Nothing Special   »   [go: up one dir, main page]

CN104031289B - 聚烯烃复合隔膜及其制备方法,以及锂离子电池 - Google Patents

聚烯烃复合隔膜及其制备方法,以及锂离子电池 Download PDF

Info

Publication number
CN104031289B
CN104031289B CN201410219157.3A CN201410219157A CN104031289B CN 104031289 B CN104031289 B CN 104031289B CN 201410219157 A CN201410219157 A CN 201410219157A CN 104031289 B CN104031289 B CN 104031289B
Authority
CN
China
Prior art keywords
copolymer
polyolefin
diaphragm
polyolefin composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410219157.3A
Other languages
English (en)
Other versions
CN104031289A (zh
Inventor
赵鹏
何向明
尚玉明
王莉
杨聚平
李建军
高剑
王要武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Jiangsu Huadong Institute of Li-ion Battery Co Ltd
Original Assignee
Tsinghua University
Jiangsu Huadong Institute of Li-ion Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Jiangsu Huadong Institute of Li-ion Battery Co Ltd filed Critical Tsinghua University
Priority to CN201410219157.3A priority Critical patent/CN104031289B/zh
Publication of CN104031289A publication Critical patent/CN104031289A/zh
Priority to PCT/CN2014/088915 priority patent/WO2015176480A1/zh
Priority to US15/359,377 priority patent/US20170077473A1/en
Application granted granted Critical
Publication of CN104031289B publication Critical patent/CN104031289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)

Abstract

一种聚烯烃复合隔膜的制备方法,包括:将甲基丙烯酸甲酯和γ‑甲基丙烯酰氧基丙基三乙氧基硅烷按比例聚合形成共聚物,所述共聚物的分子式为:,其中,m、n为整数;将所述共聚物溶解于第一溶剂中形成一共聚物溶液;将所述共聚物溶液刮涂在聚烯烃多孔隔膜的表面并干燥,从而在所述聚烯烃多孔隔膜的表面及内部孔壁形成凝胶聚合物电解质预制层;以及将含有凝胶聚合物电解质预制层的聚烯烃多孔隔膜在盐酸的气氛中熏蒸。本发明还涉及一种聚烯烃复合隔膜及一种锂离子电池。

Description

聚烯烃复合隔膜及其制备方法,以及锂离子电池
技术领域
本发明涉及一种聚烯烃复合隔膜及其制备方法,以及应用该聚烯烃复合隔膜的锂离子电池。
背景技术
随着锂离子电池在移动电话、电动车与能量储存系统等新能源应用领域的快速发展,锂离子电池的安全性问题显得尤为重要。基于对锂离子电池安全问题的原因分析,可以从以下几方面来提高锂离子电池的安全性:一是通过优化锂离子电池的设计和管理等,对锂离子电池充放电过程进行实时监控和处理,保证锂离子电池的使用安全,二是改进或开发新的电极材料,提高电池本征安全性能,三是使用新型安全性的电解质和隔膜体系,提高电池安全性能。
隔膜是锂离子电池结构中的关键的内层组件之一,其作用是能使电解质离子通过、分隔阴极与阳极接触防止短路。传统的锂离子电池隔膜是聚烯烃,如聚丙烯(PP)及聚乙烯(PE)经物理(如拉伸法)或化学(如萃取法)制孔工艺制备的多孔薄膜,如日本旭化成Asahi、东燃化学Tonen、宇部Ube、美国Celgard等外国公司的隔膜产品。作为隔膜的基体聚合物,聚烯烃具有强度高、耐酸碱性好、耐溶剂性好等优点,但缺点是熔点较低(聚乙烯熔点约为130℃,聚丙烯约为160℃),高温易延热拉伸方向收缩。当电池发生热失控,温度达到聚合物熔点附近,隔膜发生大幅收缩,电池正负极短路,加速电池的热失控,进而导致电池起火、爆炸等安全事故。另外,聚烯烃隔膜还具有低吸液率和低电解液浸润性等缺点,不利于提高锂离子电池的性能。
发明内容
有鉴于此,确有必要提供一种耐收缩、高性能的聚烯烃复合隔膜及其制备方法,以及锂离子电池。
一种聚烯烃复合隔膜的制备方法,包括:将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按比例聚合形成共聚物,所述共聚物的分子式为:,其中, m、n为整数; 将所述共聚物溶解于第一溶剂中形成一共聚物溶液;将所述共聚物溶液刮涂在聚烯烃多孔隔膜的表面并干燥,从而在所述聚烯烃多孔隔膜的表面和内部孔壁形成凝胶聚合物电解质预制层;以及将含有凝胶聚合物电解质预制层的聚烯烃多孔隔膜在盐酸的气氛中熏蒸,形成硅氧交联网络。
一种聚烯烃复合隔膜,包括聚烯烃多孔膜及设置在该聚烯烃多孔膜表面的一甲基丙烯酸甲酯—γ-甲基丙烯酰氧基丙基三乙氧基硅烷的共聚物膜,其中,所述γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的硅-氧烷交联形成硅氧交联体系。
一种锂离子电池,包括正极、负极以及设置在该正极与负极之间的凝胶聚合物电解质隔膜,该凝胶聚合物电解质隔膜包括上述的聚烯烃复合隔膜,以及渗透于该聚烯烃复合隔膜中的非水电解液。
本发明实施例提供的聚烯烃复合隔膜,通过聚甲基丙烯酸甲酯提高复合隔膜的吸液率以及气体渗透率,而通过聚γ-甲基丙烯酰氧基丙基三乙氧基硅烷提高复合隔膜的抗热收缩性。故该聚烯烃复合隔膜不仅可以具有良好的安全性能,还可以同时提高使用该复合隔膜的电池的倍率性能。另外,本发明实施例提供的聚烯烃复合隔膜的制备方法,还具有方法简单,易于工业化等特点。
附图说明
图1为本发明实施例提供的聚烯烃复合隔膜的制备方法的流程图。
图2为本发明实施例提供的聚烯烃复合隔膜的结构示意图。
主要元件符号说明
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参照图1-2,本发明实施例提供一种聚烯烃复合隔膜的制备方法,包括:
S10,将甲基丙烯酸甲酯(MMA)和γ-甲基丙烯酰氧基丙基三乙氧基硅烷(TEPM)按比例聚合形成共聚物,所述共聚物的分子式为:
,其中,m、n为整数;
S11,将所述共聚物以一定比例溶解于第一溶剂中形成共聚物溶液;
S12,将所述共聚物溶液刮涂在聚烯烃多孔隔膜的表面并干燥,从而在所述聚烯烃多孔隔膜的表面形成凝胶聚合物电解质预制层;以及
S13,将含有凝胶聚合物电解质预制层的聚烯烃多孔隔膜在盐酸的气氛中熏蒸。
所述步骤S10包括以下步骤:
S101,将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按比例混合形成混合物;
S102,在所述混合物加入引发剂,搅拌并加热到一定反应温度,使甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷聚合形成共聚物预制体;以及
S103,对所述共聚物预制体进行提纯。
在步骤S101中,所述混合物中,所述甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按照m:n比例互溶。
在步骤S102中,所述甲基丙烯酸甲酯和所述γ-甲基丙烯酰氧基丙基三乙氧基硅烷发生自由基聚合反应形成所述共聚物预制体。其中,所述引发剂可以为偶氮类引发剂,如偶氮二异丁腈(AIBN)等。所述反应温度优选为70℃~90℃。
在步骤S103中,所述对共聚物预制体进行提纯的步骤包括:
S1031,将所述共聚物预制体溶解于第二溶剂中,形成共聚物预制体溶液;以及
S1032,提供乙醇/水的混合溶剂,并将所述共聚物预制体溶液加入所述混合溶剂中沉淀获得所述共聚物。
在步骤S1031中,所述第二溶剂的种类不限,只要可以溶解所述共聚物预制体即可。优选地,所述第二溶剂选自极性较大且沸点低于100℃的有机溶剂,如四氢呋喃等。
在步骤S1032中,由于所述共聚物不能溶解于所述混合溶剂,故该共聚物可以从所述混合溶剂中析出,从而形成所述共聚物沉淀;而未发生反应的甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷单体则会溶解于所述混合溶剂而去除,从而达到分离提纯的目的。所述混合溶剂中乙醇和水的比例不限,可以根据实际m/n的数值配制;优选地,当m/n=1时,乙醇和水的比例为1:2~2:1。
可以理解,可以重复步骤S103,从而获得高纯度的聚合物。实验证明,重复三次步骤S103就可以将发生反应的甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷完全去除。
在步骤S11中,所述共聚物溶液中所述共聚物浓度优选为5%-15%。所述第一溶剂的种类不限,可以与所述第二溶剂相同,即也选自具有较大极性且沸点沸点低于100℃的有机溶剂。
在步骤S12中,所述凝胶聚合物电解质预制层中的厚度优选为5微米。可以理解,所述凝胶聚合物电解质预制层的厚度可以通过刮涂在所述聚烯烃多孔隔膜表面的共聚物溶液的厚度控制。该聚烯烃多孔膜可以为聚丙烯多孔膜、聚乙烯多孔膜或聚丙烯多孔膜与聚乙烯多孔膜层叠形成的膜结构。该聚烯烃多孔膜可以为锂离子电池隔膜,用于隔绝电子并使锂离子从多孔膜的微孔中通过。该聚烯烃多孔膜可以采用市售的锂离子电池隔膜,如日本旭化成Asahi、东燃化学Tonen、宇部Ube、美国Celgard等公司生产的隔膜产品。本实施例采用Celgard公司生产的Celgard-2325型隔膜。
在步骤S13中,将含有凝胶聚合物电解质预制层的聚烯烃多孔隔膜在盐酸的气氛中熏蒸的过程中,所述凝胶聚合物电解质预制层中的硅-氧烷会交联生成硅氧交联体系,从而在所述聚烯烃多孔隔膜的表面形成一凝胶聚合物电解质层,进而形成所述聚烯烃复合隔膜。所述在盐酸的气氛中熏蒸的时间不限,优选地为24-36个小时。
在所述步骤S13之后,可以进一步包括用易挥发的有机溶剂超声清洗所述聚烯烃复合隔膜上残留的盐酸,并干燥。所述易挥发的有机溶剂可以选自乙醇、丙酮等等。
在使用时,可将该聚烯烃复合隔膜在电解液中浸泡。
本发明实施例提供一种锂离子电池,包括正极、负极以及设置在该正极与负极之间的凝胶聚合物电解质隔膜,该凝胶聚合物电解质隔膜包括该聚烯烃复合隔膜,以及渗透于该聚烯烃复合隔膜中的非水电解液。
该非水电解液包括溶剂及溶于溶剂的锂盐溶质,该溶剂可选自环状碳酸酯、链状碳酸酯、环状醚类、链状醚类、腈类及酰胺类中的一种或多种,如碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、二乙醚、乙腈、丙腈、苯甲醚、丁酸酯、戊二腈、已二腈、γ-丁内酯、γ-戊内酯、四氢呋喃、1,2-二甲氧基乙烷及乙腈及二甲基甲酰胺中的一种或多种。该锂盐溶质可选自氯化锂(LiCl)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、甲磺酸锂(LiCH3SO3)、三氟甲磺酸锂(LiCF3SO3)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)及双草酸硼酸锂(LiBOB)中的一种或多种。
该正极可包括正极集流体及正极材料层,该正极集流体用于担载该正极材料层并传导电流,形状可以为箔片或网状。该正极集流体的材料可以选自铝、钛或不锈钢。该正极材料层设置在该正极集流体至少一表面。该正极材料层包括正极活性材料,进一步可选择的包括导电剂以及粘结剂。导电剂以及粘结剂可以与所述正极活性材料均匀混合。该正极活性材料可以为如磷酸铁锂、尖晶石锰酸锂、钴酸锂或镍酸锂等。
该负极可包括负极集流体及负极材料层,该负极集流体用于担载该负极材料层并传导电流,形状可以为箔片或网状。该负极集流体的材料可以选自铜、镍或不锈钢。该负极材料层设置在该负极集流体至少一表面。该负极材料层包括负极活性材料,进一步可选择的包括导电剂以及粘结剂。导电剂以及粘结剂可以与所述负极活性材料均匀混合。该负极活性材料可以为石墨、乙炔黑、微珠碳、碳纤维、碳纳米管或裂解碳等。
实施例1
将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按摩尔比1:1均匀混合后,加入一定量的偶氮二异丁腈(AIBN),在80℃下搅拌聚合,形成一共聚物预聚体;将所述共聚物预聚体溶解于四氢呋喃中形成共聚物预聚体的混合溶液,将所述共聚物预聚体的混合溶液加入乙醇/水(体积比1:1)的混合溶剂中沉淀,并反复进行三次,从而获得聚甲基丙烯酸甲酯—聚γ-甲基丙烯酰氧基丙基三乙氧基硅烷的共聚物沉淀;将所述共聚物溶解于四氢呋喃形成浓度为10%左右的共聚物溶液;将所述共聚物溶液刮涂于一Celgard-2325型隔膜的两个表面并晾干;将刮涂有共聚物溶液的Celgard-2325型隔膜在一浓盐酸氛围中熏蒸48小时;最后用乙醇超声清洗并真空干燥,得到该复合隔膜,厚度为40微米。
对比例1
未经过处理的Celgard-2325型隔膜。
对比例2
与实施例1的区别仅在将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷混合物替换为甲基丙烯酸甲酯。
对比例3
与实施例1的区别仅在将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷混合物替换为γ-甲基丙烯酰氧基丙基三乙氧基硅烷。
对上述实施例和对比例中的隔膜进行分别进行气体渗透率、接触角、吸液率、导电性能以及热收缩性能等方面的测试,测试获得的性能参数如下表1所示。
表1
从表1中可以看出,聚甲基丙烯酸甲酯可以大幅提高复合隔膜的吸液率和气体渗透率,进而可以增加锂离子电池的倍率性能,然而对抗热收缩性影响较小。而聚γ-甲基丙烯酰氧基丙基三乙氧基硅烷所形成的硅氧交联体系,可以显著提高复合隔膜的抗热收缩性,而对吸液率和气体渗透率影响较小。故,本发明实施例中的聚烯烃复合隔膜通过聚甲基丙烯酸甲酯以及聚γ-甲基丙烯酰氧基丙基三乙氧基硅烷的添加,从而可以优化复合隔膜的安全性能并同时提高使用该复合隔膜的电池的倍率性能。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

1.一种聚烯烃复合隔膜的制备方法,包括:
S10,将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按比例聚合形成一共聚物,所述共聚物的分子式为:
其中,m、n为整数;
S11,将所述共聚物溶解于第一溶剂中形成一共聚物溶液;
S12,将所述共聚物溶液刮涂在一聚烯烃多孔隔膜的表面并干燥,从而在所述聚烯烃多孔隔膜的表面形成凝胶聚合物电解质预制层;以及
S13,将含有凝胶聚合物电解质预制层的聚烯烃多孔隔膜在盐酸的气氛中熏蒸。
2.如权利要求1所述的聚烯烃复合隔膜的制备方法,其特征在于,所述步骤S10包括以下步骤:
将甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷按m:n比例混合形成一混合物;
在所述混合物加入引发剂,搅拌并加热到反应温度,使甲基丙烯酸甲酯和γ-甲基丙烯酰氧基丙基三乙氧基硅烷聚合形成共聚物预制体;以及
对所述共聚物预制体进行提纯。
3.如权利要求2所述的聚烯烃复合隔膜的制备方法,其特征在于,所述引发剂为偶氮类引发剂,所述反应温度为70℃~90℃。
4.如权利要求2所述的聚烯烃复合隔膜的制备方法,其特征在于,所述对共聚物预制体进行提纯的步骤包括:
将所述共聚物预制体溶解于一第二溶剂中,形成一共聚物预制体溶液;以及
提供乙醇/水的混合溶剂,并将所述共聚物预制体溶液加入所述混合溶剂中沉淀。
5.如权利要求1所述的聚烯烃复合隔膜的制备方法,其特征在于,所述共聚物溶液中所述共聚物质量浓度为5%-15%。
6.如权利要求1所述的聚烯烃复合隔膜的制备方法,其特征在于,所述第一溶剂选自具有极性且沸点低于100℃的有机溶剂。
7.如权利要求1所述的聚烯烃复合隔膜的制备方法,其特征在于,所述在盐酸的气氛中熏蒸的时间为24-36个小时。
8.一种采用如权利要求1-7中任何一种所述的聚烯烃复合隔膜的制备方法制备的聚烯烃复合隔膜,其特征在于,包括聚烯烃多孔膜及设置在该聚烯烃多孔膜表面的甲基丙烯酸甲酯—γ-甲基丙烯酰氧基丙基三乙氧基硅烷的共聚物膜,其中,所述γ-甲基丙烯酰氧基丙基三乙氧基硅烷中的硅-氧烷交联形成硅氧交联体系。
9.一种锂离子电池,包括正极、负极以及设置在该正极与负极之间的凝胶聚合物电解质隔膜,其特征在于,该凝胶聚合物电解质隔膜包括如权利要求8所述的聚烯烃复合隔膜,以及渗透于该聚烯烃复合隔膜中的非水电解液。
CN201410219157.3A 2014-05-22 2014-05-22 聚烯烃复合隔膜及其制备方法,以及锂离子电池 Active CN104031289B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410219157.3A CN104031289B (zh) 2014-05-22 2014-05-22 聚烯烃复合隔膜及其制备方法,以及锂离子电池
PCT/CN2014/088915 WO2015176480A1 (zh) 2014-05-22 2014-10-20 聚烯烃复合隔膜及其制备方法,以及锂离子电池
US15/359,377 US20170077473A1 (en) 2014-05-22 2016-11-22 Polyolefin composite separator, method for making the same, and lithium ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410219157.3A CN104031289B (zh) 2014-05-22 2014-05-22 聚烯烃复合隔膜及其制备方法,以及锂离子电池

Publications (2)

Publication Number Publication Date
CN104031289A CN104031289A (zh) 2014-09-10
CN104031289B true CN104031289B (zh) 2017-06-13

Family

ID=51462299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410219157.3A Active CN104031289B (zh) 2014-05-22 2014-05-22 聚烯烃复合隔膜及其制备方法,以及锂离子电池

Country Status (3)

Country Link
US (1) US20170077473A1 (zh)
CN (1) CN104031289B (zh)
WO (1) WO2015176480A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031289B (zh) * 2014-05-22 2017-06-13 江苏华东锂电技术研究院有限公司 聚烯烃复合隔膜及其制备方法,以及锂离子电池
CN109167003B (zh) * 2018-08-28 2021-08-06 合肥国轩高科动力能源有限公司 一种热响应隔膜的制备方法和应用
EP4064443B1 (en) 2018-10-11 2025-01-22 Asahi Kasei Battery Separator Corporation Lithium ion battery using crosslinkable separator
CN115172985B (zh) 2018-10-11 2024-07-02 旭化成株式会社 蓄电装置用分隔件的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441229A (zh) * 2013-07-23 2013-12-11 清华大学 电池隔膜及其制备方法
CN103474601A (zh) * 2013-08-23 2013-12-25 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69839333T2 (de) * 1997-05-30 2009-07-09 Shiseido Co. Ltd. Zusammensetzung ein copolymer enthaltend das reaktive silyl-gruppen aufweist sowie verfahren zur verwendung
KR101236100B1 (ko) * 2004-12-15 2013-02-21 가부시키가이샤 구라레 활성 에너지선 경화성 수지 조성물 및 그 용도
CN102504611A (zh) * 2011-10-17 2012-06-20 中科院广州化学有限公司 一种改性二氧化硅及高性能锂离子电池隔膜和其应用
FR2993790A1 (fr) * 2012-07-25 2014-01-31 Centre Nat Rech Scient Membranes composites, leur procede de preparation et leurs utilisations
CN104031289B (zh) * 2014-05-22 2017-06-13 江苏华东锂电技术研究院有限公司 聚烯烃复合隔膜及其制备方法,以及锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441229A (zh) * 2013-07-23 2013-12-11 清华大学 电池隔膜及其制备方法
CN103474601A (zh) * 2013-08-23 2013-12-25 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚3-(甲基丙烯酰氧)丙基三甲氧基硅烷/聚丙烯酸甲酯复合乳液制备与表征及其膜性能;司马文龙 等;《安徽化工》;20050830(第136期);23页第1.2.1、1.2.2节和第3节 *

Also Published As

Publication number Publication date
CN104031289A (zh) 2014-09-10
US20170077473A1 (en) 2017-03-16
WO2015176480A1 (zh) 2015-11-26

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of a trilayer separator and its application to lithium-ion batteries
JP7189122B2 (ja) 電気化学発電装置用のイオン伝導性材料及び製造方法
WO2021052363A1 (zh) 一种聚合物锂二次电池及其原位制成方法
Park et al. Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries
CN107732293A (zh) 类三明治结构固态聚合物电解质膜的制备方法及其在固态锂离子电池中的应用
CN104140502A (zh) 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
CN104479166A (zh) 一种聚偏氟乙烯混合物锂离子电池隔膜的制备方法
CN105119012B (zh) 一种锂离子电池用凝胶聚合物电解质及其制备方法
WO2021232904A1 (zh) 一种电化学装置隔离膜及其制备方法
CN104031289B (zh) 聚烯烃复合隔膜及其制备方法,以及锂离子电池
KR20150059621A (ko) 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
Miao et al. Superior thermal stability of PVA/cellulose composite membranes for lithium-ion battery separators prepared by impregnation method with noncovalent cross-linking of intermolecular multiple hydrogen-bonds
US20230098496A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for lithium secondary battery and method for manufacturing the same
Wen et al. Enhanced electrochemical properties of a novel polyvinyl formal membrane supporting gel polymer electrolyte by Al2O3 modification
Huang et al. Cyclic stability improvement in a blended P (VdF-HFP)/P (BMA-AN-St)-based gel electrolyte by electrospinning for high voltage lithium ion batteries
Li et al. Preparation and properties of gel‐filled PVDF separators for lithium ion cells
WO2015096619A1 (zh) 聚合物锂离子电池的制备方法
JP2009277413A (ja) リチウムポリマー電池
CN111837258B (zh) 制造含聚合物固体电解质的电极的方法和由此获得的电极
CN114400372B (zh) 一种各向异性离子传输通道的固态电解质薄膜的制备方法
CN114024094B (zh) 一种含氟锂离子电池隔膜及其制备方法
US20170077477A1 (en) Polyolefin composite separator, method for making the same, and lithium ion battery using the same
CN112928387B (zh) 一种含硼改性隔膜及其制备方法和应用及含该隔膜的电池
CN104167563B (zh) 一种复合固态电解质薄膜、制备方法和应用
CN104124416B (zh) 聚烯烃复合隔膜及其制备方法,以及锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant