CN104155289A - Solid electrochemical luminescence sensor for detecting mercury ions and preparation method and application of solid electrochemical luminescence sensor for detecting mercury ions - Google Patents
Solid electrochemical luminescence sensor for detecting mercury ions and preparation method and application of solid electrochemical luminescence sensor for detecting mercury ions Download PDFInfo
- Publication number
- CN104155289A CN104155289A CN201410289966.1A CN201410289966A CN104155289A CN 104155289 A CN104155289 A CN 104155289A CN 201410289966 A CN201410289966 A CN 201410289966A CN 104155289 A CN104155289 A CN 104155289A
- Authority
- CN
- China
- Prior art keywords
- glassy carbon
- solution
- carbon electrode
- electrode
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229910052753 mercury Inorganic materials 0.000 title claims description 33
- -1 mercury ions Chemical class 0.000 title claims description 29
- 238000004020 luminiscence type Methods 0.000 title claims description 6
- 239000007787 solid Substances 0.000 title description 4
- 229910021397 glassy carbon Inorganic materials 0.000 claims abstract description 55
- 238000001514 detection method Methods 0.000 claims abstract description 24
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 claims abstract description 18
- 102100033072 DNA replication ATP-dependent helicase DNA2 Human genes 0.000 claims abstract description 15
- 101000927313 Homo sapiens DNA replication ATP-dependent helicase DNA2 Proteins 0.000 claims abstract description 15
- 239000007853 buffer solution Substances 0.000 claims description 43
- 239000000243 solution Substances 0.000 claims description 40
- LEOJISUPFSWNMA-UHFFFAOYSA-N ABEI Chemical compound O=C1NNC(=O)C=2C1=CC(N(CCCCN)CC)=CC=2 LEOJISUPFSWNMA-UHFFFAOYSA-N 0.000 claims description 30
- 108090001008 Avidin Proteins 0.000 claims description 12
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000003487 electrochemical reaction Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 8
- 239000012086 standard solution Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012488 sample solution Substances 0.000 claims description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 5
- 229940098773 bovine serum albumin Drugs 0.000 claims description 5
- 238000002484 cyclic voltammetry Methods 0.000 claims description 4
- 238000002848 electrochemical method Methods 0.000 claims description 4
- 238000011534 incubation Methods 0.000 claims description 4
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 3
- 238000001524 potential step chrono-amperometry Methods 0.000 claims description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 abstract description 10
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 6
- 229960002685 biotin Drugs 0.000 abstract description 5
- 235000020958 biotin Nutrition 0.000 abstract description 5
- 239000011616 biotin Substances 0.000 abstract description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明公开了一种用于汞离子检测的固态电化学发光传感器及其制备方法和应用,特点是该传感器为表面固载电聚合的ABEI,再依次组装有戊二醛、DNA1、通过T-Hg2+-T错配结合的DNA2以及生物素的玻碳电极;其制备方法包括固载有DNA1玻碳电极的制备步骤和固态电化学发光传感器的组装步骤,优点是具有灵敏度高、稳定性好、选择性强、重现性良好、易于操作、节约试剂等。
The invention discloses a solid-state electrochemiluminescence sensor for mercury ion detection and its preparation method and application. Hg 2+ -T mismatched DNA2 and biotin glassy carbon electrode; its preparation method includes the preparation steps of the DNA1 glassy carbon electrode and the assembly step of the solid-state electrochemiluminescence sensor, which has the advantages of high sensitivity and stability Good, strong selectivity, good reproducibility, easy to operate, saving reagents, etc.
Description
技术领域 technical field
本发明涉及重金属检测技术领域,尤其是涉及一种检测汞离子的固态电化学发光传感器及其制备方法和应用。 The invention relates to the technical field of heavy metal detection, in particular to a solid-state electrochemical luminescence sensor for detecting mercury ions, a preparation method and application thereof.
背景技术 Background technique
重金属污染是现在环境污染的重要组成部分之一。汞(Hg),是常温下唯一的液态金属,是重金属污染中的头号杀手。近年来,人类对重金属汞的开采、冶炼、加工及商业制造活动日益增多,大量的汞进入大气、水、土壤中存留、积累和迁移。环境中的汞最后以食物链的形式进入动物和人类的体内,对生物体的生命机能造成很大伤害,产生神经精神症状、震颤、口腔炎及中毒性肾病等疾病。汞离子(Hg2+)是汞在自然界中的主要存在形式之一,众多卫生标准中要求不得检出,因此发展高灵敏度且高选择性的低浓度汞离子检测方法对环境检测及食品安全监测具有重要的意义。 Heavy metal pollution is one of the important components of environmental pollution. Mercury (Hg), the only liquid metal at room temperature, is the number one killer of heavy metal pollution. In recent years, the mining, smelting, processing and commercial manufacturing activities of heavy metal mercury have been increasing, and a large amount of mercury has entered the atmosphere, water and soil for retention, accumulation and migration. Mercury in the environment finally enters the body of animals and humans in the form of food chain, causing great damage to the vital functions of organisms, and causing diseases such as neuropsychiatric symptoms, tremors, stomatitis, and toxic nephropathy. Mercury ion (Hg 2+ ) is one of the main forms of mercury in nature, and it is not required to be detected in many health standards. Therefore, the development of high-sensitivity and high-selectivity low-concentration mercury ion detection methods is essential for environmental testing and food safety monitoring. is of great significance.
目前检测汞离子的方法主要有:冷原子吸收光谱法、ICP-MS、荧光光谱法、紫外—可见分光光度法、原子荧光法、电化学法、离子色谱法、毛细管电泳法、重金属快速测定仪法、试纸条法等,但这些方法或需使用昂贵的仪器,操作繁琐,且要求检测人员具备一定的专业知识,分析成本高,难以普及;或灵敏度不高、选择性差,样品预处理复杂,难以准确定量检测低浓度Hg2+。 At present, the methods for detecting mercury ions mainly include: cold atomic absorption spectrometry, ICP-MS, fluorescence spectrometry, ultraviolet-visible spectrophotometry, atomic fluorescence method, electrochemical method, ion chromatography, capillary electrophoresis method, heavy metal rapid detector method, test strip method, etc., but these methods may need to use expensive instruments, cumbersome operations, and require testing personnel to have certain professional knowledge, high analysis costs, difficult to popularize; or low sensitivity, poor selectivity, complicated sample pretreatment , it is difficult to accurately quantitatively detect low-concentration Hg 2+ .
电化学发光(ECL)是将电化学与化学发光相结合的一种分析技术,不仅具有化学发光分析法的灵敏度高、线性范围宽、观察方便、仪器简单等优点,而且具有电化学分析法的电位可控性强、选择性高、试剂稳定、重现性好等优点,已受到科研工作者的极大关注,并逐渐发展成为分析检测领域的重要分支。固态电化学发光是将电化学发光试剂通过化学方法或物理方法固载到电极表面后再进行ECL检测的技术,与溶液中的ECL相比,将电化学发光试剂固定到电极表面构建的固态ECL,还有以下优点:减少昂贵试剂的用量、简化实验操作、提高ECL强度等。但是,目前,国内外还没有公开任何利用N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的固态电化学发光检测水体中汞离子含量相关报道。 Electrochemiluminescence (ECL) is an analytical technique that combines electrochemistry and chemiluminescence. It not only has the advantages of high sensitivity, wide linear range, convenient observation, and simple instruments, but also has the advantages of electrochemical analysis. Potential controllability, high selectivity, stable reagents, and good reproducibility have attracted great attention from scientific researchers, and have gradually developed into an important branch of the field of analysis and detection. Solid-state electrochemiluminescence is a technology in which electrochemiluminescent reagents are immobilized on the surface of electrodes by chemical or physical methods and then detected by ECL. Compared with ECL in solution, solid-state ECL constructed by immobilizing electrochemiluminescent reagents on the electrode surface , and the following advantages: reduce the amount of expensive reagents, simplify experimental operations, improve ECL intensity, etc. However, at present, there is no published report on the use of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) for the detection of mercury ion content in water by solid-state electrochemiluminescence.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种灵敏度高、稳定性好、选择性强、重现性好、易于操作的用于汞离子检测的固态电化学发光传感器及其制备方法和检测方法。 The technical problem to be solved by the present invention is to provide a solid-state electrochemiluminescence sensor for mercury ion detection with high sensitivity, good stability, strong selectivity, good reproducibility and easy operation, as well as its preparation method and detection method.
本发明解决上述技术问题所采用的技术方案为:一种用于检测汞离子的固态电化学发光传感器,所述的传感器为表面固载电聚合的ABEI,再依次组装有戊二醛、DNA1、通过T-Hg2+-T错配结合的DNA2以及生物素的玻碳电极。 The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a solid-state electrochemical luminescence sensor for detecting mercury ions, the sensor is ABEI with solid-carrying electropolymerization on the surface, and then sequentially assembled with glutaraldehyde, DNA1, Glassy carbon electrode with DNA2 bound by T-Hg 2+ -T mismatch and biotin.
上述用于检测汞离子的固态电化学发光传感器的制备方法,具体步骤如下: The preparation method of the above-mentioned solid-state electrochemiluminescence sensor for detecting mercury ions, the specific steps are as follows:
(1)固载有DNA1玻碳电极的制备 (1) Preparation of glassy carbon electrode immobilized with DNA1
a. 将直径为3~5 mm的玻碳电极依次用1.0 μm、0.3 μm、0.05 μm的三氧化二铝抛光处理,然后依次用乙醇、水超声清洗,水冲洗干净后,氮气吹干备用; a. Polish the glassy carbon electrode with a diameter of 3-5 mm with aluminum oxide of 1.0 μm, 0.3 μm, and 0.05 μm in sequence, then ultrasonically clean it with ethanol and water in sequence, rinse it with water, and dry it with nitrogen for later use;
b. 将步骤(a)所得玻碳电极置于含 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的H2SO4溶液中,进行循环伏安扫描,电压范围为?0.2~1.5 V,以0.01~0.1 V/s的扫速循环扫描20~30圈,使ABEI在玻碳电极表面电聚合;所述的含 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的H2SO4溶液中 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)浓度为0.01~0.0001 mol/L,H2SO4浓度为0.1~1 mol/L; b. Place the glassy carbon electrode obtained in step (a) in the H 2 SO 4 solution containing N-(4-aminobutyl)-N-ethylisoluminol (ABEI), and perform cyclic voltammetry scanning. The range is ?0.2-1.5 V, and the scanning speed is 0.01-0.1 V/s to scan 20-30 times, so that ABEI is electropolymerized on the surface of the glassy carbon electrode; the said N-(4-aminobutyl)-N -The concentration of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) in H 2 SO 4 solution is 0.01~0.0001 mol/L, H 2 SO 4 The concentration is 0.1-1 mol/L;
c. 将步骤(b)所得玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液冲洗干净后,在玻碳电极表面滴加1~3 wt%戊二醛溶液10~20 μL,静置20~40分钟; c. After washing the glassy carbon electrode obtained in step (b) with 0.01-0.1 M PBS buffer solution with pH = 7-8, add 10-20 μL of 1-3 wt% glutaraldehyde solution dropwise on the surface of the glassy carbon electrode, Stand for 20-40 minutes;
d. 将步骤(c)所得玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液冲洗干净后,在玻碳电极表面滴加含10 μmol/L DNA1的pH = 7~8的0.01~0.1 M PBS缓冲液10~20 μL,静置20~40 min,使DNA1结合到电极表面; d. After washing the glassy carbon electrode obtained in step (c) with 0.01-0.1 M PBS buffer solution with pH = 7-8, add 0.01 ~ 10 ~ 20 μL of 0.1 M PBS buffer solution, let stand for 20 ~ 40 min to make DNA1 bind to the electrode surface;
e. 将步骤(d)所得玻碳电极浸泡在10~20 μL质量百分浓度为2%的牛血清白蛋白溶液中,封闭1~2 h(封闭非活性位点),即得固载有DNA1的玻碳电极; e. Soak the glassy carbon electrode obtained in step (d) in 10-20 μL bovine serum albumin solution with a concentration of 2% by mass, and block it for 1-2 hours (blocking the inactive sites), and the solid-loaded Glassy carbon electrode of DNA1;
(2)固态电化学发光传感器的组装 (2) Assembly of solid-state electrochemiluminescence sensor
a. 配制一系列不同浓度的含汞离子的标准溶液,将标准溶液与含10 μmol/L DNA2的pH = 7~8的0.01~0.1 M PBS缓冲液按体积比1:1混合; a. Prepare a series of standard solutions containing mercury ions with different concentrations, and mix the standard solution with 0.01-0.1 M PBS buffer solution containing 10 μmol/L DNA2 and pH = 7-8 at a volume ratio of 1:1;
b. 取步骤(a)所得的混合溶液10~20 μL,滴加到固载有DNA1的玻碳电极表面,室温下孵育20~30 min后,用pH = 7~8的0.01~0.1 M PBS缓冲液清洗; b. Take 10-20 μL of the mixed solution obtained in step (a) and drop it on the surface of the glassy carbon electrode loaded with DNA1. Buffer washing;
c.取适量pH = 7~8的0.01~0.1 M PBS缓冲液配制0.01~0.1 mg/mL 的亲和素溶液,将10~20 μL亲和素溶液滴加到步骤(b)所得玻碳电极表面,孵育5 min后; c. Take an appropriate amount of 0.01-0.1 M PBS buffer solution with pH = 7-8 to prepare 0.01-0.1 mg/mL avidin solution, and add 10-20 μL of avidin solution dropwise to the surface of the glassy carbon electrode obtained in step (b). After incubation for 5 min;
d.将步骤(c)所得的玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液清洗后,即得到用于汞离子检测的固态电化学发光传感器。 d. After the glassy carbon electrode obtained in step (c) is washed with 0.01-0.1 M PBS buffer solution with pH = 7-8, a solid-state electrochemiluminescence sensor for mercury ion detection is obtained.
所述的DNA1的结构式为:5’-NH2-(CH2)6-GACTGTCTCGTTCGCTTAG-3’;所述的DNA2的结构式为:5’-biotin-CTATGCGTACGTGACTGTC-3’。 The structural formula of DNA1 is: 5'-NH 2 -(CH 2 ) 6 -GAC T GTC T CGT T CGC T TAG-3'; the structural formula of DNA2 is: 5'-biotin-CTA T GCG T ACG T GAC T GTC-3'.
上述固态电化学发光传感器的用于检测汞离子的方法,具体步骤如下: The method for detecting mercury ions of the above-mentioned solid-state electrochemiluminescence sensor, the specific steps are as follows:
(1)标准曲线建立 (1) Standard curve establishment
a.将权利要求3所述的固载有DNA1的玻碳电极用0.01~0.1 M PBS缓冲液冲洗干净后,在pH = 9~10的0.05~0.2 M碳酸盐缓冲液中,启动电化学反应,测试电化学发光强度I0; a. after the glassy carbon electrode that is loaded with DNA1 described in claim 3 is rinsed clean with 0.01~0.1 M PBS buffer solution, in the 0.05~0.2 M carbonate buffer solution of pH=9~10, start electrochemical Reaction, test electrochemiluminescence intensity I 0 ;
b.将权利要求3所述的用于汞离子检测的固态电化学发光传感器放入pH = 9~10的0.05~0.2 M碳酸盐缓冲液,启动电化学反应,测量电化学发光强度,获得一系列不同浓度的Hg2+溶液对应的电化学发光强度值I1,计算一系列不同浓度的Hg2+溶液电化学发光强度的改变值ΔI= I0?I1,建立电化学发光强度的改变值ΔI与Hg2+溶液浓度之间的定量关系; b. the solid-state electrochemiluminescence sensor for mercury ion detection described in claim 3 is put into 0.05~0.2 M carbonate buffer solution of pH=9~10, starts electrochemical reaction, measures electrochemiluminescence intensity, obtains The electrochemiluminescence intensity value I 1 corresponding to a series of different concentrations of Hg 2+ solutions, calculate the change value of the electrochemiluminescence intensity of a series of different concentrations of Hg 2+ solutions ΔI= I 0 ?I 1 , and establish the value of the electrochemiluminescence intensity Change the quantitative relationship between the value ΔI and the concentration of the Hg 2+ solution;
(2)待测样品测定 (2) Determination of samples to be tested
a. 将含汞离子的待测样品溶液与含10 μmol/L DNA2的pH7~8的0.01~0.1 M PBS缓冲液按体积比1:1混合; a. Mix the sample solution to be tested containing mercury ions with 0.01-0.1 M PBS buffer solution of pH 7-8 containing 10 μmol/L DNA2 at a volume ratio of 1:1;
b. 取步骤(a)所得的混合溶液10~20 μL,滴加到固载有DNA1的玻碳电极表面,室温下孵育20~30 min后,用pH = 7~8的0.01~0.1 M PBS缓冲液清洗; b. Take 10-20 μL of the mixed solution obtained in step (a) and drop it on the surface of the glassy carbon electrode loaded with DNA1. Buffer washing;
c.将10~20 μL用pH = 7~8的0.01~0.1 M PBS缓冲液配制的0.01~0.1 mg/mL 的亲和素溶液滴加到步骤(b)所得玻碳电极表面,孵育5 min后; c. Add 10-20 μL of 0.01-0.1 mg/mL avidin solution prepared in 0.01-0.1 M PBS buffer solution with pH = 7-8 to the surface of the glassy carbon electrode obtained in step (b), and incubate for 5 min;
d.将步骤(c)所得的玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液清洗后,作为工作电极,饱和甘汞电极或者Ag/AgCl电极为参比电极,铂丝电极为对电极,构建三电极系统,置入pH = 9~10的0.05~0.2 M碳酸盐缓冲液中,启动电化学反应,测试电化学发光强度值,利用电化学发光强度的改变值ΔI与Hg2+溶液浓度之间的定量关系,计算得到待测样品溶液中Hg2+的准确浓度CHg。 d. After cleaning the glassy carbon electrode obtained in step (c) with 0.01-0.1 M PBS buffer solution with pH = 7-8, it is used as a working electrode, a saturated calomel electrode or an Ag/AgCl electrode is used as a reference electrode, and a platinum wire electrode is used as a counter electrode. Electrode, build a three-electrode system, put it into a 0.05-0.2 M carbonate buffer solution with pH = 9-10, start the electrochemical reaction, test the value of the intensity of the electrochemiluminescence, and use the change value of the intensity of the electrochemiluminescence ΔI and Hg 2 + The quantitative relationship between the concentration of the solution is calculated to obtain the accurate concentration C Hg of Hg 2+ in the sample solution to be tested.
所述的碳酸盐缓冲液中含1 mM的过氧化氢,采用的电化学方法为电位阶跃计时电流法;电位阶跃:0 V阶跃至1 V;脉冲宽度:0.25 s;测量时间间隔:30 s。 The carbonate buffer solution contains 1 mM hydrogen peroxide, and the electrochemical method used is potential step chronoamperometry; potential step: 0 V step to 1 V; pulse width: 0.25 s; measurement time Interval: 30 s.
发明原理:电化学发光试剂为电聚合的ABEI,ABEI在玻碳电极表面电聚合后,原来的两步电化学发光反应变为一步,且从不可逆变为可逆,电化学发光信号非常稳定。ABEI中的氨基仍然保留,非常方便后续的偶联DNA。在戊二醛交联作用下,DNA1的氨基与电极表面ABEI聚合物中的氨基偶联,从而被固定到电极表面,此时测得的电化学发光强度I0很大。当待测溶液中有Hg2+时,DNA1 与DNA2 通过T-Hg2+-T错配结合,亲和素与DNA2末端的生物素结合,生物素是生物大分子,分子量约60kD,其在电极表面可有效阻碍电子与光的传递,使电化学发光减弱为I1。待测溶液中Hg2+含量越高,发光强度的改变值ΔI= I0?I1也就越大,这就是本固态电化学发光传感器定量检测Hg2+的机理。固态电化学发光传感器检测Hg2+的原理图如图1所示。 Invention principle: The electrochemiluminescence reagent is electropolymerized ABEI. After ABEI is electropolymerized on the surface of the glassy carbon electrode, the original two-step electrochemiluminescence reaction becomes one step, and the electrochemiluminescence signal is very stable from irreversible to reversible. The amino groups in ABEI are still retained, which is very convenient for subsequent coupling of DNA. Under the action of glutaraldehyde cross-linking, the amino group of DNA1 is coupled with the amino group in the ABEI polymer on the electrode surface, thereby being immobilized on the electrode surface. At this time, the measured electrochemiluminescent intensity I 0 is very large. When there is Hg 2+ in the solution to be tested, DNA1 and DNA2 are combined through T-Hg 2+ -T mismatch, and avidin binds to biotin at the end of DNA2. Biotin is a biological macromolecule with a molecular weight of about 60kD. The surface of the electrode can effectively hinder the transmission of electrons and light, and weaken the electrochemiluminescence to I 1 . The higher the content of Hg 2+ in the solution to be tested, the greater the change value of luminous intensity ΔI=I 0 ?I 1 , which is the mechanism of the solid-state electrochemiluminescence sensor for quantitative detection of Hg 2+ . The schematic diagram of the solid-state ECL sensor for Hg2 + detection is shown in Fig. 1.
与现有技术相比,本发明的优点在于: Compared with the prior art, the present invention has the advantages of:
(1)高灵敏度,借助于电化学发光技术本身极高的灵敏度,本固态电化学发光传感器能定量检测0.01 nM Hg2+。 (1) High sensitivity. With the help of the extremely high sensitivity of the electrochemiluminescence technology itself, this solid-state electrochemiluminescence sensor can quantitatively detect 0.01 nM Hg 2+ .
(2)高选择性,常见金属离子如Pb2+、Mn2+、Co2+、Ni2+、Cu2+、Zn2+、Cd2+、Mg2+对检测均无干扰。原因在于:T-Hg2+-T错配对汞离子具有高特异性的识别能力,其它金属离子的干扰可忽略。 (2) High selectivity, common metal ions such as Pb 2+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Mg 2+ do not interfere with the detection. The reason is that the T-Hg 2+ -T mismatch has a high specificity in identifying mercury ions, and the interference of other metal ions is negligible.
(3)成本低廉。所需试剂量极少。 (3) Low cost. The amount of reagent required is minimal.
(4)精密度高。采用固态电化学发光,信号稳定,结果精密度高。 (4) High precision. Using solid-state electrochemiluminescence, the signal is stable and the result precision is high.
综上所述,本发明拟制备一种用于汞离子检测的固态电化学发光传感器,具有灵敏度高、稳定性好、选择性强、重现性良好、易于操作的优点,可以实现对超低浓度汞离子的检测目的。 In summary, the present invention intends to prepare a solid-state electrochemiluminescence sensor for mercury ion detection, which has the advantages of high sensitivity, good stability, strong selectivity, good reproducibility, and easy operation, and can achieve ultra-low The detection purpose of the concentration of mercury ions.
附图说明 Description of drawings
图1为本发明固态电化学发光传感器检测汞离子的原理图; Fig. 1 is the schematic diagram of the detection of mercury ions by the solid-state electrochemiluminescence sensor of the present invention;
图2为不同浓度汞离子对应的电化学发光信号; Figure 2 is the electrochemiluminescent signal corresponding to different concentrations of mercury ions;
图3为发光强度的改变值ΔI与汞离子浓度对数之间的线性关系图; Fig. 3 is a linear relationship diagram between the change value ΔI of the luminous intensity and the logarithm of the mercury ion concentration;
图4为本发明固态电化学发光传感器检测汞离子的选择性检测结果图。 Fig. 4 is a graph showing the selective detection results of mercury ions detected by the solid-state electrochemiluminescent sensor of the present invention.
具体实施方式 Detailed ways
以下结合附图实施例对本发明作进一步详细描述。 The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
具体实施例一 Specific embodiment one
一种用于检测汞离子的固态电化学发光传感器,该传感器为表面固载电聚合的ABEI,再依次组装有戊二醛、DNA1、通过T-Hg2+-T错配结合的DNA2以及生物素的玻碳电极,具体制备步骤如下: A solid-state electrochemiluminescent sensor for detecting mercury ions. The sensor is surface-mounted electropolymerized ABEI, and then sequentially assembled with glutaraldehyde, DNA1, DNA2 through T-Hg 2+ -T mismatch binding, and biological A plain glassy carbon electrode, the specific preparation steps are as follows:
(1)固载有DNA1玻碳电极的制备 (1) Preparation of glassy carbon electrode immobilized with DNA1
a. 将直径为3~5 mm的玻碳电极依次用1.0 μm、0.3 μm、0.05 μm的三氧化二铝抛光处理,然后依次用乙醇、水超声清洗,水冲洗干净后,氮气吹干备用; a. Polish the glassy carbon electrode with a diameter of 3-5 mm with aluminum oxide of 1.0 μm, 0.3 μm, and 0.05 μm in sequence, then ultrasonically clean it with ethanol and water in sequence, rinse it with water, and dry it with nitrogen for later use;
b. 将步骤(a)所得玻碳电极置于含 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的H2SO4溶液中,进行循环伏安扫描,电压范围为?0.2~1.5 V,以0.05 V/s的扫速循环扫描20圈,使ABEI在玻碳电极表面电聚合;上述含 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的H2SO4溶液中 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)浓度为0.001 mol/L,H2SO4浓度为0.1 ~ 1 mol/L; b. Place the glassy carbon electrode obtained in step (a) in the H 2 SO 4 solution containing N-(4-aminobutyl)-N-ethylisoluminol (ABEI), and perform cyclic voltammetry scanning. The range is ?0.2~1.5 V, and the scanning speed is 0.05 V/s for 20 cycles, so that ABEI is electropolymerized on the surface of the glassy carbon electrode; the above-mentioned N-(4-aminobutyl)-N-ethylisoluminami The concentration of N-(4-aminobutyl)-N-ethyl isoluminol (ABEI) in the H 2 SO 4 solution of ABEI is 0.001 mol/L, and the concentration of H 2 SO 4 is 0.1 ~ 1 mol/L L;
c. 将步骤(b)所得玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液冲洗干净后,在玻碳电极表面滴加1~3 wt%戊二醛溶液10~20 μL,静置20~40分钟; c. After washing the glassy carbon electrode obtained in step (b) with 0.01-0.1 M PBS buffer solution with pH = 7-8, add 10-20 μL of 1-3 wt% glutaraldehyde solution dropwise on the surface of the glassy carbon electrode, Stand for 20-40 minutes;
d. 将步骤(c)所得玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液冲洗干净后,在玻碳电极表面滴加含10 μmol/L DNA1的pH = 7~8的0.01~0.1 M PBS缓冲液10~20 μL,静置20~40 min,使DNA1结合到电极表面;其中DNA1的结构式为:5’-NH2-(CH2)6-GACTGTCTCGTTCGCTTAG-3’; d. After washing the glassy carbon electrode obtained in step (c) with 0.01-0.1 M PBS buffer solution with pH = 7-8, dropwise add 0.01 M solution with pH = 7-8 containing 10 μmol/L DNA1 ~0.1 M PBS buffer 10~20 μL, let stand for 20~40 min, make DNA1 bind to the electrode surface; the structural formula of DNA1 is: 5'-NH 2 -(CH 2 ) 6 -GAC T GTC T CGT T CGC T TAG-3';
e. 将步骤(d)所得玻碳电极浸泡在10~20 μL质量百分浓度为2%的牛血清白蛋白溶液中,封闭1~2 h(封闭非活性位点),即得固载有DNA1的玻碳电极; e. Soak the glassy carbon electrode obtained in step (d) in 10-20 μL bovine serum albumin solution with a concentration of 2% by mass, and block it for 1-2 hours (blocking the inactive sites), and the solid-loaded Glassy carbon electrode of DNA1;
(2)固态电化学发光传感器的组装 (2) Assembly of solid-state electrochemiluminescence sensor
a. 配制一系列不同浓度的含汞离子的标准溶液,将标准溶液与含10 μmol/L DNA2的pH = 7~8的0.01~0.1 M PBS缓冲液按体积比1:1混合;其中DNA2的结构式为:5’-biotin-CTATGCGTACGTGACTGTC-3’ ; a. Prepare a series of standard solutions containing mercury ions with different concentrations, and mix the standard solution with 0.01-0.1 M PBS buffer solution containing 10 μmol/L DNA2 at pH = 7-8 at a volume ratio of 1:1; The structural formula is: 5'-biotin-CTA T GCG T ACG T GAC T GTC-3';
b. 取步骤(a)所得的混合溶液10~20 μL,滴加到固载有DNA1的玻碳电极表面,室温下孵育20~30 min后,用pH = 7~8的0.01~0.1 M PBS缓冲液清洗; b. Take 10-20 μL of the mixed solution obtained in step (a) and drop it on the surface of the glassy carbon electrode loaded with DNA1. Buffer washing;
c.取适量pH = 7~8的0.01~0.1 M PBS缓冲液配制0.01~0.1 mg/mL 的亲和素溶液,将10~20 μL亲和素溶液滴加到步骤(b)所得玻碳电极表面,孵育5 min后; c. Take an appropriate amount of 0.01-0.1 M PBS buffer solution with pH = 7-8 to prepare 0.01-0.1 mg/mL avidin solution, and add 10-20 μL of avidin solution dropwise to the surface of the glassy carbon electrode obtained in step (b). After incubation for 5 min;
d.将步骤(c)所得的玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液清洗后,即得到用于汞离子检测的固态电化学发光传感器。 d. After the glassy carbon electrode obtained in step (c) is washed with 0.01-0.1 M PBS buffer solution with pH = 7-8, a solid-state electrochemiluminescence sensor for mercury ion detection is obtained.
除上述具体实施例外,上述固态电化学发光传感器制备的步骤中: In addition to the above-mentioned specific examples, in the steps of preparing the above-mentioned solid-state electrochemiluminescence sensor:
循环伏安扫描的扫速还可以为0.01~0.1 V/s内的任一值,圈数还可以为20~30圈内的任一值,含 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)的H2SO4溶液中 N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)浓度还可以为0.01 ~ 0.0001 mol/L内的任一值, H2SO4浓度可以为0.1 ~ 1 mol/L内的任一值; The scan rate of cyclic voltammetry scan can also be any value within 0.01~0.1 V/s, and the number of circles can also be any value within 20~30 circles, including N-(4-aminobutyl)-N- The concentration of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) in the H 2 SO 4 solution of ethyl isoluminol (ABEI) can also be any value within 0.01 ~ 0.0001 mol/L One value, the concentration of H 2 SO 4 can be any value within 0.1 ~ 1 mol/L;
戊二醛溶液的浓度可以为1~3 wt%内的任一值,滴加体积可以为10~20 μL内的任一值,静置时间为20~40分钟内的任一值; The concentration of glutaraldehyde solution can be any value within 1-3 wt%, the drop volume can be any value within 10-20 μL, and the standing time can be any value within 20-40 minutes;
含10 μmol/L DNA1的pH = 7~8的0.01~0.1 M PBS缓冲液的滴加体积可以为10~20 μL 内的任一值,静置时间可以为20~40分钟内的任一值; The volume of 0.01-0.1 M PBS buffer containing 10 μmol/L DNA1 and pH = 7-8 can be any value within 10-20 μL, and the standing time can be any value within 20-40 minutes ;
牛血清白蛋白(BSA)溶液滴加体积可以为10~20 μL内的任一值,静置时间可以为1~2 h内的任一值; The adding volume of bovine serum albumin (BSA) solution can be any value within 10-20 μL, and the standing time can be any value within 1-2 h;
标准溶液与含10 μmol/L DNA2的pH = 7~8的0.01~0.1 M PBS缓冲液按体积比1:1混合所得混合溶液滴加到固载有DNA1的玻碳电极表面的滴加体积可以为10~20 μL的任一值,孵育时间可以为20~30 min内的任一值; The standard solution and 0.01-0.1 M PBS buffer solution containing 10 μmol/L DNA2 at pH = 7-8 are mixed at a volume ratio of 1:1, and the volume of the mixed solution added dropwise to the surface of the glassy carbon electrode immobilized with DNA1 can be Any value of 10-20 μL, and the incubation time can be any value within 20-30 min;
亲和素溶液的浓度可以为0.01~0.1 mg/mL内的任一值,滴加体积可以为10~20 μL内的任一值; The concentration of avidin solution can be any value within 0.01-0.1 mg/mL, and the dropping volume can be any value within 10-20 μL;
PBS缓冲液的浓度可以为0.01~0.1 M内的任一值,pH可以为7~8内的任一值。 The concentration of PBS buffer can be any value within 0.01-0.1 M, and the pH can be any value within 7-8.
具体实施例二 Specific embodiment two
利用上述具体实施例二制备得到的固态电化学发光传感器检测汞离子的方法,检测汞离子的原理如图1所示,具体步骤如下: The method for detecting mercury ions using the solid-state electrochemiluminescence sensor prepared in the above specific embodiment two, the principle of detecting mercury ions is shown in Figure 1, and the specific steps are as follows:
a.将上述具体实施例二制备得到的固载有DNA1的玻碳电极用0.01~0.1 M PBS缓冲液冲洗干净后,在pH = 9~10的0.05~0.2 M碳酸盐缓冲液中,启动电化学反应,测试电化学发光强度I0; a. After washing the glassy carbon electrode immobilized with DNA1 prepared in the above specific example 2 with 0.01-0.1 M PBS buffer solution, start the process in 0.05-0.2 M carbonate buffer solution with pH = 9-10 Electrochemical reaction, testing the intensity of electrochemiluminescence I 0 ;
b.将上述具体实施例二制备得到的用于汞离子检测的固态电化学发光传感器放入pH = 9~10的0.05~0.2 M碳酸盐缓冲液,启动电化学反应,测量电化学发光强度,获得一系列不同浓度的Hg2+溶液对应的电化学发光强度值I1,计算一系列不同浓度的Hg2+溶液电化学发光强度的改变值ΔI= I0?I1, b. Put the solid-state electrochemiluminescence sensor for mercury ion detection prepared in the above specific example 2 into 0.05-0.2 M carbonate buffer solution with pH = 9-10, start the electrochemical reaction, and measure the intensity of electrochemiluminescence , to obtain the ECL intensity value I 1 corresponding to a series of Hg 2+ solutions with different concentrations, and calculate the change value of the ECL intensity for a series of Hg 2+ solutions with different concentrations ΔI= I 0 ?I 1 ,
电化学发光强度的改变值ΔI= I0?I1,与汞离子浓度对数在0.01~10 nM浓度范围内呈线性关系(不同浓度汞离子对应的电化学发光信号,如图2所示),标准曲线为ΔI= 2493.25 + 843.63 log CHg (nM) (发光强度的改变值ΔI与汞离子浓度对数之间的线性关系图,如图3所示); The change value of the electrochemiluminescence intensity ΔI= I 0 ?I 1 , has a linear relationship with the logarithm of the mercury ion concentration in the concentration range of 0.01 to 10 nM (the electrochemiluminescence signals corresponding to different concentrations of mercury ions are shown in Figure 2) , the standard curve is ΔI= 2493.25 + 843.63 log C Hg (nM) (the linear relationship between the change value of luminous intensity ΔI and the logarithm of the mercury ion concentration is shown in Figure 3);
(2)待测样品测定 (2) Determination of samples to be tested
a.将含汞离子的待测样品溶液与含10 μmol/L DNA2的pH7~8的0.01~0.1 M PBS缓冲液按体积比1:1混合; a. Mix the sample solution to be tested containing mercury ions with 0.01-0.1 M PBS buffer solution of pH 7-8 containing 10 μmol/L DNA2 at a volume ratio of 1:1;
b. 取步骤(a)所得的混合溶液10~20 μL,滴加到上述具体实施例一制备得到的固载有DNA1的玻碳电极表面,室温下孵育20~30 min后,用pH = 7~8的0.01~0.1 M PBS缓冲液清洗; b. Take 10-20 μL of the mixed solution obtained in step (a), drop it on the surface of the glassy carbon electrode immobilized with DNA1 prepared in the above specific example 1, incubate at room temperature for 20-30 min, and use pH = 7 Wash with 0.01-0.1 M PBS buffer solution of ~8;
c.将10~20 μL用pH = 7~8的0.01~0.1 M PBS缓冲液配制的0.01~0.1 mg/mL 的亲和素溶液滴加到步骤(b)所得玻碳电极表面,孵育5 min后; c. Add 10-20 μL of 0.01-0.1 mg/mL avidin solution prepared in 0.01-0.1 M PBS buffer solution with pH = 7-8 to the surface of the glassy carbon electrode obtained in step (b), and incubate for 5 min;
d.将步骤(c)所得的玻碳电极用pH = 7~8的0.01~0.1 M PBS缓冲液清洗后,作为工作电极,饱和甘汞电极或者Ag/AgCl电极为参比电极,铂丝电极为对电极,构建三电极系统,置入pH = 9~10的0.05~0.2 M碳酸盐缓冲液中,启动电化学反应,测试电化学发光强度值,根据标准曲线ΔI= 2493.25 + 843.63 log CHg (nM),计算得到待测样品溶液中Hg2+的准确浓度CHg,单位为nM。 d. After cleaning the glassy carbon electrode obtained in step (c) with 0.01-0.1 M PBS buffer solution with pH = 7-8, it is used as a working electrode, a saturated calomel electrode or an Ag/AgCl electrode is used as a reference electrode, and a platinum wire electrode is used as a counter electrode. Electrode, build a three-electrode system, put it into the 0.05-0.2 M carbonate buffer solution with pH = 9-10, start the electrochemical reaction, test the value of the electrochemiluminescence intensity, according to the standard curve ΔI= 2493.25 + 843.63 log C Hg ( nM), calculate the accurate concentration CHg of Hg 2+ in the sample solution to be tested, and the unit is nM.
上述碳酸盐缓冲液中含1 mM的过氧化氢,采用的电化学方法为电位阶跃计时电流法;电位阶跃:0 V阶跃至1 V;脉冲宽度:0.25 s;测量时间间隔:30 s。 The above-mentioned carbonate buffer solution contains 1 mM hydrogen peroxide, and the electrochemical method used is potential step chronoamperometry; potential step: 0 V step to 1 V; pulse width: 0.25 s; measurement time interval: 30 s.
具体实施例三 Specific embodiment three
高选择性和高灵敏性的检测试验 Highly selective and sensitive detection assay
高灵敏性由具体实施例二体现,由于电化学发光强度的改变值ΔI= I0?I1,与汞离子浓度对数在0.01~10 nM浓度范围内呈线性关系,因此,具体实施例一制备得到的检测汞离子的固态电化学发光传感器对Hg2+的检测灵敏度达0.01 nM。 The high sensitivity is reflected in the specific embodiment 2. Since the change value of the electrochemiluminescent intensity ΔI=I 0 ?I 1 has a linear relationship with the logarithm of the mercury ion concentration within the concentration range of 0.01 to 10 nM, the specific embodiment 1 The prepared solid-state ECL sensor for detecting mercury ions has a detection sensitivity of 0.01 nM for Hg 2+ .
高选择性:以上述具体实施例二同样的实验条件,检测10 μM的常见干扰离子:Pb2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mg2+,结果如图4所示。 High selectivity: under the same experimental conditions as in the above specific example 2, common interfering ions at 10 μM are detected: Pb 2+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Mg 2+ , the results are shown in Figure 4.
结果表明:0.01 nM Hg2+造成传感器的ΔI为800左右,而10 μM的常见干扰离子造成传感器的ΔI均小于200,意味着1000000倍的常见干扰离子不影响检测,主要原因为Hg2+与T碱基之间的T-Hg2+-T错配、生物素和亲和素之间的特异性识别。 The results show that: 0.01 nM Hg 2+ causes the ΔI of the sensor to be about 800, while 10 μM common interfering ions cause the ΔI of the sensor to be less than 200, which means that 1000000 times common interfering ions do not affect the detection. The main reason is that Hg 2+ and T-Hg 2+ -T mismatch between T bases, specific recognition between biotin and avidin.
具体实施例四 Specific embodiment four
以上述具体实施例一制备得到的检测汞离子的固态电化学发光传感器为工作电极,以上述具体实施例二同样的实验条件,检测高中低三种浓度的Hg2+标准溶液,结果如下表。 Using the solid-state electrochemiluminescence sensor for detecting mercury ions prepared in the above-mentioned specific example 1 as the working electrode, and using the same experimental conditions as in the above-mentioned specific example 2, Hg2 + standard solutions with three concentrations of high, medium and low were detected, and the results are shown in the following table.
由上表可知,回收率在90.8~97.4%之间,表明准确度良好。RSD在6.4~11.0%之间,表明精密度良好。 It can be seen from the above table that the recovery rate is between 90.8% and 97.4%, indicating that the accuracy is good. The RSD is between 6.4 and 11.0%, indicating that the precision is good.
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,作出的变化、改型、添加或替换,也应属于本发明的保护范围,本发明的保护范围以权利要求书为准。 The above description does not limit the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or substitutions made by those skilled in the art within the essential scope of the present invention shall also belong to the protection scope of the present invention, and the protection scope of the present invention shall be determined by the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410289966.1A CN104155289B (en) | 2014-06-25 | 2014-06-25 | A kind of solid-state electrochemistry illumination sensor detecting mercury ion and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410289966.1A CN104155289B (en) | 2014-06-25 | 2014-06-25 | A kind of solid-state electrochemistry illumination sensor detecting mercury ion and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104155289A true CN104155289A (en) | 2014-11-19 |
CN104155289B CN104155289B (en) | 2016-06-08 |
Family
ID=51880848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410289966.1A Expired - Fee Related CN104155289B (en) | 2014-06-25 | 2014-06-25 | A kind of solid-state electrochemistry illumination sensor detecting mercury ion and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104155289B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105067597A (en) * | 2015-07-23 | 2015-11-18 | 江苏大学 | Electrochemical luminescence method for detecting graphene oxide |
CN106770590A (en) * | 2016-11-17 | 2017-05-31 | 江苏智石科技有限公司 | A kind of Mercury in Soil concentration of metal ions monitoring system based on three-stage amplifier |
CN107543852A (en) * | 2017-08-29 | 2018-01-05 | 济南大学 | A kind of Electrochemiluminescsensor sensor based on functional metal organic framework materials |
CN109470751A (en) * | 2018-09-13 | 2019-03-15 | 宁波大学 | Preparation method and application of an electrochemical sensor for detecting mercury ions with dual-channel output |
CN110006968A (en) * | 2019-03-12 | 2019-07-12 | 宁波大学 | The preparation method and applications of electrochemica biological sensor based on quick scan cycle volt-ampere technology detection mercury ion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100151579A1 (en) * | 2008-10-10 | 2010-06-17 | Zidong Wang | Fluorescent sensor for mercury |
CN101851677A (en) * | 2010-04-30 | 2010-10-06 | 中国科学院广州生物医药与健康研究院 | Nucleic acid nano-gold biosensor for detection of Hg2+ |
CN101936940A (en) * | 2010-09-03 | 2011-01-05 | 江南大学 | A method for detecting ochratoxin A by electrochemiluminescence aptasensor |
CN102207502A (en) * | 2011-03-25 | 2011-10-05 | 宁波大学 | Mercury ion test paper and preparation method thereof |
CN102706864A (en) * | 2012-05-25 | 2012-10-03 | 苏州大学 | Luminol-aniline copolymerization modified electrode and preparation method thereof |
-
2014
- 2014-06-25 CN CN201410289966.1A patent/CN104155289B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100151579A1 (en) * | 2008-10-10 | 2010-06-17 | Zidong Wang | Fluorescent sensor for mercury |
CN101851677A (en) * | 2010-04-30 | 2010-10-06 | 中国科学院广州生物医药与健康研究院 | Nucleic acid nano-gold biosensor for detection of Hg2+ |
CN101936940A (en) * | 2010-09-03 | 2011-01-05 | 江南大学 | A method for detecting ochratoxin A by electrochemiluminescence aptasensor |
CN102207502A (en) * | 2011-03-25 | 2011-10-05 | 宁波大学 | Mercury ion test paper and preparation method thereof |
CN102706864A (en) * | 2012-05-25 | 2012-10-03 | 苏州大学 | Luminol-aniline copolymerization modified electrode and preparation method thereof |
Non-Patent Citations (13)
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105067597A (en) * | 2015-07-23 | 2015-11-18 | 江苏大学 | Electrochemical luminescence method for detecting graphene oxide |
CN106770590A (en) * | 2016-11-17 | 2017-05-31 | 江苏智石科技有限公司 | A kind of Mercury in Soil concentration of metal ions monitoring system based on three-stage amplifier |
CN107543852A (en) * | 2017-08-29 | 2018-01-05 | 济南大学 | A kind of Electrochemiluminescsensor sensor based on functional metal organic framework materials |
CN109470751A (en) * | 2018-09-13 | 2019-03-15 | 宁波大学 | Preparation method and application of an electrochemical sensor for detecting mercury ions with dual-channel output |
CN109470751B (en) * | 2018-09-13 | 2020-10-30 | 宁波大学 | Preparation method and application of an electrochemical sensor for detecting mercury ions with dual-channel output |
CN110006968A (en) * | 2019-03-12 | 2019-07-12 | 宁波大学 | The preparation method and applications of electrochemica biological sensor based on quick scan cycle volt-ampere technology detection mercury ion |
CN110006968B (en) * | 2019-03-12 | 2021-03-09 | 宁波大学 | Preparation method and application of electrochemical biosensor for detecting mercury ions based on rapid scanning cyclic voltammetry technology |
Also Published As
Publication number | Publication date |
---|---|
CN104155289B (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113075269B (en) | An electrochemiluminescence aptasensor for specific detection of chloramphenicol and its preparation method and application | |
CN102375021B (en) | Electrochemical method employing DNA as probe to detect environmental pollutant | |
CN104155289B (en) | A kind of solid-state electrochemistry illumination sensor detecting mercury ion and its preparation method and application | |
Li et al. | Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan | |
CN105300963B (en) | For the preparation method and applications for the sandwich electrochemical luminescence immunosensor for detecting Marine Pathogenic Bacteria | |
CN103592276B (en) | Cadmium ion detects by quantum dot fluorescent optical sensor and detection method thereof | |
CN108344792B (en) | Method for rapidly detecting total arsenic in water body | |
CN106442659B (en) | The active method of electrochemical sensing electrode quantitative detection 8-OhdG based on aniline deposition | |
Li et al. | A molecularly imprinted sensor based on an electrochemiluminescent membrane for ultratrace doxycycline determination | |
CN103364353A (en) | Aptamer nanogold resonance Rayleigh scattering spectrum method for determination of lysozyme | |
CN102749452A (en) | Near-infrared electro-generated chemiluminescence immunodetection method | |
CN103969250A (en) | A method for detecting Hg2+ by signal-off chemiluminescence | |
CN102706927A (en) | Method for measuring gibberellin in fruits by aid of molecularly imprinted electrochemically modified electrode | |
CN108398406B (en) | A biosensor for detecting uracil glycosylase (UDG) and its application | |
CN110006968A (en) | The preparation method and applications of electrochemica biological sensor based on quick scan cycle volt-ampere technology detection mercury ion | |
CN112505024A (en) | Electrochemiluminescence aptamer sensor for detecting enrofloxacin, preparation method thereof and method for detecting enrofloxacin | |
CN102004099A (en) | Method for detecting malachite green through electrochemiluminescence | |
CN104614421A (en) | Electrochemical method for detecting 2,4,6-trichlorophenol | |
Li et al. | Electrochemiluminescence detection of silver ion based on trigeminal structure of DNA | |
CN101201316A (en) | Spectrophotometric method for detection of trace horseradish peroxidase | |
CN106556593A (en) | A kind of method of fixing tripyridyl ruthenium and detecting malachite green through electrochemiluminescence | |
CN107561064B (en) | Application of G-quadruplex DNA enzyme in ultra-weak chemiluminescence detection of sulfide ions | |
CN103196898B (en) | Method for determining trace levamisole by bipyridine ruthenium electrochemiluminescence method | |
CN104155290B (en) | The preparation method of a kind of solid-state electrochemistry illumination sensor detecting lead ion and application thereof | |
CN106053570B (en) | A kind of microcapsule algae toxin electrochemical detection method of graphene signal amplification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200921 Address after: 315040 12-18, building 32, No.1, Guanghua Road, high tech Zone, Ningbo City, Zhejiang Province Patentee after: Ningbo lizhile Technology Consulting Co.,Ltd. Address before: 315211 Zhejiang Province, Ningbo Jiangbei District Fenghua Road No. 818 Patentee before: Ningbo University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221213 Address after: 253600 No. 001, North of the 4th Road, Leling Hi tech Industrial Park, Dezhou, Shandong Patentee after: Leling Jinshan Electric Appliance Co.,Ltd. Address before: 315040 12-18, building 32, No.1, Guanghua Road, high tech Zone, Ningbo City, Zhejiang Province Patentee before: Ningbo lizhile Technology Consulting Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160608 |
|
CF01 | Termination of patent right due to non-payment of annual fee |