Nothing Special   »   [go: up one dir, main page]

CN104282004B - Self-adaptation equalization method based on extensible segmentation histogram - Google Patents

Self-adaptation equalization method based on extensible segmentation histogram Download PDF

Info

Publication number
CN104282004B
CN104282004B CN201410304816.3A CN201410304816A CN104282004B CN 104282004 B CN104282004 B CN 104282004B CN 201410304816 A CN201410304816 A CN 201410304816A CN 104282004 B CN104282004 B CN 104282004B
Authority
CN
China
Prior art keywords
histogram
mrow
msub
equalization
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410304816.3A
Other languages
Chinese (zh)
Other versions
CN104282004A (en
Inventor
凌志刚
王耀南
瞿亮
卢笑
唐宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201410304816.3A priority Critical patent/CN104282004B/en
Publication of CN104282004A publication Critical patent/CN104282004A/en
Application granted granted Critical
Publication of CN104282004B publication Critical patent/CN104282004B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses a self-adaptation equalization method based on an extensible segmentation histogram. The self-adaptation equalization method comprises the following steps that firstly, an input original histogram is extended through an extensible histogram segmentation method; secondly, equalization is carried out on the extended histogram, and each equalized sub-histogram has the length same as that of the original histogram; thirdly, weighting mixture is carried out on the equalized sub-histograms obtained in the second step to obtain a final equalized histogram Ht (i). According to the method, an extensible histogram segmentation strategy is adopted, the image gray level obtained after equalization can be distributed to a large dynamic range again, and sufficient enhancement on the image in the dark area is facilitated; the self-adaptation histogram equalization method is adopted, the gray level uniform distribution degree is controlled according to the image gray level attribute in a self-adaptation mode, and accordingly excessive enhancement, insufficient enhancement and an unnatural halo phenomenon of the image can be avoided; according to the whole method, the calculation speed is high, and an image with the obvious enhanced effect is obtained.

Description

Self-adaptive equalization method based on extensible segmented histogram
Technical Field
The invention relates to a self-adaptive equalization method based on an extensible segmented histogram.
Background
Histogram Equalization (HE) is widely applied to the fields of traffic monitoring, medical image processing and the like due to the characteristics of simple principle, high calculation speed and the like. The HE increases a difference of improving adjacent gray levels by distributing the high dynamic range gray levels to a uniform distribution, thereby realizing contrast enhancement. However, if there are a plurality of peaks in the histogram, over-enhancement, under-enhancement, and unnatural halo phenomena may occur; in order to avoid the above problems, methods such as Adaptive Local Histogram Equalization (ALHE), contrast-limited adaptive histogram equalization (CLAHE) and the like firstly divide an image into a plurality of small windows, and perform histogram equalization in the small windows respectively; but due to the lack of global information, these methods are often excessive or checkerboard. The Histogram Modification Frame (HMF) method treats the image contrast enhancement as an optimization problem of uniform redistribution of the histogram, original histogram maintenance and smooth combination of the histogram, thereby realizing adjustable enhancement of the image contrast; two-dimensional histogram equalization (2 DHE) synchronously considers the gray level distribution of each pixel and adjacent pixels to construct a two-dimensional histogram, and then uniformly redistributes the two-dimensional histogram to realize image contrast enhancement; the AMHE directly modifies the histogram of the original image and adopts a histogram specification method to realize image enhancement; however, these methods all deal with the whole histogram, and over-enhancement and under-enhancement are difficult to avoid, and in a flat area of the image, a halo phenomenon may occur. For this purpose, researchers have proposed many improved methods such as luminance preserving histogram equalization (BBHE), same region subgraph histogram equalization (DSIHE), minimum mean luminance error double histogram equalization (mmbhe), Recursive Mean Separation Histogram Equalization (RMSHE), and luminance preserving dynamic blur histogram equalization (BPDFHE), among others. Furthermore, a gaussian mixture model is introduced to fit the gray distribution, and then the original histograms are separated by the intersection points between the mixture models, and histogram equalization is performed separately. These multi-histogram equalization methods can effectively preserve luminance, but when used for dark image enhancement, can result in under-enhancement; furthermore, since multiple sub-histograms all use the same equalization strategy, these methods are prone to over-enhancement when the image contrast is large.
Disclosure of Invention
The invention provides an adaptive equalization method based on an expandable segmented histogram, and aims to solve the problems that in the process of enhancing a dark image, the dark area of the image is easily under-enhanced, and the bright area of the image is excessively enhanced or seriously degraded in the conventional method.
An equalization method based on an extensible piecewise self-adaptive histogram comprises the following steps:
step 1: expanding the input original histogram by adopting an expandable histogram segmentation method;
first, the original histogram H isoSegmentation into N non-overlapping segmented histograms hk,k∈[1,…,N](ii) a Then all the segmented histograms hkExpanded to the original histogram H respectivelyoHistogram with same gray level interval, keeping segmented histogram hkThe original histogram is unchanged, and other positions are filled with zeros to obtain the expandable segmented histogram(k∈[1,…,N]), <math> <mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>x</mi> </msubsup> <mo>=</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>0</mn> <mo>]</mo> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>&Element;</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>]</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 2: equalizing the expandable segmented histograms, wherein each equalized sub-histogram has the same length as the original histogram;
and step 3: equalizing the sub-histogram obtained in the step 2Weighted mixing is carried out according to the following formula to obtain a final equalized histogram Ht(i):
<math> <mrow> <msup> <mi>H</mi> <mi>t</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>w</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </math>
Wherein, wk(i) Is the normalized weight of the k-th equalized-spread-segment histogram,weight functionN is the number of histogram segments, i is the gray level, ukAnd σkRespectively the mean and variance of the weight function.
The method solves the problems that a certain degree of over-enhancement is generated in a bright area and under-enhancement is generated in a dark area.
Mean value of the weight functionWherein,respectively, a segmented histogram hkThe first and last gray levels of (a);
variance of the weight function In order to avoid a threshold for excessive enhancement of the image,for a segmented histogram hkOf the cover width, i.e.
Ensures the histogram hkIn the equalization process, both symmetrical directions have the same degree of distribution.
The above-mentionedIs composed ofWherein,for a segmented histogram hkGray average value of (1).
The equalization processing selected in the step 2 is adaptive equalization processing,optimization problem proposed in existing histogram equalization methodsIn the method, the regularization parameters alpha, beta and gamma are optimized by adopting the following formula;
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>min</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&beta;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
γ=1-α-β
wherein HxFor the expanded histogram of the input image, HtFor the target histogram of the input image, HuA histogram of the desired equilibrium distribution; h is a histogram obtained after self-adaptive equalization processing, | | | | | represents the Euclidean norm, and D is a dual-diagonal difference matrix;
expanded histogram H for input imagexAnd the histogram H of the expanded input imagexMaximum gray level I ofmaxDistance measure, i is the expanded histogram H of the input imagexL is the number of gray levels, niExpanded histogram H for input imagexFrequency of intermediate gray levels I, ImaxIs the maximum gray level and has a variance σ of 0.2Imax
miFor a pixel x in the input imagejGray value of I (x)j) A number of pixels equal to i; nG (x)j) Is a pixel xjNormalized local variance, and nG (x)j)=G(xj)/I(xj),G(xj) Is a pixel xjThe magnitude of the gradient at (a) is,g denotes a corresponding gradient magnitude map of the input image I, wherein, represents the convolution operation, and S is a Sobel operator template.
The above-mentionedDesired equalized distribution histogram HuThe following formula is used for the assignment:
<math> <mrow> <msup> <mi>H</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>i</mi> <mo>&NotElement;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula, i is a gray scale.
After the final equalized histogram is obtained, the final enhanced image can be easily obtained through histogram correction.
Advantageous effects
The invention provides an equalization method based on an extensible segmented adaptive histogram, which comprises the following steps: step 1: expanding the input original histogram by adopting an expandable histogram segmentation method; step 2: carrying out equalization processing on the expanded histogram, wherein each equalized sub-histogram has the same length as the original histogram; and step 3: weighting and mixing the equalized sub-histograms obtained in the step 2 according to the following formula to obtain a final equalized histogram Ht(i) (ii) a By using the method and adopting the extensible histogram segmentation strategy, the equalization can be realizedThe gray scale of the image after the transformation is redistributed to a larger dynamic range, which is beneficial to the full enhancement of the image in a dark area; the gray level uniform distribution degree is adaptively controlled according to the gray level attribute of the image by applying the proposed adaptive histogram equalization method, so that the phenomena of over-enhancement, under-enhancement and unnatural halo of the image can be avoided; the whole method is high in calculation speed, and the image with an obvious enhancement effect is obtained.
Drawings
Fig. 1 is a schematic diagram of a process of processing an image by applying the method of the present invention, where (a) is an input original image, (b) is a conversion of the original image into an HSV spatial image, (c) is a histogram obtained by applying a scalable histogram segmentation method to a V-channel image in (b), (d) is a histogram obtained by performing adaptive equalization on (c), (e) is a histogram obtained by performing weighting on (d), (f) is an enhanced image of a V-channel obtained by using the histogram obtained from (e), and (g) is an obtained final enhanced effect image;
fig. 2 is a comparison diagram of applying the method of the present invention and other histogram equalization methods to perform enhancement processing on the same image, where diagram (a) is an original image, diagram (b) is an RMSHE method, diagram (c) is a BPBFHE method, diagram (d) is an HMF method, diagram (e) is a 2DHE method, diagram (f) is an AEPHE method, diagram (g) is a gray scale mapping function between input and output of each histogram equalization method, the abscissa is an input gray scale, and the ordinate is an output gray scale;
fig. 3 shows the corresponding segment histogram h when N is 3kWeight function W of1Schematic representation of (a).
Detailed Description
The invention will be further described with reference to the following figures and examples.
An equalization method based on an extensible piecewise self-adaptive histogram comprises the following steps:
step 1: expanding the input original histogram by adopting an expandable histogram segmentation method;
first, the original histogram H isoSegmentation into N non-overlapping segmented histograms hk,k∈[1,N](ii) a Then all the segmented histograms hkExpanded to the original histogram H respectivelyoHistogram with same gray level interval, keeping segmented histogram hkThe original histogram is unchanged, and other positions are filled with zeros to obtain the expanded sectional histogram(k∈[1,N]), <math> <mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>x</mi> </msubsup> <mo>=</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>0</mn> <mo>]</mo> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>&Element;</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>]</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 2: carrying out equalization processing on the expanded segmented histograms, wherein each equalized sub-histogram has the same length as the original histogram;
optimization problem proposed in existing histogram equalization methodsIn the method, the regularization parameters alpha, beta and gamma are optimized by adopting the following formula;
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>min</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&beta;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
γ=1-α-β
wherein HxFor the expanded histogram of the input image, HtFor the target histogram of the input image, HuA histogram of the desired equilibrium distribution; h is a histogram obtained after self-adaptive equalization processing, | | | | | represents the Euclidean norm, and D is a dual-diagonal difference matrix;
expanded histogram H for input imagexAnd the histogram H of the expanded input imagexMaximum gray level I ofmaxDistance measure, i is the expanded histogram H of the input imagexL is the number of gray levels, niExpanded histogram H for input imagexFrequency of intermediate gray levels I, ImaxIs the maximum gray level and has a variance σ of 0.2Imax
miFor a pixel x in the input imagejGray value of I (x)j) A number of pixels equal to i; nG (x)j) Is a pixel xjNormalized local variance, and nG (x)j)=G(xj)/I(xj),G(xj) Is a pixel xjThe magnitude of the gradient at (a) is,wherein, represents the convolution operation, and S is a Sobel operator template.
Histogram H of the desired equalized distributionuThe following formula is used for the assignment:
<math> <mrow> <msup> <mi>H</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>i</mi> <mo>&NotElement;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula, i is a gray scale.
After the final equalized histogram is obtained, the final enhanced image can be easily obtained through histogram correction.
And step 3: weighting and mixing the equalized sub-histograms obtained in the step 2 according to the following formula to obtain a final equalized histogram Ht(i):
<math> <mrow> <msup> <mi>H</mi> <mi>t</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>w</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </math>
Wherein, wk(i) Is the normalized weight of the k-th equalized-spread-segment histogram,weight functionk=[1,…,N]N is the number of histogram segments, i is the gray level, ukAnd σkRespectively the mean and variance of the weight function.
Mean value of the weight functionWherein,respectively, a segmented histogram hkThe first and last gray levels of (a);
variance of the weight function In order to avoid a threshold for excessive enhancement of the image,for a segmented histogram hkOf the cover width, i.e.
Ensures the histogram hkIn the equalization process, both symmetrical directions have the same degree of distribution.
The above-mentionedIs composed ofWherein,for a segmented histogram hkGray average value of (1).
As shown in fig. 1, a schematic diagram of a process for processing an image by applying the method of the present invention is shown, wherein the process is as follows:
1) inputting an original image I, and calculating a luminance channel histogram of the original image, as shown in (a) and (b);
2) dividing the histogram into N segmented histograms and expanding the N segmented histograms to obtain an expandable segmented histogramAs shown in FIG. (c);
3) segment histogram for each extensionThe histogram obtained by applying the proposed adaptive histogram equalization method is shown in graph (d);
(a) using formulasComputing each extended segment histogramWhen N is equal to 3, the corresponding segment histogram hkWeight function W of1As shown in fig. 3;
(b) calculating alpha (k), beta (k) and gamma (k) by using a formula for optimizing regularization parameters alpha, beta and gamma;
(c) using a formula <math> <mrow> <msup> <mi>H</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>i</mi> <mo>&NotElement;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> Revised uniformly distributed histogram Hu
(d) Using formulasSolving an object histogramThe final equalized histogram is calculated, and as shown in fig. e, the final output image is obtained by histogram correction, as shown in fig. f and g.
In order to verify the effectiveness of the method, different histogram equalization processing methods and the method of the invention are selected to perform equalization processing on the same original image to obtain an image enhancement effect contrast diagram as shown in a diagram (b) -a diagram (f) in fig. 2, and from the contrast diagram, it can be seen that the gray level mapping function between input and output obtained correspondingly by the diagram (f) is obviously superior to other methods.

Claims (5)

1. An equalization method based on an extensible piecewise self-adaptive histogram is characterized by comprising the following steps:
step 1: expanding the input original histogram by adopting an expandable histogram segmentation method;
first, the original histogram H isoSegmentation into N non-overlapping segmented histograms hk,k∈[1,N](ii) a Then all the segmented histograms hkExpanded to the original histogram H respectivelyoHistogram with same gray level interval, keeping segmented histogram hkAt the position of the original histogramFilling other positions with zero without changing to obtain the extensible segmented histogram <math> <mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>x</mi> </msubsup> <mo>=</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>0</mn> <mo>]</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>&Element;</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>]</mo> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 2: equalizing the expandable segmented histograms, wherein each equalized sub-histogram has the same length as the original histogram;
and step 3: equalizing the sub-histogram obtained in the step 2Weighted mixing is carried out according to the following formula to obtain a final equalized histogram Ht(i):
<math> <mrow> <msup> <mi>H</mi> <mi>t</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>w</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mi>t</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </math>
Wherein, wk(i) Is the normalized weight of the k-th equalized-spread-segment histogram,weight functionk=[1,…,N]N is the number of histogram segments, i is the gray level, ukAnd σkRespectively the mean and variance of the weight function.
2. The scalable segment-based adaptive histogram equalization method according to claim 1, wherein the mean of the weight functionWherein,respectively, a segmented histogram hkThe first and last gray levels of (a);
variance of the weight function In order to avoid a threshold for excessive enhancement of the image,for a segmented histogram hkOf the cover width, i.e.
3. The scalable segment-based adaptation of claim 2A histogram equalization method, characterized in that said methodIs composed ofWherein,for a segmented histogram hkGray average value of (1).
4. The scalable segmentation-based adaptive histogram equalization method according to any one of claims 1-3, wherein the equalization process selected in step 2 is an adaptive equalization process, and an optimization problem proposed in the existing histogram equalization method is presentedIn the method, the regularization parameters alpha, beta and gamma are optimized by adopting the following formula;
<math> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>min</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&beta;</mi> <mi>th</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
γ=1-α-β
wherein HxFor the expanded histogram of the input image, HtFor the target histogram of the input image, HuA histogram of the desired equilibrium distribution; h is a histogram obtained after self-adaptive equalization processing, | | | | | represents the Euclidean norm, and D is a dual-diagonal difference matrix;
expanded histogram H for input imagexAnd the histogram H of the expanded input imagexMaximum gray level I ofmaxDistance measure, i is the expanded histogram H of the input imagexL is the number of gray levels, niExpanded histogram H for input imagexFrequency of intermediate gray levels I, ImaxIs the maximum gray level and has a variance σ of 0.2Imax
miFor a pixel x in the input imagejGray value of I (x)j) A number of pixels equal to i; nG (x)j) Is a pixel xjNormalized local variance, and nG (x)j)=G(xj)/I(xj),G(xj) Is a pixel xjThe magnitude of the gradient at (a).
5. The scalable segment-based adaptive histogram equalization method according to claim 4, wherein the histogram H of the desired equalization distributionuThe following formula is used for the assignment:
<math> <mrow> <msup> <mi>H</mi> <mi>u</mi> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>W</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>i</mi> <mo>&NotElement;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula, i is a gray scale.
CN201410304816.3A 2014-06-30 2014-06-30 Self-adaptation equalization method based on extensible segmentation histogram Active CN104282004B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410304816.3A CN104282004B (en) 2014-06-30 2014-06-30 Self-adaptation equalization method based on extensible segmentation histogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410304816.3A CN104282004B (en) 2014-06-30 2014-06-30 Self-adaptation equalization method based on extensible segmentation histogram

Publications (2)

Publication Number Publication Date
CN104282004A CN104282004A (en) 2015-01-14
CN104282004B true CN104282004B (en) 2015-05-20

Family

ID=52256855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410304816.3A Active CN104282004B (en) 2014-06-30 2014-06-30 Self-adaptation equalization method based on extensible segmentation histogram

Country Status (1)

Country Link
CN (1) CN104282004B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635524A (en) * 2015-12-18 2016-06-01 成都国翼电子技术有限公司 Intelligent enhancement method based on dark region histogram area statistics of history frame image
CN108830800B (en) * 2018-05-09 2023-02-28 南京邮电大学 Brightness improvement and enhancement method for image in dark scene
CN113393389B (en) * 2021-06-02 2022-05-31 武汉博宇光电系统有限责任公司 Image enhancement method without artificial halation
CN114998186B (en) * 2022-03-31 2023-11-28 南通恒立机械设备有限公司 Method and system for detecting surface scab defect of copper starting sheet based on image processing
CN114494084B (en) * 2022-04-14 2022-07-26 广东欧谱曼迪科技有限公司 Image color homogenizing method and device, electronic equipment and storage medium
CN117974465B (en) * 2024-03-31 2024-06-14 天津市胸科医院 Chest CT image processing method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850642B1 (en) * 2000-01-31 2005-02-01 Micron Technology, Inc. Dynamic histogram equalization for high dynamic range images
CN101510305A (en) * 2008-12-15 2009-08-19 四川虹微技术有限公司 Improved self-adapting histogram equilibrium method
CN102831592A (en) * 2012-08-10 2012-12-19 中国电子科技集团公司第四十一研究所 Image nonlinearity enhancement method based on histogram subsection transformation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850642B1 (en) * 2000-01-31 2005-02-01 Micron Technology, Inc. Dynamic histogram equalization for high dynamic range images
CN101510305A (en) * 2008-12-15 2009-08-19 四川虹微技术有限公司 Improved self-adapting histogram equilibrium method
CN102831592A (en) * 2012-08-10 2012-12-19 中国电子科技集团公司第四十一研究所 Image nonlinearity enhancement method based on histogram subsection transformation

Also Published As

Publication number Publication date
CN104282004A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
CN104282004B (en) Self-adaptation equalization method based on extensible segmentation histogram
Wang et al. Contrast enhancement using feature-preserving bi-histogram equalization
Singh et al. Image enhancement via median-mean based sub-image-clipped histogram equalization
Agarwal et al. Modified histogram based contrast enhancement using homomorphic filtering for medical images
CN110210524B (en) Training method of image enhancement model, image enhancement method and device
CN101882304B (en) Self-adaptive de-noising and characteristic enhancing method of SAR (Synthetic Aperture Radar) image
US20170109873A1 (en) Image enhancement using self-examples and external examples
CN105654438A (en) Gray scale image fitting enhancement method based on local histogram equalization
CN104240194A (en) Low-light-level image enhancement algorithm based on parabolic function
CN109919859B (en) Outdoor scene image defogging enhancement method, computing device and storage medium thereof
CN105118067A (en) Image segmentation method based on Gaussian smoothing filter
Khan et al. Segment selective dynamic histogram equalization for brightness preserving contrast enhancement of images
CN106570831A (en) Gray image contrast equalization enhancement method
CN101211459A (en) Boundary point processed histogram balancing method
US9501816B2 (en) Reducing the dynamic range of image data
CN110009574B (en) Method for reversely generating high dynamic range image from low dynamic range image
CN104574328A (en) Color image enhancement method based on histogram segmentation
Gupta et al. Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement
TW201308997A (en) Method of improving image quality for display device
CN104134198A (en) Method for carrying out local processing on image
Majumdar et al. Modified CLAHE: An adaptive algorithm for contrast enhancement of aerial, medical and underwater images
CN115578284A (en) Multi-scene image enhancement method and system
CN104091307A (en) Frog day image rapid restoration method based on feedback mean value filtering
TW202001700A (en) Method for quantizing an image, a method for training a neural network and a neural network training system
WO2020107308A1 (en) Low-light-level image rapid enhancement method and apparatus based on retinex

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant