-26 | 合肥工业大学 | Optimized control and simulation test method for non-Poisson workpiece flow CSPS system |
CN111209987A (en) * | 2019-12-26 | 2020-05-29 | 航天信息股份有限公司 | Method and system for automatically generating vehicle trajectory based on vehicle electronic identification |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006237A (en) * | 2010-12-13 | 2011-04-06 | 西安电子科技大学 | Routing decision method for delay tolerant network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101619076B1 (en) * | 2009-08-25 | 2016-05-10 | 삼성전자 주식회사 | Method of detecting and tracking moving object for mobile platform |
-
2014
- 2014-10-22 CN CN201410564504.6A patent/CN104318099B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006237A (en) * | 2010-12-13 | 2011-04-06 | 西安电子科技大学 | Routing decision method for delay tolerant network |
Non-Patent Citations (1)
Title |
---|
《一种时变的随机马氏移动对象行为仿真模型》;费蓉 等;《系统仿真学报》;20120930;第24卷(第9期);第1751-1756页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104318099A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Galin et al. | Procedural generation of roads | |
Taillandier et al. | GAMA: a simulation platform that integrates geographical information data, agent-based modeling and multi-scale control | |
Mousavi et al. | Mobisim: A framework for simulation of mobility models in mobile ad-hoc networks | |
Kallmann et al. | Geometric and discrete path planning for interactive virtual worlds | |
Eppstein et al. | Motorcycle graphs: canonical quad mesh partitioning | |
CN109543285B (en) | A crowd evacuation simulation method and system integrating data-driven and reinforcement learning | |
CN110795833B (en) | Crowd evacuation simulation method, system, medium and equipment based on cat swarm algorithm | |
CN105597318A (en) | Method, system and device for automatically generating random game scenes | |
CN101777093B (en) | Large-scale virtual crowd routing method | |
CN102693134B (en) | A development method of sensor network software modeling platform based on unified modeling language | |
CN104318099B (en) | The mobile analogue experiment method of dynamic point on two-dimensional random road network | |
Karmakharm et al. | Agent-based Large Scale Simulation of Pedestrians With Adaptive Realistic Navigation Vector Fields. | |
Li | RETRACTED ARTICLE: Research on the mechanism and influence factors of urban style building based on cloud computing logistics information | |
CN108491972A (en) | A kind of crowd evacuation emulation method and device based on Sarsa algorithms | |
CN102779215A (en) | Networked three-dimensional hoisting simulation method based on B/S (Browser/Server) framework and cache technology | |
Quartieri et al. | Cellular automata application to traffic noise control | |
CN104778072A (en) | Vehicle and pedestrian interactive simulation method for mixed traffic flow model | |
Huang et al. | A pedestrian-centric design strategy: melding reactive scripting with multi-agent simulation | |
Villanueva et al. | On building support of digital twin concept for smart spaces | |
Shaharuddin et al. | Traffic simulation using agent based modelling | |
CN117371302A (en) | Data-driven traffic simulation method, system and storage medium | |
CN116796554A (en) | A method for modeling the microscopic behavior of pedestrians and non-motorized vehicles | |
Kelly | Unwritten procedural modeling with the straight skeleton | |
CN104834552A (en) | Fast intercepting engine for obtaining traffic environment information by driving simulator | |
Boschi et al. | A mobility model simulation environment for mobile wireless ad-hoc networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |