Nothing Special   »   [go: up one dir, main page]

CN104268638A - Photovoltaic power generation system power predicting method of elman-based neural network - Google Patents

Photovoltaic power generation system power predicting method of elman-based neural network Download PDF

Info

Publication number
CN104268638A
CN104268638A CN201410462330.2A CN201410462330A CN104268638A CN 104268638 A CN104268638 A CN 104268638A CN 201410462330 A CN201410462330 A CN 201410462330A CN 104268638 A CN104268638 A CN 104268638A
Authority
CN
China
Prior art keywords
neural network
power generation
elman
data
hidden layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410462330.2A
Other languages
Chinese (zh)
Inventor
杨林
吕洲
高福荣
姚科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou HKUST Fok Ying Tung Research Institute
Original Assignee
Guangzhou HKUST Fok Ying Tung Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou HKUST Fok Ying Tung Research Institute filed Critical Guangzhou HKUST Fok Ying Tung Research Institute
Priority to CN201410462330.2A priority Critical patent/CN104268638A/en
Publication of CN104268638A publication Critical patent/CN104268638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于elman神经网络的光伏发电系统功率预测方法,包括:获取在相关地区光伏发电设备的发电功率历史数据及相应的历史天气参数信息;确定神经网络的输入和输出数据,并确定最优的隐含层神经元个数,从而建立基于elman的神经网络;对发电功率历史数据及历史天气参数信息进行归一化处理,然后根据归一化处理后的数据对建立的神经网络进行训练,从而将基于elman的神经网络的预测误差控制在预设的范围内;以预测日前一周的发电功率历史数据和预测日的天气参数数据作为输入,采用训练后的神经网络对预测日的发电功率进行预测。本发明具有稳定、具有适应时变特性能力和预测精度高的优点,可广泛应用于光伏发电领域。

The invention discloses a method for predicting the power of a photovoltaic power generation system based on an elman neural network. Determine the optimal number of neurons in the hidden layer, thereby establishing a neural network based on elman; normalize the historical data of power generation and historical weather parameter information, and then use the normalized data to establish a neural network Conduct training to control the prediction error of the neural network based on elman within the preset range; take the historical data of power generation one week before the forecast day and the weather parameter data of the forecast day as input, and use the trained neural network to predict the forecasting day. power generation forecast. The invention has the advantages of stability, ability to adapt to time-varying characteristics and high prediction accuracy, and can be widely used in the field of photovoltaic power generation.

Description

一种基于elman神经网络的光伏发电系统功率预测方法A Power Prediction Method of Photovoltaic Power Generation System Based on Elman Neural Network

技术领域 technical field

本发明涉及光伏发电领域,尤其是一种基于elman神经网络的光伏发电系统功率预测方法。 The invention relates to the field of photovoltaic power generation, in particular to a method for predicting the power of a photovoltaic power generation system based on an elman neural network.

背景技术 Background technique

可再生能源发电是较为高效和清洁的可再生能源利用方式,也是目前可再生能源使用技术中最成熟、最具有规模化开发条件和商业化发展前景的方式之一。而光伏发电则是可再生能源的主要利用方式,是智能电网的主要组成部分。而短期发电功率的预测则是光伏发电是否能成功推广的关键,也是电力调度部门制定电力调度计划的依据,更是家庭或企业等自建光伏发电系统效益的重要保障。 Renewable energy power generation is a relatively efficient and clean renewable energy utilization method, and it is also one of the most mature, large-scale development conditions and commercial development prospects among current renewable energy utilization technologies. Photovoltaic power generation is the main way of utilizing renewable energy and is the main component of smart grid. The prediction of short-term power generation is the key to the successful promotion of photovoltaic power generation. It is also the basis for the power dispatching department to formulate power dispatching plans, and it is also an important guarantee for the benefits of self-built photovoltaic power generation systems such as households or enterprises.

而目前所有短期太阳能光伏发电预测方法都是基于相同的思路:首先利用数学和物理学理论及相关数据建立预测公式或模型,再通过预测公式或模型对光伏电站发电量进行预测。根据所采用的数学物理理论及其预测输出量,光伏发电预测方法可分为两大类:(1)直接预测光电系统输出功率的直接预测法(又叫统计法);(2)首先对太阳辐射进行预测,然后根据光电转换效率得到光电输出功率的间接预测法(又叫物理法)。 At present, all short-term solar photovoltaic power generation prediction methods are based on the same idea: first, use mathematical and physical theories and related data to establish a prediction formula or model, and then use the prediction formula or model to predict the power generation of photovoltaic power plants. According to the mathematical and physical theory adopted and its predicted output, photovoltaic power generation prediction methods can be divided into two categories: (1) direct prediction method (also called statistical method) to directly predict the output power of photovoltaic system; Radiation is predicted, and then the indirect prediction method (also called physical method) of photoelectric output power is obtained according to the photoelectric conversion efficiency.

基于统计法的预测方法有概率法、时间序列法和人工智能法等方法,其优点是程序简明,对光伏电站位置及电力转换参数没有要求;缺点是没有考虑影响光伏发电的环境因素,需要大量的光伏电站历史运行数据来保证预报结果的精确度,且容易因环境的变化而导致预测精度的波动性过大。基于物理法的预测方法主要是以光伏发电系统物理发电原理为基础。其优点是不需要历史运行数据,光伏电站建成之后就可以直接进行预测;缺点是需要光伏电站详细地形图、发电站坐标、光伏电站功率曲线及其他相关光电转换参数等数据。 Forecasting methods based on statistical methods include probability method, time series method and artificial intelligence method. The advantage is that the procedure is simple and there is no requirement for the location of the photovoltaic power station and power conversion parameters; the disadvantage is that it does not consider the environmental factors that affect photovoltaic power generation and requires a lot The historical operating data of the photovoltaic power station is used to ensure the accuracy of the forecast results, and it is easy to cause excessive fluctuations in the forecast accuracy due to changes in the environment. The prediction method based on physics method is mainly based on the physical power generation principle of photovoltaic power generation system. Its advantage is that it does not require historical operating data, and it can be directly predicted after the photovoltaic power station is built; the disadvantage is that it needs data such as detailed topographic maps of the photovoltaic power station, coordinates of the power station, power curve of the photovoltaic power station, and other related photoelectric conversion parameters.

目前业内应用较为广泛的是基于BP神经网络的预测方法(人工智能法的一种),但是,基于BP神经网络的预测方法仍存在以下缺陷: At present, the prediction method based on BP neural network (a kind of artificial intelligence method) is widely used in the industry. However, the prediction method based on BP neural network still has the following defects:

(1)仅有前馈而无反馈,对历史数据的敏感性过差,容易导致已记忆的学习模式的信息消失,不够稳定; (1) There is only feedforward without feedback, and the sensitivity to historical data is too poor, which will easily lead to the disappearance of the information of the learned learning mode, which is not stable enough;

(2)处理动态信息能力过弱,无法直接动态反映动态过程中光伏发电系统的特性,不具备适应时变特性的能力,且预测精度的波动性较大。 (2) The ability to process dynamic information is too weak to directly and dynamically reflect the characteristics of the photovoltaic power generation system in the dynamic process, and it does not have the ability to adapt to time-varying characteristics, and the prediction accuracy fluctuates greatly.

发明内容 Contents of the invention

为了解决上述技术问题,本发明的目的是:提供一种稳定、具有适应时变特性能力和预测精度高的,基于elman神经网络的光伏发电系统功率预测方法。 In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for predicting the power of a photovoltaic power generation system based on an elman neural network, which is stable, capable of adapting to time-varying characteristics, and high in prediction accuracy.

本发明解决其技术问题所采用的技术方案是: The technical solution adopted by the present invention to solve its technical problems is:

一种基于elman神经网络的光伏发电系统功率预测方法,包括: A method for predicting the power of a photovoltaic power generation system based on an elman neural network, comprising:

A、获取在相关地区光伏发电设备的发电功率历史数据及相应的历史天气参数信息; A. Obtain historical power generation data of photovoltaic power generation equipment in relevant areas and corresponding historical weather parameter information;

B、确定神经网络的输入和输出数据,并确定最优的隐含层神经元个数,从而建立基于elman的神经网络,所述基于elman的神经网络包括输入层、隐含层、承接层和输出层,所述承接层用于记忆隐含层前一时刻的输出值并将该输出值返回给隐含层的输入; B, determine the input and output data of neural network, and determine optimal hidden layer neuron number, thereby set up the neural network based on elman, described neural network based on elman comprises input layer, hidden layer, carrying layer and An output layer, the receiving layer is used to memorize the output value of the hidden layer at the previous moment and return the output value to the input of the hidden layer;

C、对发电功率历史数据及历史天气参数信息进行归一化处理,然后根据归一化处理后的数据对建立的神经网络进行训练,从而将基于elman的神经网络的预测误差控制在预设的范围内; C. Perform normalization processing on the historical data of power generation and historical weather parameter information, and then train the established neural network according to the normalized data, so as to control the prediction error of the neural network based on elman at the preset value within the scope;

D、以预测日前一周的发电功率历史数据和预测日的天气参数数据作为输入,采用训练后的神经网络对预测日的发电功率进行预测。 D. Taking the historical power generation data of the week before the forecast day and the weather parameter data on the forecast day as input, use the trained neural network to predict the power generation on the forecast day.

进一步,所述预设的范围为5%-10%。 Further, the preset range is 5%-10%.

进一步,所述发电功率历史数据包括每小时发电功率和有效发电时间段,所述历史天气参数信息包括气温、气压、风向、风速、云量、雨量、日照时间和天气类型。 Further, the historical power generation data includes hourly power generation and effective power generation time period, and the historical weather parameter information includes air temperature, air pressure, wind direction, wind speed, cloud cover, rainfall, sunshine time and weather type.

进一步,所述步骤B,其包括: Further, the step B includes:

B1、统计获取的发电功率历史数据和历史天气参数信息,以一日的实际发电功率作为神经网络的输出数据,以该日前一周在有效时间段f内的每小时发电功率W和该日的天气参数数据作为神经网络的输入数据; B1. Statistically obtained historical power generation data and historical weather parameter information, the actual power generation power of a day is used as the output data of the neural network, and the hourly power generation W and the weather of the day in the effective time period f of the previous week are used The parameter data is used as the input data of the neural network;

B2、对elman神经网络进行初始化,根据输入输出序列确定输入结点单元向量、隐含层结点单元向量、反馈状态向量和输出结点向量,从而建立起基于elman的神经网络训练模型,其中,隐含层的节点数通过逐渐递增试凑法得出。 B2. Initialize the elman neural network, determine the input node unit vector, the hidden layer node unit vector, the feedback state vector and the output node vector according to the input and output sequences, thereby establishing a neural network training model based on elman, wherein, The number of nodes in the hidden layer is obtained by incremental trial and error.

进一步,所述elman神经网络的非线性状态空间表达式为: Further, the nonlinear state space expression of the elman neural network is:

,

其中,y为m维输出结点向量;ln维隐含层结点单元向量;x为u维输入向量;c为n维反馈状态向量;w3为隐含层到输出层连接权值;w2为输入层到隐含层连接权值;w1为承接层到隐含层的连接权值;g(*)为输出神经元的传递函数;f(*)为隐含层神经元的传递函数。 Among them, y is the m-dimensional output node vector; l is the n -dimensional hidden layer node unit vector; x is the u-dimensional input vector; c is the n-dimensional feedback state vector; w 3 is the connection weight from the hidden layer to the output layer ; w 2 is the connection weight from the input layer to the hidden layer; w 1 is the connection weight from the receiving layer to the hidden layer; g (*) is the transfer function of the output neuron; f (*) is the hidden layer neuron transfer function.

进一步,所述步骤C,其包括: Further, said step C, which includes:

C1、采用最大最小法对发电功率历史数据及历史天气参数信息进行归一化处理,所述归一化处理的公式为: C1. Use the maximum and minimum method to normalize the historical data of power generation and historical weather parameter information. The formula for the normalization process is:

,

其中,x max为数据序列中的最大数,x min为数据序列中的最小数; Among them, x max is the maximum number in the data sequence, and x min is the minimum number in the data sequence;

C2、根据归一化处理后的数据对建立的神经网络进行误差计算、权值更新和阀值更新,从而将基于elman的神经网络的预测误差控制在5%-10%的范围内。 C2. Perform error calculation, weight update and threshold update on the established neural network according to the normalized data, so as to control the prediction error of the elman-based neural network within the range of 5%-10%.

进一步,所述elman神经网络采用BP算法进行权值修正更新,并采用误差平方和函数进行指标函数学习,所述指标函数E(w)学习的公式为: Further, the elman neural network uses the BP algorithm to correct and update the weights, and uses the error sum of squares function to learn the indicator function, and the formula for learning the indicator function E (w) is:

,

其中,为目标输入向量。 in, Enter a vector for the target.

本发明的有益效果是:通过Elman神经网络的构建,结合与在相关地区光伏发电设备发电功率历史数据相对应的历史天气参数信息,得到预测日的发电功率,其中,Elman神经网络包括输入层、隐含层、输出层和用于记忆隐含层前一时刻的输出值并将该输出值返回给隐含层的输入承接层,增加了反馈,对历史数据较为敏感,较为稳定;进行训练时需要进行误差控制,能够以任意精度逼近任意非线性映射,并不考虑外部噪声对系统的影响,从而使系统具有较高的精度,并具有适应时变特性的能力,能直接动态反映动态过程系统的特性,减少了预测精度的波动性。 The beneficial effects of the present invention are: through the construction of Elman neural network, combined with historical weather parameter information corresponding to the historical data of power generation of photovoltaic power generation equipment in relevant areas, the power generation power of the forecast day is obtained, wherein, Elman neural network includes input layer, Hidden layer, output layer, and the input receiving layer used to remember the output value of the hidden layer at the previous moment and return the output value to the hidden layer, which increases feedback, is more sensitive to historical data, and is more stable; when training It needs error control, can approach any nonlinear mapping with arbitrary precision, and does not consider the influence of external noise on the system, so that the system has high precision, and has the ability to adapt to time-varying characteristics, and can directly and dynamically reflect the dynamic process system characteristics, reducing the volatility of prediction accuracy.

附图说明 Description of drawings

下面结合附图和实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with drawings and embodiments.

图1为本发明一种基于elman神经网络的光伏发电系统功率预测方法的整体流程图; Fig. 1 is the overall flowchart of a kind of photovoltaic power generation system power prediction method based on elman neural network of the present invention;

图2为本发明基于elman的神经网络的结构示意图; Fig. 2 is the structural representation of the neural network based on elman of the present invention;

图3为本发明步骤B的流程图; Fig. 3 is the flowchart of step B of the present invention;

图4为本发明步骤C的流程图。 Fig. 4 is a flowchart of step C of the present invention.

具体实施方式 Detailed ways

参照图1和图2,一种基于elman神经网络的光伏发电系统功率预测方法,包括: Referring to Figure 1 and Figure 2, a photovoltaic power generation system power prediction method based on elman neural network, including:

A、获取在相关地区光伏发电设备的发电功率历史数据及相应的历史天气参数信息; A. Obtain the historical power generation data of photovoltaic power generation equipment in relevant areas and the corresponding historical weather parameter information;

B、确定神经网络的输入和输出数据,并确定最优的隐含层神经元个数,从而建立基于elman的神经网络,所述基于elman的神经网络包括输入层、隐含层、承接层和输出层,所述承接层用于记忆隐含层前一时刻的输出值并将该输出值返回给隐含层的输入; B, determine the input and output data of neural network, and determine optimal hidden layer neuron number, thereby set up the neural network based on elman, described neural network based on elman comprises input layer, hidden layer, carrying layer and An output layer, the receiving layer is used to memorize the output value of the hidden layer at the previous moment and return the output value to the input of the hidden layer;

C、对发电功率历史数据及历史天气参数信息进行归一化处理,然后根据归一化处理后的数据对建立的神经网络进行训练,从而将基于elman的神经网络的预测误差控制在预设的范围内; C. Perform normalization processing on the historical data of power generation and historical weather parameter information, and then train the established neural network according to the normalized data, so as to control the prediction error of the neural network based on elman at the preset value within the scope;

D、以预测日前一周的发电功率历史数据和预测日的天气参数数据作为输入,采用训练后的神经网络对预测日的发电功率进行预测。 D. Taking the historical power generation data of the week before the forecast day and the weather parameter data on the forecast day as input, use the trained neural network to predict the power generation on the forecast day.

进一步作为优选的实施方式,所述预设的范围为5%-10%。 Further as a preferred embodiment, the preset range is 5%-10%.

进一步作为优选的实施方式,所述发电功率历史数据包括每小时发电功率和有效发电时间段,所述历史天气参数信息包括气温、气压、风向、风速、云量、雨量、日照时间和天气类型。 As a further preferred embodiment, the historical power generation data includes hourly power generation and effective power generation time periods, and the historical weather parameter information includes air temperature, air pressure, wind direction, wind speed, cloud cover, rainfall, sunshine time and weather type.

参照图3,进一步作为优选的实施方式,所述步骤B,其包括: Referring to Fig. 3, further as a preferred embodiment, the step B includes:

B1、统计获取的发电功率历史数据和历史天气参数信息,以一日的实际发电功率作为神经网络的输出数据,以该日前一周在有效时间段f内的每小时发电功率W和该日的天气参数数据作为神经网络的输入数据; B1. Statistically obtained historical power generation data and historical weather parameter information, the actual power generation power of a day is used as the output data of the neural network, and the hourly power generation W and the weather of the day in the effective time period f of the previous week are used The parameter data is used as the input data of the neural network;

B2、对elman神经网络进行初始化,根据输入输出序列确定输入结点单元向量、隐含层结点单元向量、反馈状态向量和输出结点向量,从而建立起基于elman的神经网络训练模型,其中,隐含层的节点数通过逐渐递增试凑法得出。 B2. Initialize the elman neural network, determine the input node unit vector, the hidden layer node unit vector, the feedback state vector and the output node vector according to the input and output sequences, thereby establishing a neural network training model based on elman, wherein, The number of nodes in the hidden layer is obtained by incremental trial and error.

进一步作为优选的实施方式,所述elman神经网络的非线性状态空间表达式为: Further as a preferred embodiment, the nonlinear state space expression of the elman neural network is:

,

其中,y为m维输出结点向量;ln维隐含层结点单元向量;x为u维输入向量;c为n维反馈状态向量;w3为隐含层到输出层连接权值;w2为输入层到隐含层连接权值;w1为承接层到隐含层的连接权值;g(*)为输出神经元的传递函数;f(*)为隐含层神经元的传递函数。 Among them, y is the m-dimensional output node vector; l is the n -dimensional hidden layer node unit vector; x is the u-dimensional input vector; c is the n-dimensional feedback state vector; w 3 is the connection weight from the hidden layer to the output layer ; w 2 is the connection weight from the input layer to the hidden layer; w 1 is the connection weight from the receiving layer to the hidden layer; g (*) is the transfer function of the output neuron; f (*) is the hidden layer neuron transfer function.

参照图4,进一步作为优选的实施方式,所述步骤C,其包括: Referring to Fig. 4, further as a preferred embodiment, the step C includes:

C1、采用最大最小法对发电功率历史数据及历史天气参数信息进行归一化处理,所述归一化处理的公式为: C1. Use the maximum and minimum method to normalize the historical data of power generation and historical weather parameter information. The formula for the normalization process is:

,

其中,x max为数据序列中的最大数,x min为数据序列中的最小数; Among them, x max is the maximum number in the data sequence, and x min is the minimum number in the data sequence;

C2、根据归一化处理后的数据对建立的神经网络进行误差计算、权值更新和阀值更新,从而将基于elman的神经网络的预测误差控制在5%-10%的范围内。 C2. Perform error calculation, weight update and threshold update on the established neural network according to the normalized data, so as to control the prediction error of the elman-based neural network within the range of 5%-10%.

进一步作为优选的实施方式,所述elman神经网络采用BP算法进行权值修正更新,并采用误差平方和函数进行指标函数学习,所述指标函数E(w)学习的公式为: Further as a preferred embodiment, the elman neural network adopts the BP algorithm to correct and update the weight, and adopts the error sum of squares function to carry out the index function learning, and the formula of the index function E (w) learning is:

,

其中,为目标输入向量。 in, Enter a vector for the target.

下面结合说明书附图和具体实施例对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

实施例一 Embodiment one

参照图2,本发明的第一实施例: Referring to Fig. 2, the first embodiment of the present invention:

本发明采用基于Elman神经网络的预测模型来实现光伏系统发电功率的短期预测,Elman神经网络模型的结构如图2所示。其中,X1,X2···Xu是输入层的节点,对应输入的预测日天气参数和上一周光伏系统发电功率;Y1是输出层的节点,对应输出的预测日系统发电功率;l1,l2···lN是隐含层的节点,其中隐含层节点数n(即最优的隐含层神经元个数)根据逐渐增加试探的办法来确定;C1,C2···CN是承接层的节点,用来记忆隐含层单元前一时刻的输出值并返回给隐含层的输入。 The present invention adopts the prediction model based on Elman neural network to realize the short-term prediction of photovoltaic system power generation, and the structure of the Elman neural network model is shown in FIG. 2 . Among them, X 1 , X 2 ···Xu are nodes in the input layer, corresponding to the input forecast weather parameters and last week’s photovoltaic system power generation; Y 1 is a node in the output layer, corresponding to the output forecast day system power generation; l 1 , l 2 ···l N is the node of the hidden layer, and the number of nodes in the hidden layer n (that is, the optimal number of neurons in the hidden layer) is determined by gradually increasing the trial method; C 1 , C 2 ··· CN is the node of the receiving layer, which is used to memorize the output value of the hidden layer unit at the previous moment and return it to the input of the hidden layer.

此Elman神经网络的非线性状态空间表达式为: The nonlinear state space expression of this Elman neural network is:

其中,g(*)为输出神经元的传递函数,是隐含层输出的线性组合;f(*)为隐含层神经元的传递函数,常采用S函数。 Among them, g(*) is the transfer function of the output neuron, which is a linear combination of the output of the hidden layer; f(*) is the transfer function of the hidden layer neuron, and the S function is often used.

实施例二 Embodiment two

参照图1-4,本发明的第二实施例: With reference to Fig. 1-4, the second embodiment of the present invention:

本发明的光伏发电系统功率预测方法主要实施步骤如下: The main implementation steps of the photovoltaic power generation system power prediction method of the present invention are as follows:

步骤1,获得在相关地区光伏发电设备发电功率历史数据,包括每小时发电功率W和有效发电时间段f,从而获得预测发电功率的有效发电时间段; Step 1, obtain the historical data of the power generation of photovoltaic power generation equipment in the relevant area, including the hourly power generation W and the effective power generation time period f, so as to obtain the effective power generation time period of the predicted power generation;

步骤2,获得相对应的历史天气参数信息,包括但不限于气温T、气压P、风向WD、风速WS、云量C,雨量R、日照时间t和天气类型P; Step 2, obtain corresponding historical weather parameter information, including but not limited to temperature T, air pressure P, wind direction WD, wind speed WS, cloud cover C, rainfall R, sunshine time t and weather type P;

步骤3,统计获得的发电功率历史数据和历史天气参数信息,将一日实际发电功率作为神经网络的输出数据,将该日前一周在有效时间时间段f内的每小时发电功率W和预测日的天气参数数据作为输入数据; Step 3: Statistically obtain the historical data of generated power and historical weather parameter information, take the actual generated power of a day as the output data of the neural network, and use the hourly generated power W in the effective time period f of the previous week and the predicted day’s Weather parameter data as input data;

步骤4,网络初始化,根据输入输出序列(X,Y)确定u维输入结点单元向量x,n维隐含层结点单元向量l,n维反馈状态向量c,m维输出结点向量y,其中,隐含层节点数n根据逐渐增加试探的办法来确定最优的隐含层神经元个数,直到网络性能达到设定的阈值或者最优时停止,从而建立基于Elman的神经网络训练模型; Step 4, network initialization, according to the input and output sequence (X, Y), determine u-dimensional input node unit vector x, n-dimensional hidden layer node unit vector l, n-dimensional feedback state vector c, m-dimensional output node vector y , where the number of hidden layer nodes n is determined by gradually increasing the number of hidden layer neurons, until the network performance reaches the set threshold or stops when it is optimal, so as to establish the neural network training based on Elman Model;

步骤5,使用最大最小法对发电功率历史数据和天气参数历史信息进行归一化处理,再利用其对神经网络进行训练(包括误差计算、权值更新和阀值更新的过程),将网络的预测误差控制在5%~10%内; Step 5, use the maximum and minimum method to normalize the historical data of power generation and historical information of weather parameters, and then use it to train the neural network (including the process of error calculation, weight update and threshold update), and the network's The prediction error is controlled within 5% to 10%;

步骤6,训练完成后可以利用神经网络来进行预测日的发电功率预测,从而得到预测的结果。 Step 6, after the training is completed, the neural network can be used to predict the power generation on the forecast day, so as to obtain the forecast result.

与现有技术相比,本发明通过一种基于Elman神经网络的光伏发电系统功率预测方法,建立起光伏发电系统神经网络功率预测模型,能够以任意的精度逼近任意非线性映射,并不考虑外部噪声对系统的影响,使系统具有较高的精度,并具有适应时变特性的能力,能直接动态反映动态过程系统的特性。 Compared with the prior art, the present invention establishes a photovoltaic power generation system neural network power prediction model through a photovoltaic power generation system power prediction method based on Elman neural network, which can approach any nonlinear mapping with arbitrary precision, regardless of external The influence of noise on the system makes the system have high precision and the ability to adapt to time-varying characteristics, which can directly and dynamically reflect the characteristics of the dynamic process system.

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。 The above is a specific description of the preferred implementation of the present invention, but the invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention. , these equivalent modifications or replacements are all within the scope defined by the claims of the present application.

Claims (7)

1.一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:包括: 1. A photovoltaic power generation system power prediction method based on elman neural network, characterized in that: comprising: A、获取在相关地区光伏发电设备的发电功率历史数据及相应的历史天气参数信息; A. Obtain historical power generation data of photovoltaic power generation equipment in relevant areas and corresponding historical weather parameter information; B、确定神经网络的输入和输出数据,并确定最优的隐含层神经元个数,从而建立基于elman的神经网络,所述基于elman的神经网络包括输入层、隐含层、承接层和输出层,所述承接层用于记忆隐含层前一时刻的输出值并将该输出值返回给隐含层的输入; B, determine the input and output data of neural network, and determine optimal hidden layer neuron number, thereby set up the neural network based on elman, described neural network based on elman comprises input layer, hidden layer, carrying layer and An output layer, the receiving layer is used to memorize the output value of the hidden layer at the previous moment and return the output value to the input of the hidden layer; C、对发电功率历史数据及历史天气参数信息进行归一化处理,然后根据归一化处理后的数据对建立的神经网络进行训练,从而将基于elman的神经网络的预测误差控制在预设的范围内; C. Perform normalization processing on the historical data of power generation and historical weather parameter information, and then train the established neural network according to the normalized data, so as to control the prediction error of the neural network based on elman at the preset value within the scope; D、以预测日前一周的发电功率历史数据和预测日的天气参数数据作为输入,采用训练后的神经网络对预测日的发电功率进行预测。 D. Taking the historical power generation data of the week before the forecast day and the weather parameter data on the forecast day as input, use the trained neural network to predict the power generation on the forecast day. 2.根据权利要求1所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述预设的范围为5%-10%。 2. A kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 1, is characterized in that: described preset range is 5%-10%. 3.根据权利要求2所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述发电功率历史数据包括每小时发电功率和有效发电时间段,所述历史天气参数信息包括气温、气压、风向、风速、云量、雨量、日照时间和天气类型。 3. a kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 2, is characterized in that: described generation power historical data comprises hourly generation power and effective generation time period, and described historical weather parameter information Including temperature, air pressure, wind direction, wind speed, cloud cover, rainfall, sunshine time and weather type. 4.根据权利要求3所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述步骤B,其包括: 4. a kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 3, is characterized in that: described step B, it comprises: B1、统计获取的发电功率历史数据和历史天气参数信息,以一日的实际发电功率作为神经网络的输出数据,以该日前一周在有效时间段f内的每小时发电功率W和该日的天气参数数据作为神经网络的输入数据; B1. Statistically obtained historical power generation data and historical weather parameter information, the actual power generation power of a day is used as the output data of the neural network, and the hourly power generation W and the weather of the day in the effective time period f of the previous week are used The parameter data is used as the input data of the neural network; B2、对elman神经网络进行初始化,根据输入输出序列确定输入结点单元向量、隐含层结点单元向量、反馈状态向量和输出结点向量,从而建立起基于elman的神经网络训练模型,其中,隐含层的节点数通过逐渐递增试凑法得出。 B2. Initialize the elman neural network, determine the input node unit vector, the hidden layer node unit vector, the feedback state vector and the output node vector according to the input and output sequences, thereby establishing a neural network training model based on elman, wherein, The number of nodes in the hidden layer is obtained by incremental trial and error. 5.根据权利要求4所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述elman神经网络的非线性状态空间表达式为: 5. a kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 4, is characterized in that: the nonlinear state space expression of described elman neural network is: , 其中,y为m维输出结点向量;ln维隐含层结点单元向量;x为u维输入向量;c为n维反馈状态向量;w3为隐含层到输出层连接权值;w2为输入层到隐含层连接权值;w1为承接层到隐含层的连接权值;g(*)为输出神经元的传递函数;f(*)为隐含层神经元的传递函数。 Among them, y is the m-dimensional output node vector; l is the n -dimensional hidden layer node unit vector; x is the u-dimensional input vector; c is the n-dimensional feedback state vector; w 3 is the connection weight from the hidden layer to the output layer ; w 2 is the connection weight from the input layer to the hidden layer; w 1 is the connection weight from the receiving layer to the hidden layer; g (*) is the transfer function of the output neuron; f (*) is the hidden layer neuron transfer function. 6.根据权利要求4所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述步骤C,其包括: 6. A kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 4, is characterized in that: described step C, it comprises: C1、采用最大最小法对发电功率历史数据及历史天气参数信息进行归一化处理,所述归一化处理的公式为: C1, using the maximum and minimum method to normalize the historical data of power generation and historical weather parameter information, the formula for the normalization process is: , 其中,x max为数据序列中的最大数,x min为数据序列中的最小数; Among them, x max is the maximum number in the data sequence, and x min is the minimum number in the data sequence; C2、根据归一化处理后的数据对建立的神经网络进行误差计算、权值更新和阀值更新,从而将基于elman的神经网络的预测误差控制在5%-10%的范围内。 C2. Perform error calculation, weight update and threshold update on the established neural network according to the normalized data, so as to control the prediction error of the elman-based neural network within the range of 5%-10%. 7.根据权利要求6所述的一种基于elman神经网络的光伏发电系统功率预测方法,其特征在于:所述elman神经网络采用BP算法进行权值修正更新,并采用误差平方和函数进行指标函数学习,所述指标函数E(w)学习的公式为: 7. a kind of photovoltaic power generation system power prediction method based on elman neural network according to claim 6, is characterized in that: described elman neural network adopts BP algorithm to carry out weight correction update, and adopts error square sum function to carry out indicator function Learning, the formula of described indicator function E (w) learning is: , 其中,为目标输入向量。 in, Enter a vector for the target.
CN201410462330.2A 2014-09-11 2014-09-11 Photovoltaic power generation system power predicting method of elman-based neural network Pending CN104268638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410462330.2A CN104268638A (en) 2014-09-11 2014-09-11 Photovoltaic power generation system power predicting method of elman-based neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410462330.2A CN104268638A (en) 2014-09-11 2014-09-11 Photovoltaic power generation system power predicting method of elman-based neural network

Publications (1)

Publication Number Publication Date
CN104268638A true CN104268638A (en) 2015-01-07

Family

ID=52160158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410462330.2A Pending CN104268638A (en) 2014-09-11 2014-09-11 Photovoltaic power generation system power predicting method of elman-based neural network

Country Status (1)

Country Link
CN (1) CN104268638A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636822A (en) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 Residential load prediction method of elman-based neural network
CN104850914A (en) * 2015-05-29 2015-08-19 东南大学 Feature modeling based new energy power generation capacity forecasting method
CN105139264A (en) * 2015-06-06 2015-12-09 安徽工程大学 Photovoltaic generation capacity prediction method based on particle swarm algorithm wavelet neural network
CN105928292A (en) * 2016-04-20 2016-09-07 山东三九制冷设备有限公司 Photovoltaic refrigerator system controlled based on load prediction and demand response of neural network
CN106202920A (en) * 2016-07-08 2016-12-07 中国石油大学(华东) A kind of application and interpretation method of single sea level pressure of standing
CN106845770A (en) * 2016-12-16 2017-06-13 深圳市麦澜创新科技有限公司 A kind of energy storage management system based on neutral net
CN107292386A (en) * 2016-04-11 2017-10-24 福特全球技术公司 Detected using the rainwater of the view-based access control model of deep learning
CN107291994A (en) * 2017-05-25 2017-10-24 天津大学 A kind of stalk calorific value Forecasting Methodology based on Elman neural network models
JP2018007312A (en) * 2016-06-27 2018-01-11 藤崎電機株式会社 Generated power prediction apparatus, server, computer program, and generated power prediction method
CN107967541A (en) * 2017-12-21 2018-04-27 联想(北京)有限公司 A kind of information forecasting method, information prediction device and server cluster
CN108256668A (en) * 2017-12-13 2018-07-06 上海电力学院 Photovoltaic power generation output forecasting method based on harmony search-Elman algorithms
CN108446799A (en) * 2018-03-12 2018-08-24 浙江大学 Waste pressure turbine device generated power forecasting method based on Elman neural networks
CN108537327A (en) * 2018-03-28 2018-09-14 北京航空航天大学 One kind being based on time series BP neural network prediction technique and device
CN108596405A (en) * 2018-05-09 2018-09-28 中电国瑞物流有限公司 The prediction technique and system of grey library yield
CN108876013A (en) * 2018-05-29 2018-11-23 福州大学 One kind being based on best similar day and Elman neural fusion photovoltaic plant short term power prediction technique
CN109858665A (en) * 2018-12-06 2019-06-07 国网河北省电力有限公司 Photovoltaic short term power prediction technique based on Feature Selection and ANFIS-PSO
CN109978283A (en) * 2019-04-25 2019-07-05 中国人民解放军国防科技大学 A power prediction method of photovoltaic power generation based on branch evolutionary neural network
CN110046765A (en) * 2019-04-15 2019-07-23 国网甘肃省电力公司电力科学研究院 A kind of power system stabilizer, PSS implementation method based on Elman neural network
CN110349680A (en) * 2019-06-27 2019-10-18 武汉科技大学 A kind of prediction technique of opioid drug crisis explosion time
CN110414748A (en) * 2019-08-12 2019-11-05 合肥阳光新能源科技有限公司 Photovoltaic power prediction technique
CN111022206A (en) * 2018-10-09 2020-04-17 丰田自动车株式会社 Control device and control method for vehicle drive device, in-vehicle electronic control unit, learned model, and machine learning system
CN111242355A (en) * 2020-01-06 2020-06-05 中国电力科学研究院有限公司 Photovoltaic probability prediction method and system based on Bayesian neural network
CN111428926A (en) * 2020-03-23 2020-07-17 国网江苏省电力有限公司镇江供电分公司 Regional power load prediction method considering meteorological factors
CN112116171A (en) * 2020-09-29 2020-12-22 山东建筑大学 Novel photovoltaic power generation power prediction method based on neural network
CN112215428A (en) * 2020-10-20 2021-01-12 国网山东省电力公司电力科学研究院 Photovoltaic power generation power prediction method and system based on error correction and fuzzy logic
CN112348247A (en) * 2020-11-03 2021-02-09 深圳大学 Prediction method and device for light energy power generation, computer equipment and storage medium
CN112541633A (en) * 2020-12-15 2021-03-23 浙江浙能嘉兴发电有限公司 Ultrahigh-precision photovoltaic power generation power prediction method and system based on neural network
CN114004405A (en) * 2021-11-03 2022-02-01 国网山东省电力公司东营供电公司 Photovoltaic power prediction method and system based on Elman neural network and satellite cloud picture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132066A1 (en) * 2007-04-27 2008-11-06 Siemens Aktiengesellschaft A method for computer-assisted learning of one or more neural networks
CN102567781A (en) * 2011-12-20 2012-07-11 西北师范大学 Network behavior prediction method based on neural network
CN103500366A (en) * 2013-09-29 2014-01-08 上海电机学院 System and method for predicating short-time wind power
CN103903067A (en) * 2014-04-09 2014-07-02 上海电机学院 Short-term combination forecasting method for wind power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132066A1 (en) * 2007-04-27 2008-11-06 Siemens Aktiengesellschaft A method for computer-assisted learning of one or more neural networks
CN102567781A (en) * 2011-12-20 2012-07-11 西北师范大学 Network behavior prediction method based on neural network
CN103500366A (en) * 2013-09-29 2014-01-08 上海电机学院 System and method for predicating short-time wind power
CN103903067A (en) * 2014-04-09 2014-07-02 上海电机学院 Short-term combination forecasting method for wind power

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104636822A (en) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 Residential load prediction method of elman-based neural network
CN104636822B (en) * 2015-01-21 2018-08-31 广州市香港科大霍英东研究院 A kind of resident load prediction technique based on elman neural networks
CN104850914A (en) * 2015-05-29 2015-08-19 东南大学 Feature modeling based new energy power generation capacity forecasting method
CN104850914B (en) * 2015-05-29 2018-07-17 东南大学 A kind of generation of electricity by new energy amount prediction technique of feature based modeling
CN105139264A (en) * 2015-06-06 2015-12-09 安徽工程大学 Photovoltaic generation capacity prediction method based on particle swarm algorithm wavelet neural network
CN107292386A (en) * 2016-04-11 2017-10-24 福特全球技术公司 Detected using the rainwater of the view-based access control model of deep learning
CN105928292B (en) * 2016-04-20 2018-05-22 山东三九制冷设备有限公司 A kind of photovoltaic refrigeration storage system of load prediction based on neutral net and demand response control
CN105928292A (en) * 2016-04-20 2016-09-07 山东三九制冷设备有限公司 Photovoltaic refrigerator system controlled based on load prediction and demand response of neural network
JP2018007312A (en) * 2016-06-27 2018-01-11 藤崎電機株式会社 Generated power prediction apparatus, server, computer program, and generated power prediction method
CN106202920A (en) * 2016-07-08 2016-12-07 中国石油大学(华东) A kind of application and interpretation method of single sea level pressure of standing
CN106845770A (en) * 2016-12-16 2017-06-13 深圳市麦澜创新科技有限公司 A kind of energy storage management system based on neutral net
CN107291994A (en) * 2017-05-25 2017-10-24 天津大学 A kind of stalk calorific value Forecasting Methodology based on Elman neural network models
CN108256668A (en) * 2017-12-13 2018-07-06 上海电力学院 Photovoltaic power generation output forecasting method based on harmony search-Elman algorithms
CN107967541A (en) * 2017-12-21 2018-04-27 联想(北京)有限公司 A kind of information forecasting method, information prediction device and server cluster
CN108446799A (en) * 2018-03-12 2018-08-24 浙江大学 Waste pressure turbine device generated power forecasting method based on Elman neural networks
CN108446799B (en) * 2018-03-12 2021-08-03 浙江大学 Prediction method of power generation of residual pressure turbine based on Elman neural network
CN108537327A (en) * 2018-03-28 2018-09-14 北京航空航天大学 One kind being based on time series BP neural network prediction technique and device
CN108596405A (en) * 2018-05-09 2018-09-28 中电国瑞物流有限公司 The prediction technique and system of grey library yield
CN108876013A (en) * 2018-05-29 2018-11-23 福州大学 One kind being based on best similar day and Elman neural fusion photovoltaic plant short term power prediction technique
CN111022206A (en) * 2018-10-09 2020-04-17 丰田自动车株式会社 Control device and control method for vehicle drive device, in-vehicle electronic control unit, learned model, and machine learning system
CN111022206B (en) * 2018-10-09 2022-06-21 丰田自动车株式会社 Control device and method for vehicle drive device, and vehicle-mounted electronic control unit
CN109858665A (en) * 2018-12-06 2019-06-07 国网河北省电力有限公司 Photovoltaic short term power prediction technique based on Feature Selection and ANFIS-PSO
CN110046765A (en) * 2019-04-15 2019-07-23 国网甘肃省电力公司电力科学研究院 A kind of power system stabilizer, PSS implementation method based on Elman neural network
CN109978283B (en) * 2019-04-25 2021-05-11 中国人民解放军国防科技大学 Photovoltaic power generation power prediction method based on branch evolution neural network
CN109978283A (en) * 2019-04-25 2019-07-05 中国人民解放军国防科技大学 A power prediction method of photovoltaic power generation based on branch evolutionary neural network
CN110349680A (en) * 2019-06-27 2019-10-18 武汉科技大学 A kind of prediction technique of opioid drug crisis explosion time
CN110414748A (en) * 2019-08-12 2019-11-05 合肥阳光新能源科技有限公司 Photovoltaic power prediction technique
CN110414748B (en) * 2019-08-12 2022-04-08 阳光新能源开发股份有限公司 Photovoltaic power prediction method
CN111242355A (en) * 2020-01-06 2020-06-05 中国电力科学研究院有限公司 Photovoltaic probability prediction method and system based on Bayesian neural network
CN111428926A (en) * 2020-03-23 2020-07-17 国网江苏省电力有限公司镇江供电分公司 Regional power load prediction method considering meteorological factors
CN112116171A (en) * 2020-09-29 2020-12-22 山东建筑大学 Novel photovoltaic power generation power prediction method based on neural network
CN112215428A (en) * 2020-10-20 2021-01-12 国网山东省电力公司电力科学研究院 Photovoltaic power generation power prediction method and system based on error correction and fuzzy logic
CN112215428B (en) * 2020-10-20 2022-08-26 国网山东省电力公司电力科学研究院 Photovoltaic power generation power prediction method and system based on error correction and fuzzy logic
CN112348247A (en) * 2020-11-03 2021-02-09 深圳大学 Prediction method and device for light energy power generation, computer equipment and storage medium
CN112348247B (en) * 2020-11-03 2022-04-15 深圳大学 A prediction method, device, computer equipment and storage medium for solar power generation
CN112541633A (en) * 2020-12-15 2021-03-23 浙江浙能嘉兴发电有限公司 Ultrahigh-precision photovoltaic power generation power prediction method and system based on neural network
CN114004405A (en) * 2021-11-03 2022-02-01 国网山东省电力公司东营供电公司 Photovoltaic power prediction method and system based on Elman neural network and satellite cloud picture
CN114004405B (en) * 2021-11-03 2024-09-20 国网山东省电力公司东营供电公司 Photovoltaic power prediction method and system based on Elman neural network and satellite cloud image

Similar Documents

Publication Publication Date Title
CN104268638A (en) Photovoltaic power generation system power predicting method of elman-based neural network
CN104636822B (en) A kind of resident load prediction technique based on elman neural networks
CN102930358B (en) A kind of neural net prediction method of photovoltaic power station power generation power
CN103489038A (en) Photovoltaic ultra-short-term power prediction method based on LM-BP neural network
CN105139264A (en) Photovoltaic generation capacity prediction method based on particle swarm algorithm wavelet neural network
CN103106544B (en) A kind of photovoltaic generation prognoses system based on T-S Fuzzy neutral net
CN107808212B (en) Solar energy collection power prediction method based on grey neural network
CN103218673A (en) Method for predicating short-period output power of photovoltaic power generation based on BP (Back Propagation) neural network
CN103218674A (en) Method for predicating output power of photovoltaic power generation system based on BP (Back Propagation) neural network model
CN108549929A (en) A kind of photovoltaic power prediction technique based on deep layer convolutional neural networks
CN105787594B (en) Radiation Prediction Method Based on Multivariate Time Series and Regression Analysis
CN105426956A (en) Ultra-short-period photovoltaic prediction method
CN104376389A (en) Master-slave type micro-grid power load prediction system and master-slave type micro-grid power load prediction method based on load balancing
CN116894384B (en) A method and system for spatiotemporal prediction of wind speed of multiple wind turbines
CN110543988A (en) A photovoltaic short-term output forecast system and method based on XGBoost algorithm
CN104732296A (en) Modeling method for distributed photovoltaic output power short-term prediction model
CN111832800A (en) A kind of photovoltaic power station power prediction method and device
CN103904682A (en) Power prediction method based on wind-solar hybrid model
CN103617461A (en) Photovoltaic power station generated power predicting method
Shah et al. A novel prediction error-based power forecasting scheme for real pv system using pvusa model: A grey box-based neural network approach
CN114511132A (en) Photovoltaic output short-term prediction method and prediction system
CN108376294A (en) A kind of heat load prediction method of energy supply feedback and meteorologic factor
Jia et al. An improved artificial bee colony-BP neural network algorithm in the short-term wind speed prediction
CN108876013A (en) One kind being based on best similar day and Elman neural fusion photovoltaic plant short term power prediction technique
CN108364084A (en) A kind of BP neural network photovoltaic power prediction technique based on Theory of Information Fusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150107